cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 69 results. Next

A259474 Erroneous version of A002817.

Original entry on oeis.org

0, 1, 6, 21, 55, 120, 231, 406, 665, 1035, 1540, 2211
Offset: 0

Views

Author

Keywords

References

  • D. M. Jackson and G. H. J. van Rees, The enumeration of generalized double stochastic nonnegative integer square matrices, SIAM J. Comput., 4 (1975), 474-477.

A000217 Triangular numbers: a(n) = binomial(n+1,2) = n*(n+1)/2 = 0 + 1 + 2 + ... + n.

Original entry on oeis.org

0, 1, 3, 6, 10, 15, 21, 28, 36, 45, 55, 66, 78, 91, 105, 120, 136, 153, 171, 190, 210, 231, 253, 276, 300, 325, 351, 378, 406, 435, 465, 496, 528, 561, 595, 630, 666, 703, 741, 780, 820, 861, 903, 946, 990, 1035, 1081, 1128, 1176, 1225, 1275, 1326, 1378, 1431
Offset: 0

Views

Author

Keywords

Comments

Also referred to as T(n) or C(n+1, 2) or binomial(n+1, 2) (preferred).
Also generalized hexagonal numbers: n*(2*n-1), n=0, +-1, +-2, +-3, ... Generalized k-gonal numbers are second k-gonal numbers and positive terms of k-gonal numbers interleaved, k >= 5. In this case k = 6. - Omar E. Pol, Sep 13 2011 and Aug 04 2012
Number of edges in complete graph of order n+1, K_{n+1}.
Number of legal ways to insert a pair of parentheses in a string of n letters. E.g., there are 6 ways for three letters: (a)bc, (ab)c, (abc), a(b)c, a(bc), ab(c). Proof: there are C(n+2,2) ways to choose where the parentheses might go, but n + 1 of them are illegal because the parentheses are adjacent. Cf. A002415.
For n >= 1, a(n) is also the genus of a nonsingular curve of degree n+2, such as the Fermat curve x^(n+2) + y^(n+2) = 1. - Ahmed Fares (ahmedfares(AT)my_deja.com), Feb 21 2001
From Harnack's theorem (1876), the number of branches of a nonsingular curve of order n is bounded by a(n-1)+1, and the bound can be achieved. See also A152947. - Benoit Cloitre, Aug 29 2002. Corrected by Robert McLachlan, Aug 19 2024
Number of tiles in the set of double-n dominoes. - Scott A. Brown, Sep 24 2002
Number of ways a chain of n non-identical links can be broken up. This is based on a similar problem in the field of proteomics: the number of ways a peptide of n amino acid residues can be broken up in a mass spectrometer. In general, each amino acid has a different mass, so AB and BC would have different masses. - James A. Raymond, Apr 08 2003
Triangular numbers - odd numbers = shifted triangular numbers; 1, 3, 6, 10, 15, 21, ... - 1, 3, 5, 7, 9, 11, ... = 0, 0, 1, 3, 6, 10, ... - Xavier Acloque, Oct 31 2003 [Corrected by Derek Orr, May 05 2015]
Centered polygonal numbers are the result of [number of sides * A000217 + 1]. E.g., centered pentagonal numbers (1,6,16,31,...) = 5 * (0,1,3,6,...) + 1. Centered heptagonal numbers (1,8,22,43,...) = 7 * (0,1,3,6,...) + 1. - Xavier Acloque, Oct 31 2003
Maximum number of lines formed by the intersection of n+1 planes. - Ron R. King, Mar 29 2004
Number of permutations of [n] which avoid the pattern 132 and have exactly 1 descent. - Mike Zabrocki, Aug 26 2004
Number of ternary words of length n-1 with subwords (0,1), (0,2) and (1,2) not allowed. - Olivier Gérard, Aug 28 2012
Number of ways two different numbers can be selected from the set {0,1,2,...,n} without repetition, or, number of ways two different numbers can be selected from the set {1,2,...,n} with repetition.
Conjecturally, 1, 6, 120 are the only numbers that are both triangular and factorial. - Christopher M. Tomaszewski (cmt1288(AT)comcast.net), Mar 30 2005
Binomial transform is {0, 1, 5, 18, 56, 160, 432, ...}, A001793 with one leading zero. - Philippe Deléham, Aug 02 2005
Each pair of neighboring terms adds to a perfect square. - Zak Seidov, Mar 21 2006
Number of transpositions in the symmetric group of n+1 letters, i.e., the number of permutations that leave all but two elements fixed. - Geoffrey Critzer, Jun 23 2006
With rho(n):=exp(i*2*Pi/n) (an n-th root of 1) one has, for n >= 1, rho(n)^a(n) = (-1)^(n+1). Just use the triviality a(2*k+1) == 0 (mod (2*k+1)) and a(2*k) == k (mod (2*k)).
a(n) is the number of terms in the expansion of (a_1 + a_2 + a_3)^(n-1). - Sergio Falcon, Feb 12 2007
a(n+1) is the number of terms in the complete homogeneous symmetric polynomial of degree n in 2 variables. - Richard Barnes, Sep 06 2017
The number of distinct handshakes in a room with n+1 people. - Mohammad K. Azarian, Apr 12 2007 [corrected, Joerg Arndt, Jan 18 2016]
Equal to the rank (minimal cardinality of a generating set) of the semigroup PT_n\S_n, where PT_n and S_n denote the partial transformation semigroup and symmetric group on [n]. - James East, May 03 2007
a(n) gives the total number of triangles found when cevians are drawn from a single vertex on a triangle to the side opposite that vertex, where n = the number of cevians drawn+1. For instance, with 1 cevian drawn, n = 1+1 = 2 and a(n)= 2*(2+1)/2 = 3 so there is a total of 3 triangles in the figure. If 2 cevians are drawn from one point to the opposite side, then n = 1+2 = 3 and a(n) = 3*(3+1)/2 = 6 so there is a total of 6 triangles in the figure. - Noah Priluck (npriluck(AT)gmail.com), Apr 30 2007
For n >= 1, a(n) is the number of ways in which n-1 can be written as a sum of three nonnegative integers if representations differing in the order of the terms are considered to be different. In other words, for n >= 1, a(n) is the number of nonnegative integral solutions of the equation x + y + z = n-1. - Amarnath Murthy, Apr 22 2001 (edited by Robert A. Beeler)
a(n) is the number of levels with energy n + 3/2 (in units of h*f0, with Planck's constant h and the oscillator frequency f0) of the three-dimensional isotropic harmonic quantum oscillator. See the comment by A. Murthy above: n = n1 + n2 + n3 with positive integers and ordered. Proof from the o.g.f. See the A. Messiah reference. - Wolfdieter Lang, Jun 29 2007
From Hieronymus Fischer, Aug 06 2007: (Start)
Numbers m >= 0 such that round(sqrt(2m+1)) - round(sqrt(2m)) = 1.
Numbers m >= 0 such that ceiling(2*sqrt(2m+1)) - 1 = 1 + floor(2*sqrt(2m)).
Numbers m >= 0 such that fract(sqrt(2m+1)) > 1/2 and fract(sqrt(2m)) < 1/2, where fract(x) is the fractional part of x (i.e., x - floor(x), x >= 0). (End)
If Y and Z are 3-blocks of an n-set X, then, for n >= 6, a(n-1) is the number of (n-2)-subsets of X intersecting both Y and Z. - Milan Janjic, Nov 09 2007
Equals row sums of triangle A143320, n > 0. - Gary W. Adamson, Aug 07 2008
a(n) is also an even perfect number in A000396 iff n is a Mersenne prime A000668. - Omar E. Pol, Sep 05 2008. Unnecessary assumption removed and clarified by Rick L. Shepherd, Apr 14 2025
Equals row sums of triangle A152204. - Gary W. Adamson, Nov 29 2008
