A335648 Partial sums of A006010.
0, 1, 6, 26, 78, 195, 420, 820, 1476, 2501, 4026, 6222, 9282, 13447, 18984, 26216, 35496, 47241, 61902, 80002, 102102, 128843, 160908, 199068, 244140, 297037, 358722, 430262, 512778, 607503, 715728, 838864, 978384, 1135889, 1313046, 1511658, 1733598, 1980883, 2255604
Offset: 0
Links
- Stefano Spezia, Table of n, a(n) for n = 0..10000
- Index entries for linear recurrences with constant coefficients, signature (4,-4,-4,10,-4,-4,4,-1).
- Index entries for partial sums.
Crossrefs
Programs
-
Magma
I:=[0, 1, 6, 26, 78, 195, 420, 820]; [n le 8 select I[n] else 4*Self(n-1)-4*Self(n-2)-4*Self(n-3)+10*Self(n-4)-4*Self(n-5)-4*Self(n-6)+4*Self(n-7)-Self(n-8): n in [1..39]];
-
Mathematica
Table[(1+n)(5-5(-1)^n+8n+12n^2+8n^3+2n^4)/80,{n,0,38}]
-
PARI
a(n) = (1 + n)*(5 - 5*(-1)^n + 8*n + 12*n^2 + 8*n^3 + 2*n^4)/80;
-
Sage
(x*(1+2*x+6*x^2+2*x^3+x^4)/((1-x)^6*(1+x)^2)).series(x, 39).coefficients(x, False)
Formula
a(n) = (1 + n)*(5 - 5*(-1)^n + 8*n + 12*n^2 + 8*n^3 + 2*n^4)/80.
O.g.f.: x*(1 + 2*x + 6*x^2 + 2*x^3 + x^4)/((1 - x)^6*(1 + x)^2).
E.g.f.: (cosh(x) - sinh(x))*(-5 + 5*x + (5 + 65*x + 180*x^2 + 130*x^3 + 30*x^4 + 2*x^5)*(cosh(2*x) + sinh(2*x)))/80.
a(n) = 4*a(n-1) - 4*a(n-2) - 4*a(n-3) + 10*a(n-4) - 4*a(n-5) - 4*a(n-6) + 4*a(n-7) - a(n-8) for n > 7.
a(2*n-1) = n*A053755(n)/5 for n > 0.
Comments