cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A374708 Triangle T read by rows: T(n,k) = (n - k)*n*(4*n^2 - 4*n*k + 2*k^2 - 1 + (-1)^k)/4, with 0 <= k < n.

Original entry on oeis.org

1, 16, 4, 81, 36, 15, 256, 144, 80, 32, 625, 400, 255, 140, 65, 1296, 900, 624, 396, 240, 108, 2401, 1764, 1295, 896, 609, 364, 175, 4096, 3136, 2400, 1760, 1280, 864, 544, 256, 6561, 5184, 4095, 3132, 2385, 1728, 1215, 756, 369, 10000, 8100, 6560, 5180, 4080, 3100, 2320, 1620, 1040, 500
Offset: 1

Views

Author

Stefano Spezia, Jul 17 2024

Keywords

Comments

T(n, k) is the k-th super- and subdiagonal sum of the Hankel matrix M(n) whose permanent is A374668(n).

Examples

			n\k|    0    1    2    3    4    5
---+------------------------------
1  |    1
2  |   16    4
3  |   81   36   15
4  |  256  144   80   32
5  |  625  400  255  140   65
6  | 1296  900  624  396  240  108
      ...
For n = 3 the matrix M is
  [ 1,  4, 15]
  [ 4, 15, 32]
  [15, 32, 65]
and therefore T(3, 0) = 1 + 15 + 65 = 81, T(3, 1) = 4 + 32 = 36, and T(3, 2) = 15.
		

Crossrefs

Cf. A317614 (diagonal), A374668.
Cf. A000583 (k=0), A035287 (k=1), A123865, A374709 (row sums).

Programs

  • Mathematica
    T[n_,k_]:=(n-k)*n*(4*n^2 - 4*n*k+2*k^2-1+(-1)^k)/4; Table[T[n,k],{n,10},{k,0,n-1}]//Flatten

Formula

O.g.f.: x*(1 - 4*x^8*y^5 + x*(11 + 2*y) - x^7*y^4*(7 + 16*y) - x^2*(-11 + 6*y - 6*y^2) - x^5*y^2*(2 - 46*y - 3*y^2) - x^6*y^3*(-2 - 27*y + 4*y^2) - x^3*(-1 + 18*y + 38*y^2 - 2*y^3) - x^4*y*(2 + 14*y + 2*y^2 - y^3))/((1 - x)^5*(1 - x*y)^4*(1 + x*y)^2).
T(n,2) = A123865(n-1) for n > 1.

A381374 Little Hankel transform of A317614: a(n) = A317614(n+1)^2 - A317614(n)*A317614(n+2).

Original entry on oeis.org

1, 1, 97, 49, 769, 289, 2977, 961, 8161, 2401, 18241, 5041, 35617, 9409, 63169, 16129, 104257, 25921, 162721, 39601, 242881, 58081, 349537, 82369, 487969, 113569, 663937, 152881, 883681, 201601, 1153921, 261121, 1481857, 332929, 1875169, 418609, 2342017, 519841, 2891041
Offset: 1

Views

Author

Stefano Spezia, Feb 21 2025

Keywords

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{0,5,0,-10,0,10,0,-5,0,1},{1,97,49,769,289,2977,961,8161,2401,18241},38]

Formula

a(n) = (10 + 6*(-1)^n + 4*n*(n + 2)*(3*(n + 1)^2 + (-1)^n*(2*n^2 + 4*n + 5)))/16.
a(n) = 5*a(n-2) - 10*a(n-4) + 10*a(n-6) - 5*a(n-8) + a(n-10) for n > 10.
G.f.: (1 + x + 92*x^2 + 44*x^3 + 294*x^4 + 54*x^5 + 92*x^6 - 4*x^7 + x^8 + x^9)/(1 - x^2)^5.
E.g.f.: ((4 + 3*x + 123*x^2 + 10*x^3 + 5*x^4)*cosh(x) + (1 + 69*x + 21*x^2 + 50*x^3 + x^4)*sinh(x))/4.
a(2*n) = A239607(n).
Showing 1-2 of 2 results.