The number of matches played in a round robin tournament: n*(n-1)/2 gives the number of matches needed for n players. Everyone plays against everyone else exactly once. - Georg Wrede (georg(AT)iki.fi), Dec 18 2008
-a(n+1) = E(2)*binomial(n+2,2) (n >= 0) where E(n) are the Euler numbers in the enumeration A122045. Viewed this way, a(n) is the special case k=2 in the sequence of diagonals in the triangle A153641. - Peter Luschny, Jan 06 2009
Equivalent to the first differences of successive tetrahedral numbers. See A000292. - Jeremy Cahill (jcahill(AT)inbox.com), Apr 15 2009
The general formula for alternating sums of powers is in terms of the Swiss-Knife polynomials P(n,x) A153641 2^(-n-1)(P(n,1)-(-1)^k P(n,2k+1)). Thus a(k) = |2^(-3)(P(2,1)-(-1)^k P(2,2k+1))|. - Peter Luschny, Jul 12 2009
a(n) is the smallest number > a(n-1) such that gcd(n,a(n)) = gcd(n,a(n-1)). If n is odd this gcd is n; if n is even it is n/2. - Franklin T. Adams-Watters, Aug 06 2009
Partial sums of A001477. - Juri-Stepan Gerasimov, Jan 25 2010. [A-number corrected by Omar E. Pol, Jun 05 2012]
The numbers along the right edge of Floyd's triangle are 1, 3, 6, 10, 15, .... - Paul Muljadi, Jan 25 2010
From Charlie Marion, Dec 03 2010: (Start)
More generally, a(2k+1) == j*(2j-1) (mod 2k+2j+1) and
a(2k) == [-k + 2j*(j-1)] (mod 2k+2j).
Column sums of:
1 3 5 7 9 ...
1 3 5 ...
1 ...
...............
---------------
1 3 6 10 15 ...
Sum_{n>=1} 1/a(n)^2 = 4*Pi^2/3-12 = 12 less than the volume of a sphere with radius Pi^(1/3).
(End)
A004201(a(n)) = A000290(n); A004202(a(n)) = A002378(n). - Reinhard Zumkeller, Feb 12 2011
1/a(n+1), n >= 0, has e.g.f. -2*(1+x-exp(x))/x^2, and o.g.f. 2*(x+(1-x)*log(1-x))/x^2 (see the Stephen Crowley formula line). -1/(2*a(n+1)) is the z-sequence for the Sheffer triangle of the coefficients of the Bernoulli polynomials A196838/A196839. - Wolfdieter Lang, Oct 26 2011
From Charlie Marion, Feb 23 2012: (Start)
a(n) + a(A002315(k)*n + A001108(k+1)) = (A001653(k+1)*n + A001109(k+1))^2. For k=0 we obtain a(n) + a(n+1) = (n+1)^2 (identity added by N. J. A. Sloane on Feb 19 2004).
a(n) + a(A002315(k)*n - A055997(k+1)) = (A001653(k+1)*n - A001109(k))^2.
(End)
Plot the three points (0,0), (a(n), a(n+1)), (a(n+1), a(n+2)) to form a triangle. The area will be a(n+1)/2. - J. M. Bergot, May 04 2012
The sum of four consecutive triangular numbers, beginning with a(n)=n*(n+1)/2, minus 2 is 2*(n+2)^2. a(n)*a(n+2)/2 = a(a(n+1)-1). - J. M. Bergot, May 17 2012
(a(n)*a(n+3) - a(n+1)*a(n+2))*(a(n+1)*a(n+4) - a(n+2)*a(n+3))/8 = a((n^2+5*n+4)/2). - J. M. Bergot, May 18 2012
a(n)*a(n+1) + a(n+2)*a(n+3) + 3 = a(n^2 + 4*n + 6). - J. M. Bergot, May 22 2012
In general, a(n)*a(n+1) + a(n+k)*a(n+k+1) + a(k-1)*a(k) = a(n^2 + (k+2)*n + k*(k+1)). - Charlie Marion, Sep 11 2012
a(n)*a(n+3) + a(n+1)*a(n+2) = a(n^2 + 4*n + 2). - J. M. Bergot, May 22 2012
In general, a(n)*a(n+k) + a(n+1)*a(n+k-1) = a(n^2 + (k+1)*n + k-1). - Charlie Marion, Sep 11 2012
a(n)*a(n+2) + a(n+1)*a(n+3) = a(n^2 + 4*n + 3). - J. M. Bergot, May 22 2012
Three points (a(n),a(n+1)), (a(n+1),a(n)) and (a(n+2),a(n+3)) form a triangle with area 4*a(n+1). - J. M. Bergot, May 23 2012
a(n) + a(n+k) = (n+k)^2 - (k^2 + (2n-1)*k -2n)/2. For k=1 we obtain a(n) + a(n+1) = (n+1)^2 (see below). - Charlie Marion, Oct 02 2012
In n-space we can define a(n-1) nontrivial orthogonal projections. For example, in 3-space there are a(2)=3 (namely point onto line, point onto plane, line onto plane). - Douglas Latimer, Dec 17 2012
From James East, Jan 08 2013: (Start)
For n >= 1, a(n) is equal to the rank (minimal cardinality of a generating set) and idempotent rank (minimal cardinality of an idempotent generating set) of the semigroup P_n\S_n, where P_n and S_n denote the partition monoid and symmetric group on [n].
For n >= 3, a(n-1) is equal to the rank and idempotent rank of the semigroup T_n\S_n, where T_n and S_n denote the full transformation semigroup and symmetric group on [n].
(End)
For n >= 3, a(n) is equal to the rank and idempotent rank of the semigroup PT_n\S_n, where PT_n and S_n denote the partial transformation semigroup and symmetric group on [n]. - James East, Jan 15 2013
Conjecture: For n > 0, there is always a prime between A000217(n) and A000217(n+1). Sequence A065383 has the first 1000 of these primes. - Ivan N. Ianakiev, Mar 11 2013
The formula, a(n)*a(n+4k+2)/2 + a(k) = a(a(n+2k+1) - (k^2+(k+1)^2)), is a generalization of the formula a(n)*a(n+2)/2 = a(a(n+1)-1) in Bergot's comment dated May 17 2012. - Charlie Marion, Mar 28 2013
The series Sum_{k>=1} 1/a(k) = 2, given in a formula below by Jon Perry, Jul 13 2003, has partial sums 2*n/(n+1) (telescopic sum) = A022998(n)/A026741(n+1). - Wolfdieter Lang, Apr 09 2013
For odd m = 2k+1, we have the recurrence a(m*n + k) = m^2*a(n) + a(k). Corollary: If number T is in the sequence then so is 9*T+1. - Lekraj Beedassy, May 29 2013
Euler, in Section 87 of the Opera Postuma, shows that whenever T is a triangular number then 9*T + 1, 25*T + 3, 49*T + 6 and 81*T + 10 are also triangular numbers. In general, if T is a triangular number then (2*k + 1)^2*T + k*(k + 1)/2 is also a triangular number. - Peter Bala, Jan 05 2015
Using 1/b and 1/(b+2) will give a Pythagorean triangle with sides 2*b + 2, b^2 + 2*b, and b^2 + 2*b + 2. Set b=n-1 to give a triangle with sides of lengths 2*n,n^2-1, and n^2 + 1. One-fourth the perimeter = a(n) for n > 1. - J. M. Bergot, Jul 24 2013
a(n) = A028896(n)/6, where A028896(n) = s(n) - s(n-1) are the first differences of s(n) = n^3 + 3*n^2 + 2*n - 8. s(n) can be interpreted as the sum of the 12 edge lengths plus the sum of the 6 face areas plus the volume of an n X (n-1) X (n-2) rectangular prism. - J. M. Bergot, Aug 13 2013
Dimension of orthogonal group O(n+1). - Eric M. Schmidt, Sep 08 2013
Number of positive roots in the root system of type A_n (for n > 0). - Tom Edgar, Nov 05 2013
A formula for the r-th successive summation of k, for k = 1 to n, is binomial(n+r,r+1) [H. W. Gould]. - Gary Detlefs, Jan 02 2014
Also the alternating row sums of A095831. Also the alternating row sums of A055461, for n >= 1. - Omar E. Pol, Jan 26 2014
For n >= 3, a(n-2) is the number of permutations of 1,2,...,n with the distribution of up (1) - down (0) elements 0...011 (n-3 zeros), or, the same, a(n-2) is up-down coefficient {n,3} (see comment in A060351). - Vladimir Shevelev, Feb 14 2014
a(n) is the dimension of the vector space of symmetric n X n matrices. - Derek Orr, Mar 29 2014
Non-vanishing subdiagonal of A132440^2/2, aside from the initial zero. First subdiagonal of unsigned A238363. Cf. A130534 for relations to colored forests, disposition of flags on flagpoles, and colorings of the vertices of complete graphs. - Tom Copeland, Apr 05 2014
The number of Sidon subsets of {1,...,n+1} of size 2. - Carl Najafi, Apr 27 2014
Number of factors in the definition of the Vandermonde determinant V(x_1,x_2,...,x_n) = Product_{1 <= i < k <= n} x_i - x_k. - Tom Copeland, Apr 27 2014
Number of weak compositions of n into three parts. - Robert A. Beeler, May 20 2014
Suppose a bag contains a(n) red marbles and a(n+1) blue marbles, where a(n), a(n+1) are consecutive triangular numbers. Then, for n > 0, the probability of choosing two marbles at random and getting two red or two blue is 1/2. In general, for k > 2, let b(0) = 0, b(1) = 1 and, for n > 1, b(n) = (k-1)*b(n-1) - b(n-2) + 1. Suppose, for n > 0, a bag contains b(n) red marbles and b(n+1) blue marbles. Then the probability of choosing two marbles at random and getting two red or two blue is (k-1)/(k+1). See also A027941, A061278, A089817, A053142, A092521. - Charlie Marion, Nov 03 2014
Let O(n) be the oblong number n(n+1) = A002378 and S(n) the square number n^2 = A000290(n). Then a(4n) = O(3n) - O(n), a(4n+1) = S(3n+1) - S(n), a(4n+2) = S(3n+2) - S(n+1) and a(4n+3) = O(3n+2) - O(n). - Charlie Marion, Feb 21 2015
Consider the partition of the natural numbers into parts from the set S=(1,2,3,...,n). The length (order) of the signature of the resulting sequence is given by the triangular numbers. E.g., for n=10, the signature length is 55. - David Neil McGrath, May 05 2015
a(n) counts the partitions of (n-1) unlabeled objects into three (3) parts (labeled a,b,c), e.g., a(5)=15 for (n-1)=4. These are (aaaa),(bbbb),(cccc),(aaab),(aaac),(aabb),(aacc),(aabc),(abbc),(abcc),(abbb),(accc),(bbcc),(bccc),(bbbc). - David Neil McGrath, May 21 2015
Conjecture: the sequence is the genus/deficiency of the sinusoidal spirals of index n which are algebraic curves. The value 0 corresponds to the case of the Bernoulli Lemniscate n=2. So the formula conjectured is (n-1)(n-2)/2. - Wolfgang Tintemann, Aug 02 2015
Conjecture: Let m be any positive integer. Then, for each n = 1,2,3,... the set {Sum_{k=s..t} 1/k^m: 1 <= s <= t <= n} has cardinality a(n) = n*(n+1)/2; in other words, all the sums Sum_{k=s..t} 1/k^m with 1 <= s <= t are pairwise distinct. (I have checked this conjecture via a computer and found no counterexample.) - Zhi-Wei Sun, Sep 09 2015
The Pisano period lengths of reading the sequence modulo m seem to be A022998(m). - R. J. Mathar, Nov 29 2015
For n >= 1, a(n) is the number of compositions of n+4 into n parts avoiding the part 2. - Milan Janjic, Jan 07 2016
In this sequence only 3 is prime. - Fabian Kopp, Jan 09 2016
Suppose you are playing Bulgarian Solitaire (see A242424 and Chamberland's and Gardner's books) and, for n > 0, you are starting with a single pile of a(n) cards. Then the number of operations needed to reach the fixed state {n, n-1,...,1} is a(n-1). For example, {6}->{5,1}->{4,2}->{3,2,1}. - Charlie Marion, Jan 14 2016
Numbers k such that 8k + 1 is a square. - Juri-Stepan Gerasimov, Apr 09 2016
Every perfect cube is the difference of the squares of two consecutive triangular numbers. 1^2-0^2 = 1^3, 3^2-1^2 = 2^3, 6^2-3^2 = 3^3. - Miquel Cerda, Jun 26 2016
For n > 1, a(n) = tau_n(k*) where tau_n(k) is the number of ordered n-factorizations of k and k* is the square of a prime. For example, tau_3(4) = tau_3(9) = tau_3(25) = tau_3(49) = 6 (see A007425) since the number of divisors of 4, 9, 25, and 49's divisors is 6, and a(3) = 6. - Melvin Peralta, Aug 29 2016
In an (n+1)-dimensional hypercube, number of two-dimensional faces congruent with a vertex (see also A001788). - Stanislav Sykora, Oct 23 2016
Generalizations of the familiar formulas, a(n) + a(n+1) = (n+1)^2 (Feb 19 2004) and a(n)^2 + a(n+1)^2 = a((n+1)^2) (Nov 22 2006), follow: a(n) + a(n+2k-1) + 4a(k-1) = (n+k)^2 + 6a(k-1) and a(n)^2 + a(n+2k-1)^2 + (4a(k-1))^2 + 3a(k-1) = a((n+k)^2 + 6a(k-1)). - Charlie Marion, Nov 27 2016
a(n) is also the greatest possible number of diagonals in a polyhedron with n+4 vertices. - Vladimir Letsko, Dec 19 2016
For n > 0, 2^5 * (binomial(n+1,2))^2 represents the first integer in a sum of 2*(2*n + 1)^2 consecutive integers that equals (2*n + 1)^6. - Patrick J. McNab, Dec 25 2016
Does not satisfy Benford's law (cf. Ross, 2012). - N. J. A. Sloane, Feb 12 2017
Number of ordered triples (a,b,c) of positive integers not larger than n such that a+b+c = 2n+1. - Aviel Livay, Feb 13 2017
Number of inequivalent tetrahedral face colorings using at most n colors so that no color appears only once. - David Nacin, Feb 22 2017
Also the Wiener index of the complete graph K_{n+1}. - Eric W. Weisstein, Sep 07 2017
Number of intersections between the Bernstein polynomials of degree n. - Eric Desbiaux, Apr 01 2018
a(n) is the area of a triangle with vertices at (1,1), (n+1,n+2), and ((n+1)^2, (n+2)^2). - Art Baker, Dec 06 2018
For n > 0, a(n) is the smallest k > 0 such that n divides numerator of (1/a(1) + 1/a(2) + ... + 1/a(n-1) + 1/k). It should be noted that 1/1 + 1/3 + 1/6 + ... + 2/(n(n+1)) = 2n/(n+1). - Thomas Ordowski, Aug 04 2019
Upper bound of the number of lines in an n-homogeneous supersolvable line arrangement (see Theorem 1.1 in Dimca). - Stefano Spezia, Oct 04 2019
For n > 0, a(n+1) is the number of lattice points on a triangular grid with side length n. - Wesley Ivan Hurt, Aug 12 2020
From Michael Chu, May 04 2022: (Start)
Maximum number of distinct nonempty substrings of a string of length n.
Maximum cardinality of the sumset A+A, where A is a set of n numbers. (End)
a(n) is the number of parking functions of size n avoiding the patterns 123, 132, and 312. - Lara Pudwell, Apr 10 2023
Suppose two rows, each consisting of n evenly spaced dots, are drawn in parallel. Suppose we bijectively draw lines between the dots of the two rows. For n >= 1, a(n - 1) is the maximal possible number of intersections between the lines. Equivalently, the maximal number of inversions in a permutation of [n]. - Sela Fried, Apr 18 2023
The following equation complements the generalization in Bala's Comment (Jan 05 2015). (2k + 1)^2*a(n) + a(k) = a((2k + 1)*n + k). - Charlie Marion, Aug 28 2023
a(n) + a(n+k) + a(k-1) + (k-1)*n = (n+k)^2. For k = 1, we have a(n) + a(n+1) = (n+1)^2. - Charlie Marion, Nov 17 2023
a(n+1)/3 is the expected number of steps to escape from a linear row of n positions starting at a random location and randomly performing steps -1 or +1 with equal probability. - Hugo Pfoertner, Jul 22 2025
a(n+1) is the number of nonnegative integer solutions to p + q + r = n. By Sylvester's law of inertia, it is also the number of congruence classes of real symmetric n-by-n matrices or equivalently, the number of symmetric bilinear forms on a real n-dimensional vector space. - Paawan Jethva, Jul 24 2025

Examples

			G.f.: x + 3*x^2 + 6*x^3 + 10*x^4 + 15*x^5 + 21*x^6 + 28*x^7 + 36*x^8 + 45*x^9 + ...
When n=3, a(3) = 4*3/2 = 6.
Example(a(4)=10): ABCD where A, B, C and D are different links in a chain or different amino acids in a peptide possible fragments: A, B, C, D, AB, ABC, ABCD, BC, BCD, CD = 10.
a(2): hollyhock leaves on the Tokugawa Mon, a(4): points in Pythagorean tetractys, a(5): object balls in eight-ball billiards. - _Bradley Klee_, Aug 24 2015
From _Gus Wiseman_, Oct 28 2020: (Start)
The a(1) = 1 through a(5) = 15 ordered triples of positive integers summing to n + 2 [Beeler, McGrath above] are the following. These compositions are ranked by A014311.
  (111)  (112)  (113)  (114)  (115)
         (121)  (122)  (123)  (124)
         (211)  (131)  (132)  (133)
                (212)  (141)  (142)
                (221)  (213)  (151)
                (311)  (222)  (214)
                       (231)  (223)
                       (312)  (232)
                       (321)  (241)
                       (411)  (313)
                              (322)
                              (331)
                              (412)
                              (421)
                              (511)
The unordered version is A001399(n-3) = A069905(n), with Heinz numbers A014612.
The strict case is A001399(n-6)*6, ranked by A337453.
The unordered strict case is A001399(n-6), with Heinz numbers A007304.
(End)
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 828.
  • C. Alsina and R. B. Nelson, Charming Proofs: A Journey into Elegant Mathematics, MAA, 2010. See Chapter 1.
  • T. M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, 1976, page 2.
  • A. H. Beiler, Recreations in the Theory of Numbers, Dover, NY, 1964, p. 189.
  • A. T. Benjamin and J. J. Quinn, Proofs that really count: the art of combinatorial proof, M.A.A. 2003, p. 109ff.
  • Marc Chamberland, Single Digits: In Praise of Small Numbers, Chapter 3, The Number Three, p. 72, Princeton University Press, 2015.
  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 155.
  • John H. Conway and Richard K. Guy, The Book of Numbers, New York: Springer-Verlag, 1996. See pp. 33, 38, 40, 70.
  • J. M. De Koninck and A. Mercier, 1001 Problèmes en Théorie Classique des Nombres, Problème 309 pp 46-196, Ellipses, Paris, 2004
  • E. Deza and M. M. Deza, Figurate numbers, World Scientific Publishing (2012), page 6.
  • L. E. Dickson, History of the Theory of Numbers. Carnegie Institute Public. 256, Washington, DC, Vol. 1, 1919; Vol. 2, 1920; Vol. 3, 1923, see vol. 2, p. 1.
  • Martin Gardner, Colossal Book of Mathematics, Chapter 34, Bulgarian Solitaire and Other Seemingly Endless Tasks, pp. 455-467, W. W. Norton & Company, 2001.
  • James Gleick, The Information: A History, A Theory, A Flood, Pantheon, 2011. [On page 82 mentions a table of the first 19999 triangular numbers published by E. de Joncort in 1762.]
  • Jan Gullberg, Mathematics from the Birth of Numbers, W. W. Norton & Co., NY & London, 1997, §4.6 Mathematical Proof and §8.6 Figurate Numbers, pp. 158-159, 289-290.
  • Cay S. Horstmann, Scala for the Impatient. Upper Saddle River, New Jersey: Addison-Wesley (2012): 171.
  • Elemer Labos, On the number of RGB-colors we can distinguish. Partition Spectra. Lecture at 7th Hungarian Conference on Biometry and Biomathematics. Budapest. Jul 06 2005.
  • A. Messiah, Quantum Mechanics, Vol.1, North Holland, Amsterdam, 1965, p. 457.
  • J. C. P. Miller, editor, Table of Binomial Coefficients. Royal Society Mathematical Tables, Vol. 3, Cambridge Univ. Press, 1954.
  • Alfred S. Posamentier, Math Charmers, Tantalizing Tidbits for the Mind, Prometheus Books, NY, 2003, pages 52-53, 129-132, 274.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, pages 2-6, 13.
  • T. Trotter, Some Identities for the Triangular Numbers, Journal of Recreational Mathematics, Spring 1973, 6(2).
  • D. Wells, The Penguin Dictionary of Curious and Interesting Numbers, pp. 91-93 Penguin Books 1987.

Crossrefs

The figurate numbers, with parameter k as in the second Python program: A001477 (k=0), this sequence (k=1), A000290 (k=2), A000326 (k=3), A000384 (k=4), A000566 (k=5), A000567 (k=6), A001106 (k=7), A001107 (k=8).
a(n) = A110449(n, 0).
a(n) = A110555(n+2, 2).
A diagonal of A008291.
Column 2 of A195152.
Numbers of the form n*t(n+k,h)-(n+k)*t(n,h), where t(i,h) = i*(i+2*h+1)/2 for any h (for A000217 is k=1): A005563, A067728, A140091, A140681, A212331.
Boustrophedon transforms: A000718, A000746.
Iterations: A007501 (start=2), A013589 (start=4), A050542 (start=5), A050548 (start=7), A050536 (start=8), A050909 (start=9).
Cf. A002817 (doubly triangular numbers), A075528 (solutions of a(n)=a(m)/2).
Cf. A104712 (first column, starting with a(1)).
Some generalized k-gonal numbers are A001318 (k=5), this sequence (k=6), A085787 (k=7), etc.
A001399(n-3) = A069905(n) = A211540(n+2) counts 3-part partitions.
A001399(n-6) = A069905(n-3) = A211540(n-1) counts 3-part strict partitions.
A011782 counts compositions of any length.
A337461 counts pairwise coprime triples, with unordered version A307719.

Programs

  • Haskell
    a000217 n = a000217_list !! n
    a000217_list = scanl1 (+) [0..] -- Reinhard Zumkeller, Sep 23 2011
    
  • J
    a000217=: *-:@>: NB. Stephen Makdisi, May 02 2018
    
  • Magma
    [n*(n+1)/2: n in [0..60]]; // Bruno Berselli, Jul 11 2014
    
  • Magma
    [n: n in [0..1500] | IsSquare(8*n+1)]; // Juri-Stepan Gerasimov, Apr 09 2016
    
  • Maple
    A000217 := proc(n) n*(n+1)/2; end;
    istriangular:=proc(n) local t1; t1:=floor(sqrt(2*n)); if n = t1*(t1+1)/2 then return true else return false; end if; end proc; # N. J. A. Sloane, May 25 2008
    ZL := [S, {S=Prod(B, B, B), B=Set(Z, 1 <= card)}, unlabeled]:
    seq(combstruct[count](ZL, size=n), n=2..55); # Zerinvary Lajos, Mar 24 2007
    isA000217 := proc(n)
        issqr(1+8*n) ;
    end proc: # R. J. Mathar, Nov 29 2015 [This is the recipe Leonhard Euler proposes in chapter VII of his "Vollständige Anleitung zur Algebra", 1765. Peter Luschny, Sep 02 2022]
  • Mathematica
    Array[ #*(# - 1)/2 &, 54] (* Zerinvary Lajos, Jul 10 2009 *)
    FoldList[#1 + #2 &, 0, Range@ 50] (* Robert G. Wilson v, Feb 02 2011 *)
    Accumulate[Range[0,70]] (* Harvey P. Dale, Sep 09 2012 *)
    CoefficientList[Series[x / (1 - x)^3, {x, 0, 50}], x] (* Vincenzo Librandi, Jul 30 2014 *)
    (* For Mathematica 10.4+ *) Table[PolygonalNumber[n], {n, 0, 53}] (* Arkadiusz Wesolowski, Aug 27 2016 *)
    LinearRecurrence[{3, -3, 1}, {0, 1, 3}, 54] (* Robert G. Wilson v, Dec 04 2016 *)
    (* The following Mathematica program, courtesy of Steven J. Miller, is useful for testing if a sequence is Benford. To test a different sequence only one line needs to be changed. This strongly suggests that the triangular numbers are not Benford, since the second and third columns of the output disagree. - N. J. A. Sloane, Feb 12 2017 *)
    fd[x_] := Floor[10^Mod[Log[10, x], 1]]
    benfordtest[num_] := Module[{},
       For[d = 1, d <= 9, d++, digit[d] = 0];
       For[n = 1, n <= num, n++,
        {
         d = fd[n(n+1)/2];
         If[d != 0, digit[d] = digit[d] + 1];
         }];
       For[d = 1, d <= 9, d++, digit[d] = 1.0 digit[d]/num];
       For[d = 1, d <= 9, d++,
        Print[d, " ", 100.0 digit[d], " ", 100.0 Log[10, (d + 1)/d]]];
       ];
    benfordtest[20000]
    Table[Length[Join@@Permutations/@IntegerPartitions[n,{3}]],{n,0,15}] (* Gus Wiseman, Oct 28 2020 *)
  • PARI
    A000217(n) = n * (n + 1) / 2;
    
  • PARI
    is_A000217(n)=n*2==(1+n=sqrtint(2*n))*n \\ M. F. Hasler, May 24 2012
    
  • PARI
    is(n)=ispolygonal(n,3) \\ Charles R Greathouse IV, Feb 28 2014
    
  • PARI
    list(lim)=my(v=List(),n,t); while((t=n*n++/2)<=lim,listput(v,t)); Vec(v) \\ Charles R Greathouse IV, Jun 18 2021
    
  • Python
    for n in range(0,60): print(n*(n+1)//2, end=', ') # Stefano Spezia, Dec 06 2018
    
  • Python
    # Intended to compute the initial segment of the sequence, not
    # isolated terms. If in the iteration the line "x, y = x + y + 1, y + 1"
    # is replaced by "x, y = x + y + k, y + k" then the figurate numbers are obtained,
    # for k = 0 (natural A001477), k = 1 (triangular), k = 2 (squares), k = 3 (pentagonal), k = 4 (hexagonal), k = 5 (heptagonal), k = 6 (octagonal), etc.
    def aList():
        x, y = 1, 1
        yield 0
        while True:
            yield x
            x, y = x + y + 1, y + 1
    A000217 = aList()
    print([next(A000217) for i in range(54)]) # Peter Luschny, Aug 03 2019
  • SageMath
    [n*(n+1)/2 for n in (0..60)] # Bruno Berselli, Jul 11 2014
    
  • Scala
    (1 to 53).scanLeft(0)( + ) // Horstmann (2012), p. 171
    
  • Scheme
    (define (A000217 n) (/ (* n (+ n 1)) 2)) ;; Antti Karttunen, Jul 08 2017
    

Formula

G.f.: x/(1-x)^3. - Simon Plouffe in his 1992 dissertation
E.g.f.: exp(x)*(x+x^2/2).
a(n) = a(-1-n).
a(n) + a(n-1)*a(n+1) = a(n)^2. - Terrel Trotter, Jr., Apr 08 2002
a(n) = (-1)^n*Sum_{k=1..n} (-1)^k*k^2. - Benoit Cloitre, Aug 29 2002
a(n+1) = ((n+2)/n)*a(n), Sum_{n>=1} 1/a(n) = 2. - Jon Perry, Jul 13 2003
For n > 0, a(n) = A001109(n) - Sum_{k=0..n-1} (2*k+1)*A001652(n-1-k); e.g., 10 = 204 - (1*119 + 3*20 + 5*3 + 7*0). - Charlie Marion, Jul 18 2003
With interpolated zeros, this is n*(n+2)*(1+(-1)^n)/16. - Benoit Cloitre, Aug 19 2003
a(n+1) is the determinant of the n X n symmetric Pascal matrix M_(i, j) = binomial(i+j+1, i). - Benoit Cloitre, Aug 19 2003
a(n) = ((n+1)^3 - n^3 - 1)/6. - Xavier Acloque, Oct 24 2003
a(n) = a(n-1) + (1 + sqrt(1 + 8*a(n-1)))/2. This recursive relation is inverted when taking the negative branch of the square root, i.e., a(n) is transformed into a(n-1) rather than a(n+1). - Carl R. White, Nov 04 2003
a(n) = Sum_{k=1..n} phi(k)*floor(n/k) = Sum_{k=1..n} A000010(k)*A010766(n, k) (R. Dedekind). - Vladeta Jovovic, Feb 05 2004
a(n) + a(n+1) = (n+1)^2. - N. J. A. Sloane, Feb 19 2004
a(n) = a(n-2) + 2*n - 1. - Paul Barry, Jul 17 2004
a(n) = sqrt(Sum_{i=1..n} Sum_{j=1..n} (i*j)) = sqrt(A000537(n)). - Alexander Adamchuk, Oct 24 2004
a(n) = sqrt(sqrt(Sum_{i=1..n} Sum_{j=1..n} (i*j)^3)) = (Sum_{i=1..n} Sum_{j=1..n} Sum_{k=1..n} (i*j*k)^3)^(1/6). - Alexander Adamchuk, Oct 26 2004
a(n) == 1 (mod n+2) if n is odd and a(n) == n/2+2 (mod n+2) if n is even. - Jon Perry, Dec 16 2004
a(0) = 0, a(1) = 1, a(n) = 2*a(n-1) - a(n-2) + 1. - Miklos Kristof, Mar 09 2005
a(n) = a(n-1) + n. - Zak Seidov, Mar 06 2005
a(n) = A108299(n+3,4) = -A108299(n+4,5). - Reinhard Zumkeller, Jun 01 2005
a(n) = A111808(n,2) for n > 1. - Reinhard Zumkeller, Aug 17 2005
a(n)*a(n+1) = A006011(n+1) = (n+1)^2*(n^2+2)/4 = 3*A002415(n+1) = 1/2*a(n^2+2*n). a(n-1)*a(n) = (1/2)*a(n^2-1). - Alexander Adamchuk, Apr 13 2006 [Corrected and edited by Charlie Marion, Nov 26 2010]
a(n) = floor((2*n+1)^2/8). - Paul Barry, May 29 2006
For positive n, we have a(8*a(n))/a(n) = 4*(2*n+1)^2 = (4*n+2)^2, i.e., a(A033996(n))/a(n) = 4*A016754(n) = (A016825(n))^2 = A016826(n). - Lekraj Beedassy, Jul 29 2006
a(n)^2 + a(n+1)^2 = a((n+1)^2) [R B Nelsen, Math Mag 70 (2) (1997), p. 130]. - R. J. Mathar, Nov 22 2006
a(n) = A126890(n,0). - Reinhard Zumkeller, Dec 30 2006
a(n)*a(n+k)+a(n+1)*a(n+1+k) = a((n+1)*(n+1+k)). Generalizes previous formula dated Nov 22 2006 [and comments by J. M. Bergot dated May 22 2012]. - Charlie Marion, Feb 04 2011
(sqrt(8*a(n)+1)-1)/2 = n. - David W. Cantrell (DWCantrell(AT)sigmaxi.net), Feb 26 2007
a(n) = A023896(n) + A067392(n). - Lekraj Beedassy, Mar 02 2007
Sum_{k=0..n} a(k)*A039599(n,k) = A002457(n-1), for n >= 1. - Philippe Deléham, Jun 10 2007
8*a(n)^3 + a(n)^2 = Y(n)^2, where Y(n) = n*(n+1)*(2*n+1)/2 = 3*A000330(n). - Mohamed Bouhamida, Nov 06 2007 [Edited by Derek Orr, May 05 2015]
A general formula for polygonal numbers is P(k,n) = (k-2)*(n-1)n/2 + n = n + (k-2)*A000217(n-1), for n >= 1, k >= 3. - Omar E. Pol, Apr 28 2008 and Mar 31 2013
a(3*n) = A081266(n), a(4*n) = A033585(n), a(5*n) = A144312(n), a(6*n) = A144314(n). - Reinhard Zumkeller, Sep 17 2008
a(n) = A022264(n) - A049450(n). - Reinhard Zumkeller, Oct 09 2008
If we define f(n,i,a) = Sum_{j=0..k-1} (binomial(n,k)*Stirling1(n-k,i)*Product_{j=0..k-1} (-a-j)), then a(n) = -f(n,n-1,1), for n >= 1. - Milan Janjic, Dec 20 2008
4*a(x) + 4*a(y) + 1 = (x+y+1)^2 + (x-y)^2. - Vladimir Shevelev, Jan 21 2009
a(n) = A000124(n-1) + n-1 for n >= 2. a(n) = A000124(n) - 1. - Jaroslav Krizek, Jun 16 2009
An exponential generating function for the inverse of this sequence is given by Sum_{m>=0} ((Pochhammer(1, m)*Pochhammer(1, m))*x^m/(Pochhammer(3, m)*factorial(m))) = ((2-2*x)*log(1-x)+2*x)/x^2, the n-th derivative of which has a closed form which must be evaluated by taking the limit as x->0. A000217(n+1) = (lim_{x->0} d^n/dx^n (((2-2*x)*log(1-x)+2*x)/x^2))^-1 = (lim_{x->0} (2*Gamma(n)*(-1/x)^n*(n*(x/(-1+x))^n*(-x+1+n)*LerchPhi(x/(-1+x), 1, n) + (-1+x)*(n+1)*(x/(-1+x))^n + n*(log(1-x)+log(-1/(-1+x)))*(-x+1+n))/x^2))^-1. - Stephen Crowley, Jun 28 2009
a(n) = A034856(n+1) - A005408(n) = A005843(n) + A000124(n) - A005408(n). - Jaroslav Krizek, Sep 05 2009
a(A006894(n)) = a(A072638(n-1)+1) = A072638(n) = A006894(n+1)-1 for n >= 1. For n=4, a(11) = 66. - Jaroslav Krizek, Sep 12 2009
With offset 1, a(n) = floor(n^3/(n+1))/2. - Gary Detlefs, Feb 14 2010
a(n) = 4*a(floor(n/2)) + (-1)^(n+1)*floor((n+1)/2). - Bruno Berselli, May 23 2010
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3); a(0)=0, a(1)=1. - Mark Dols, Aug 20 2010
From Charlie Marion, Oct 15 2010: (Start)
a(n) + 2*a(n-1) + a(n-2) = n^2 + (n-1)^2; and
a(n) + 3*a(n-1) + 3*a(n-2) + a(n-3) = n^2 + 2*(n-1)^2 + (n-2)^2.
In general, for n >= m > 2, Sum_{k=0..m} binomial(m,m-k)*a(n-k) = Sum_{k=0..m-1} binomial(m-1,m-1-k)*(n-k)^2.
a(n) - 2*a(n-1) + a(n-2) = 1, a(n) - 3*a(n-1) + 3*a(n-2) - a(n-3) = 0 and a(n) - 4*a(n-1) + 6*a(n-2) - 4*(a-3) + a(n-4) = 0.
In general, for n >= m > 2, Sum_{k=0..m} (-1)^k*binomial(m,m-k)*a(n-k) = 0.
(End)
a(n) = sqrt(A000537(n)). - Zak Seidov, Dec 07 2010
For n > 0, a(n) = 1/(Integral_{x=0..Pi/2} 4*(sin(x))^(2*n-1)*(cos(x))^3). - Francesco Daddi, Aug 02 2011
a(n) = A110654(n)*A008619(n). - Reinhard Zumkeller, Aug 24 2011
a(2*k-1) = A000384(k), a(2*k) = A014105(k), k > 0. - Omar E. Pol, Sep 13 2011
a(n) = A026741(n)*A026741(n+1). - Charles R Greathouse IV, Apr 01 2012
a(n) + a(a(n)) + 1 = a(a(n)+1). - J. M. Bergot, Apr 27 2012
a(n) = -s(n+1,n), where s(n,k) are the Stirling numbers of the first kind, A048994. - Mircea Merca, May 03 2012
a(n)*a(n+1) = a(Sum_{m=1..n} A005408(m))/2, for n >= 1. For example, if n=8, then a(8)*a(9) = a(80)/2 = 1620. - Ivan N. Ianakiev, May 27 2012
a(n) = A002378(n)/2 = (A001318(n) + A085787(n))/2. - Omar E. Pol, Jan 11 2013
G.f.: x * (1 + 3x + 6x^2 + ...) = x * Product_{j>=0} (1+x^(2^j))^3 = x * A(x) * A(x^2) * A(x^4) * ..., where A(x) = (1 + 3x + 3x^2 + x^3). - Gary W. Adamson, Jun 26 2012
G.f.: G(0) where G(k) = 1 + (2*k+3)*x/(2*k+1 - x*(k+2)*(2*k+1)/(x*(k+2) + (k+1)/G(k+1))); (continued fraction, 3rd kind, 3-step). - Sergei N. Gladkovskii, Nov 23 2012
a(n) = A002088(n) + A063985(n). - Reinhard Zumkeller, Jan 21 2013
G.f.: x + 3*x^2/(Q(0)-3*x) where Q(k) = 1 + k*(x+1) + 3*x - x*(k+1)*(k+4)/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, Mar 14 2013
a(n) + a(n+1) + a(n+2) + a(n+3) + n = a(2*n+4). - Ivan N. Ianakiev, Mar 16 2013
a(n) + a(n+1) + ... + a(n+8) + 6*n = a(3*n+15). - Charlie Marion, Mar 18 2013
a(n) + a(n+1) + ... + a(n+20) + 2*n^2 + 57*n = a(5*n+55). - Charlie Marion, Mar 18 2013
3*a(n) + a(n-1) = a(2*n), for n > 0. - Ivan N. Ianakiev, Apr 05 2013
In general, a(k*n) = (2*k-1)*a(n) + a((k-1)*n-1). - Charlie Marion, Apr 20 2015
Also, a(k*n) = a(k)*a(n) + a(k-1)*a(n-1). - Robert Israel, Apr 20 2015
a(n+1) = det(binomial(i+2,j+1), 1 <= i,j <= n). - Mircea Merca, Apr 06 2013
a(n) = floor(n/2) + ceiling(n^2/2) = n - floor(n/2) + floor(n^2/2). - Wesley Ivan Hurt, Jun 15 2013
a(n) = floor((n+1)/(exp(2/(n+1))-1)). - Richard R. Forberg, Jun 22 2013
Sum_{n>=1} a(n)/n! = 3*exp(1)/2 by the e.g.f. Also see A067764 regarding ratios calculated this way for binomial coefficients in general. - Richard R. Forberg, Jul 15 2013
Sum_{n>=1} (-1)^(n+1)/a(n) = 4*log(2) - 2 = 0.7725887... . - Richard R. Forberg, Aug 11 2014
2/(Sum_{n>=m} 1/a(n)) = m, for m > 0. - Richard R. Forberg, Aug 12 2014
A228474(a(n))=n; A248952(a(n))=0; A248953(a(n))=a(n); A248961(a(n))=A000330(n). - Reinhard Zumkeller, Oct 20 2014
a(a(n)-1) + a(a(n+2)-1) + 1 = A000124(n+1)^2. - Charlie Marion, Nov 04 2014
a(n) = 2*A000292(n) - A000330(n). - Luciano Ancora, Mar 14 2015
a(n) = A007494(n-1) + A099392(n) for n > 0. - Bui Quang Tuan, Mar 27 2015
Sum_{k=0..n} k*a(k+1) = a(A000096(n+1)). - Charlie Marion, Jul 15 2015
Let O(n) be the oblong number n(n+1) = A002378(n) and S(n) the square number n^2 = A000290(n). Then a(n) + a(n+2k) = O(n+k) + S(k) and a(n) + a(n+2k+1) = S(n+k+1) + O(k). - Charlie Marion, Jul 16 2015
A generalization of the Nov 22 2006 formula, a(n)^2 + a(n+1)^2 = a((n+1)^2), follows. Let T(k,n) = a(n) + k. Then for all k, T(k,n)^2 + T(k,n+1)^2 = T(k,(n+1)^2 + 2*k) - 2*k. - Charlie Marion, Dec 10 2015
a(n)^2 + a(n+1)^2 = a(a(n) + a(n+1)). Deducible from N. J. A. Sloane's a(n) + a(n+1) = (n+1)^2 and R. B. Nelson's a(n)^2 + a(n+1)^2 = a((n+1)^2). - Ben Paul Thurston, Dec 28 2015
Dirichlet g.f.: (zeta(s-2) + zeta(s-1))/2. - Ilya Gutkovskiy, Jun 26 2016
a(n)^2 - a(n-1)^2 = n^3. - Miquel Cerda, Jun 29 2016
a(n) = A080851(0,n-1). - R. J. Mathar, Jul 28 2016
a(n) = A000290(n-1) - A034856(n-4). - Peter M. Chema, Sep 25 2016
a(n)^2 + a(n+3)^2 + 19 = a(n^2 + 4*n + 10). - Charlie Marion, Nov 23 2016
2*a(n)^2 + a(n) = a(n^2+n). - Charlie Marion, Nov 29 2016
G.f.: x/(1-x)^3 = (x * r(x) * r(x^3) * r(x^9) * r(x^27) * ...), where r(x) = (1 + x + x^2)^3 = (1 + 3*x + 6*x^2 + 7*x^3 + 6*x^4 + 3*x^5 + x^6). - Gary W. Adamson, Dec 03 2016
a(n) = sum of the elements of inverse of matrix Q(n), where Q(n) has elements q_i,j = 1/(1-4*(i-j)^2). So if e = appropriately sized vector consisting of 1's, then a(n) = e'.Q(n)^-1.e. - Michael Yukish, Mar 20 2017
a(n) = Sum_{k=1..n} ((2*k-1)!!*(2*n-2*k-1)!!)/((2*k-2)!!*(2*n-2*k)!!). - Michael Yukish, Mar 20 2017
Sum_{i=0..k-1} a(n+i) = (3*k*n^2 + 3*n*k^2 + k^3 - k)/6. - Christopher Hohl, Feb 23 2019
a(n) = A060544(n + 1) - A016754(n). - Ralf Steiner, Nov 09 2019
a(n) == 0 (mod n) iff n is odd (see De Koninck reference). - Bernard Schott, Jan 10 2020
8*a(k)*a(n) + ((a(k)-1)*n + a(k))^2 = ((a(k)+1)*n + a(k))^2. This formula reduces to the well-known formula, 8*a(n) + 1 = (2*n+1)^2, when k = 1. - Charlie Marion, Jul 23 2020
a(k)*a(n) = Sum_{i = 0..k-1} (-1)^i*a((k-i)*(n-i)). - Charlie Marion, Dec 04 2020
From Amiram Eldar, Jan 20 2021: (Start)
Product_{n>=1} (1 + 1/a(n)) = cosh(sqrt(7)*Pi/2)/(2*Pi).
Product_{n>=2} (1 - 1/a(n)) = 1/3. (End)
a(n) = Sum_{k=1..2*n-1} (-1)^(k+1)*a(k)*a(2*n-k). For example, for n = 4, 1*28 - 3*21 + 6*15 - 10*10 + 15*6 - 21*3 + 28*1 = 10. - Charlie Marion, Mar 23 2022
2*a(n) = A000384(n) - n^2 + 2*n. In general, if P(k,n) = the n-th k-gonal number, then (j+1)*a(n) = P(5 + j, n) - n^2 + (j+1)*n. More generally, (j+1)*P(k,n) = P(2*k + (k-2)*(j-1),n) - n^2 + (j+1)*n. - Charlie Marion, Mar 14 2023
a(n) = A109613(n) * A004526(n+1). - Torlach Rush, Nov 10 2023
a(n) = (1/6)* Sum_{k = 0..3*n} (-1)^(n+k+1) * k*(k + 1) * binomial(3*n+k, 2*k). - Peter Bala, Nov 03 2024
From Peter Bala, Jul 05 2025: (Start)
The following series telescope: for k >= 0,
Sum_{n >= 1} a(n)*a(n+2)*...*a(n+2*k)/(a(n+1)*a(n+3)*...*a(n+2*k+3)) = 1/(2*k + 3);
Sum_{n >= 1} a(n+1)*a(n+3)*...*a(n+2*k+1)/(a(n)*a(n+2)*...*a(n+2*k+2)) = 2/(2*k + 3) * Sum_{i = 1..2*k+3} 1/i. (End)

Extensions

Edited by Derek Orr, May 05 2015

A000292 Tetrahedral (or triangular pyramidal) numbers: a(n) = C(n+2,3) = n*(n+1)*(n+2)/6.

Original entry on oeis.org

0, 1, 4, 10, 20, 35, 56, 84, 120, 165, 220, 286, 364, 455, 560, 680, 816, 969, 1140, 1330, 1540, 1771, 2024, 2300, 2600, 2925, 3276, 3654, 4060, 4495, 4960, 5456, 5984, 6545, 7140, 7770, 8436, 9139, 9880, 10660, 11480, 12341, 13244, 14190, 15180
Offset: 0

Views

Author

Keywords

Comments

a(n) is the number of balls in a triangular pyramid in which each edge contains n balls.
One of the 5 Platonic polyhedral (tetrahedral, cube, octahedral, dodecahedral and icosahedral) numbers (cf. A053012).
Also (1/6)*(n^3 + 3*n^2 + 2*n) is the number of ways to color the vertices of a triangle using <= n colors, allowing rotations and reflections. Group is the dihedral group D_6 with cycle index (x1^3 + 2*x3 + 3*x1*x2)/6.
Also the convolution of the natural numbers with themselves. - Felix Goldberg (felixg(AT)tx.technion.ac.il), Feb 01 2001
Connected with the Eulerian numbers (1, 4, 1) via 1*a(n-2) + 4*a(n-1) + 1*a(n) = n^3. - Gottfried Helms, Apr 15 2002
a(n) is sum of all the possible products p*q where (p,q) are ordered pairs and p + q = n + 1. E.g., a(5) = 5 + 8 + 9 + 8 + 5 = 35. - Amarnath Murthy, May 29 2003
Number of labeled graphs on n+3 nodes that are triangles. - Jon Perry, Jun 14 2003
Number of permutations of n+3 which have exactly 1 descent and avoid the pattern 1324. - Mike Zabrocki, Nov 05 2004
Schlaefli symbol for this polyhedron: {3,3}.
Transform of n^2 under the Riordan array (1/(1-x^2), x). - Paul Barry, Apr 16 2005
a(n) is a perfect square only for n = {1, 2, 48}. E.g., a(48) = 19600 = 140^2. - Alexander Adamchuk, Nov 24 2006
a(n+1) is the number of terms in the expansion of (a_1 + a_2 + a_3 + a_4)^n. - Sergio Falcon, Feb 12 2007 [Corrected by Graeme McRae, Aug 28 2007]
a(n+1) is the number of terms in the complete homogeneous symmetric polynomial of degree n in 3 variables. - Richard Barnes, Sep 06 2017
This is also the average "permutation entropy", sum((pi(n)-n)^2)/n!, over the set of all possible n! permutations pi. - Jeff Boscole (jazzerciser(AT)hotmail.com), Mar 20 2007
a(n) = (d/dx)(S(n, x), x)|A049310.%20-%20_Wolfdieter%20Lang">{x = 2}. First derivative of Chebyshev S-polynomials evaluated at x = 2. See A049310. - _Wolfdieter Lang, Apr 04 2007
If X is an n-set and Y a fixed (n-1)-subset of X then a(n-2) is equal to the number of 3-subsets of X intersecting Y. - Milan Janjic, Aug 15 2007
Complement of A145397; A023533(a(n))=1; A014306(a(n))=0. - Reinhard Zumkeller, Oct 14 2008
Equals row sums of triangle A152205. - Gary W. Adamson, Nov 29 2008
a(n) is the number of gifts received from the lyricist's true love up to and including day n in the song "The Twelve Days of Christmas". a(12) = 364, almost the number of days in the year. - Bernard Hill (bernard(AT)braeburn.co.uk), Dec 05 2008
Sequence of the absolute values of the z^1 coefficients of the polynomials in the GF2 denominators of A156925. See A157703 for background information. - Johannes W. Meijer, Mar 07 2009
Starting with 1 = row sums of triangle A158823. - Gary W. Adamson, Mar 28 2009
Wiener index of the path with n edges. - Eric W. Weisstein, Apr 30 2009
This is a 'Matryoshka doll' sequence with alpha=0, the multiplicative counterpart is A000178: seq(add(add(i,i=alpha..k),k=alpha..n),n=alpha..50). - Peter Luschny, Jul 14 2009
a(n) is the number of nondecreasing triples of numbers from a set of size n, and it is the number of strictly increasing triples of numbers from a set of size n+2. - Samuel Savitz, Sep 12 2009 [Corrected and enhanced by Markus Sigg, Sep 24 2023]
a(n) is the number of ordered sequences of 4 nonnegative integers that sum to n. E.g., a(2) = 10 because 2 = 2 + 0 + 0 + 0 = 1 + 1 + 0 + 0 = 0 + 2 + 0 + 0 = 1 + 0 + 1 + 0 = 0 + 1 + 1 + 0 = 0 + 0 + 2 + 0 = 1 + 0 + 0 + 1 = 0 + 1 + 0 + 1 = 0 + 0 + 1 + 1 = 0 + 0 + 0 + 2. - Artur Jasinski, Nov 30 2009
a(n) corresponds to the total number of steps to memorize n verses by the technique described in A173964. - Ibrahima Faye (ifaye2001(AT)yahoo.fr), Feb 22 2010
The number of (n+2)-bit numbers which contain two runs of 1's in their binary expansion. - Vladimir Shevelev, Jul 30 2010
a(n) is also, starting at the second term, the number of triangles formed in n-gons by intersecting diagonals with three diagonal endpoints (see the first column of the table in Sommars link). - Alexandre Wajnberg, Aug 21 2010
Column sums of:
1 4 9 16 25...
1 4 9...
1...
..............
--------------
1 4 10 20 35...
From Johannes W. Meijer, May 20 2011: (Start)
The Ca3, Ca4, Gi3 and Gi4 triangle sums (see A180662 for their definitions) of the Connell-Pol triangle A159797 are linear sums of shifted versions of the duplicated tetrahedral numbers, e.g., Gi3(n) = 17*a(n) + 19*a(n-1) and Gi4(n) = 5*a(n) + a(n-1).
Furthermore the Kn3, Kn4, Ca3, Ca4, Gi3 and Gi4 triangle sums of the Connell sequence A001614 as a triangle are also linear sums of shifted versions of the sequence given above. (End)
a(n-2)=N_0(n), n >= 1, with a(-1):=0, is the number of vertices of n planes in generic position in three-dimensional space. See a comment under A000125 for general arrangement. Comment to Arnold's problem 1990-11, see the Arnold reference, p. 506. - Wolfdieter Lang, May 27 2011
We consider optimal proper vertex colorings of a graph G. Assume that the labeling, i.e., coloring starts with 1. By optimality we mean that the maximum label used is the minimum of the maximum integer label used across all possible labelings of G. Let S=Sum of the differences |l(v) - l(u)|, the sum being over all edges uv of G and l(w) is the label associated with a vertex w of G. We say G admits unique labeling if all possible labelings of G is S-invariant and yields the same integer partition of S. With an offset this sequence gives the S-values for the complete graph on n vertices, n = 2, 3, ... . - K.V.Iyer, Jul 08 2011
Central term of commutator of transverse Virasoro operators in 4-D case for relativistic quantum open strings (ref. Zwiebach). - Tom Copeland, Sep 13 2011
Appears as a coefficient of a Sturm-Liouville operator in the Ovsienko reference on page 43. - Tom Copeland, Sep 13 2011
For n > 0: a(n) is the number of triples (u,v,w) with 1 <= u <= v <= w <= n, cf. A200737. - Reinhard Zumkeller, Nov 21 2011
Regarding the second comment above by Amarnath Murthy (May 29 2003), see A181118 which gives the sequence of ordered pairs. - L. Edson Jeffery, Dec 17 2011
The dimension of the space spanned by the 3-form v[ijk] that couples to M2-brane worldsheets wrapping 3-cycles inside tori (ref. Green, Miller, Vanhove eq. 3.9). - Stephen Crowley, Jan 05 2012
a(n+1) is the number of 2 X 2 matrices with all terms in {0, 1, ..., n} and (sum of terms) = n. Also, a(n+1) is the number of 2 X 2 matrices with all terms in {0, 1, ..., n} and (sum of terms) = 3*n. - Clark Kimberling, Mar 19 2012
Using n + 4 consecutive triangular numbers t(1), t(2), ..., t(n+4), where n is the n-th term of this sequence, create a polygon by connecting points (t(1), t(2)) to (t(2), t(3)), (t(2), t(3)) to (t(3), t(4)), ..., (t(1), t(2)) to (t(n+3), t(n+4)). The area of this polygon will be one-half of each term in this sequence. - J. M. Bergot, May 05 2012
Pisano period lengths: 1, 4, 9, 8, 5, 36, 7, 16, 27, 20, 11, 72, 13, 28, 45, 32, 17,108, 19, 40, ... . (The Pisano sequence modulo m is the auxiliary sequence p(n) = a(n) mod m, n >= 1, for some m. p(n) is periodic for all sequences with rational g.f., like this one, and others. The lengths of the period of p(n) are quoted here for m>=1.) - R. J. Mathar, Aug 10 2012
a(n) is the maximum possible number of rooted triples consistent with any phylogenetic tree (level-0 phylogenetic network) containing exactly n+2 leaves. - Jesper Jansson, Sep 10 2012
For n > 0, the digital roots of this sequence A010888(a(n)) form the purely periodic 27-cycle {1, 4, 1, 2, 8, 2, 3, 3, 3, 4, 7, 4, 5, 2, 5, 6, 6, 6, 7, 1, 7, 8, 5, 8, 9, 9, 9}, which just rephrases the Pisano period length above. - Ant King, Oct 18 2012
a(n) is the number of functions f from {1, 2, 3} to {1, 2, ..., n + 4} such that f(1) + 1 < f(2) and f(2) + 1 < f(3). - Dennis P. Walsh, Nov 27 2012
a(n) is the Szeged index of the path graph with n+1 vertices; see the Diudea et al. reference, p. 155, Eq. (5.8). - Emeric Deutsch, Aug 01 2013
Also the number of permutations of length n that can be sorted by a single block transposition. - Vincent Vatter, Aug 21 2013
From J. M. Bergot, Sep 10 2013: (Start)
a(n) is the 3 X 3 matrix determinant
| C(n,1) C(n,2) C(n,3) |
| C(n+1,1) C(n+1,2) C(n+1,3) |
| C(n+2,1) C(n+2,2) C(n+2,3) |
(End)
In physics, a(n)/2 is the trace of the spin operator S_z^2 for a particle with spin S=n/2. For example, when S=3/2, the S_z eigenvalues are -3/2, -1/2, +1/2, +3/2 and the sum of their squares is 10/2 = a(3)/2. - Stanislav Sykora, Nov 06 2013
a(n+1) = (n+1)*(n+2)*(n+3)/6 is also the dimension of the Hilbert space of homogeneous polynomials of degree n. - L. Edson Jeffery, Dec 12 2013
For n >= 4, a(n-3) is the number of permutations of 1,2...,n with the distribution of up (1) - down (0) elements 0...0111 (n-4 zeros), or, equivalently, a(n-3) is up-down coefficient {n,7} (see comment in A060351). - Vladimir Shevelev, Feb 15 2014
a(n) is one-half the area of the region created by plotting the points (n^2,(n+1)^2). A line connects points (n^2,(n+1)^2) and ((n+1)^2, (n+2)^2) and a line is drawn from (0,1) to each increasing point. From (0,1) to (4,9) the area is 2; from (0,1) to (9,16) the area is 8; further areas are 20,40,70,...,2*a(n). - J. M. Bergot, May 29 2014
Beukers and Top prove that no tetrahedral number > 1 equals a square pyramidal number A000330. - Jonathan Sondow, Jun 21 2014
a(n+1) is for n >= 1 the number of nondecreasing n-letter words over the alphabet [4] = {1, 2, 3, 4} (or any other four distinct numbers). a(2+1) = 10 from the words 11, 22, 33, 44, 12, 13, 14, 23, 24, 34; which is also the maximal number of distinct elements in a symmetric 4 X 4 matrix. Inspired by the Jul 20 2014 comment by R. J. Cano on A000582. - Wolfdieter Lang, Jul 29 2014
Degree of the q-polynomial counting the orbits of plane partitions under the action of the symmetric group S3. Orbit-counting generating function is Product_{i <= j <= k <= n} ( (1 - q^(i + j + k - 1))/(1 - q^(i + j + k - 2)) ). See q-TSPP reference. - Olivier Gérard, Feb 25 2015
Row lengths of tables A248141 and A248147. - Reinhard Zumkeller, Oct 02 2014
If n is even then a(n) = Sum_{k=1..n/2} (2k)^2. If n is odd then a(n) = Sum_{k=0..(n-1)/2} (1+2k)^2. This can be illustrated as stacking boxes inside a square pyramid on plateaus of edge lengths 2k or 2k+1, respectively. The largest k are the 2k X 2k or (2k+1) X (2k+1) base. - R. K. Guy, Feb 26 2015
Draw n lines in general position in the plane. Any three define a triangle, so in all we see C(n,3) = a(n-2) triangles (6 lines produce 4 triangles, and so on). - Terry Stickels, Jul 21 2015
a(n-2) = fallfac(n,3)/3!, n >= 3, is also the number of independent components of an antisymmetric tensor of rank 3 and dimension n. Here fallfac is the falling factorial. - Wolfdieter Lang, Dec 10 2015
Number of compositions (ordered partitions) of n+3 into exactly 4 parts. - Juergen Will, Jan 02 2016
Number of weak compositions (ordered weak partitions) of n-1 into exactly 4 parts. - Juergen Will, Jan 02 2016
For n >= 2 gives the number of multiplications of two nonzero matrix elements in calculating the product of two upper n X n triangular matrices. - John M. Coffey, Jun 23 2016
Terms a(4n+1), n >= 0, are odd, all others are even. The 2-adic valuation of the subsequence of every other term, a(2n+1), n >= 0, yields the ruler sequence A007814. Sequence A275019 gives the 2-adic valuation of a(n). - M. F. Hasler, Dec 05 2016
Does not satisfy Benford's law [Ross, 2012]. - N. J. A. Sloane, Feb 12 2017
C(n+2,3) is the number of ways to select 1 triple among n+2 objects, thus a(n) is the coefficient of x1^(n-1)*x3 in exponential Bell polynomial B_{n+2}(x1,x2,...), hence its link with A050534 and A001296 (see formula). - Cyril Damamme, Feb 26 2018
a(n) is also the number of 3-cycles in the (n+4)-path complement graph. - Eric W. Weisstein, Apr 11 2018
a(n) is the general number of all geodetic graphs of diameter n homeomorphic to a complete graph K4. - Carlos Enrique Frasser, May 24 2018
a(n) + 4*a(n-1) + a(n-2) = n^3 = A000578(n), for n >= 0 (extending the a(n) formula given in the name). This is the Worpitzky identity for cubes. (Number of components of the decomposition of a rank 3 tensor in dimension n >= 1 into symmetric, mixed and antisymmetric parts). For a(n-2) see my Dec 10 2015 comment. - Wolfdieter Lang, Jul 16 2019
a(n) also gives the total number of regular triangles of length k (in some length unit), with k from {1, 2, ..., n}, in the matchstick arrangement with enclosing triangle of length n, but only triangles with the orientation of the enclosing triangle are counted. Row sums of unsigned A122432(n-1, k-1), for n >= 1. See the Andrew Howroyd comment in A085691. - Wolfdieter Lang, Apr 06 2020
a(n) is the number of bigrassmannian permutations on n+1 elements, i.e., permutations which have a unique left descent, and a unique right descent. - Rafael Mrden, Aug 21 2020
a(n-2) is the number of chiral pairs of colorings of the edges or vertices of a triangle using n or fewer colors. - Robert A. Russell, Oct 20 2020
a(n-2) is the number of subsets of {1,2,...,n} whose diameters are their size. For example, for n=4, a(2)=4 and the sets are {1,3}, {2,4}, {1,2,4}, {1,3,4}. - Enrique Navarrete, Dec 26 2020
For n>1, a(n-2) is the number of subsets of {1,2,...,n} in which the second largest element is the size of the subset. For example, for n=4, a(2)=4 and the sets are {2,3}, {2,4}, {1,3,4}, {2,3,4}. - Enrique Navarrete, Jan 02 2021
a(n) is the number of binary strings of length n+2 with exactly three 0's. - Enrique Navarrete, Jan 15 2021
From Tom Copeland, Jun 07 2021: (Start)
Aside from the zero, this sequence is the fourth diagonal of the Pascal matrix A007318 and the only nonvanishing diagonal (fourth) of the matrix representation IM = (A132440)^3/3! of the differential operator D^3/3!, when acting on the row vector of coefficients of an o.g.f., or power series.
M = e^{IM} is the lower triangular matrix of coefficients of the Appell polynomial sequence p_n(x) = e^{D^3/3!} x^n = e^{b. D} x^n = (b. + x)^n = Sum_{k=0..n} binomial(n,k) b_n x^{n-k}, where the (b.)^n = b_n have the e.g.f. e^{b.t} = e^{t^3/3!}, which is that for A025035 aerated with double zeros, the first column of M.
See A099174 and A000332 for analogous relationships for the third and fifth diagonals of the Pascal matrix. (End)
a(n) is the number of circles with a radius of integer length >= 1 and center at a grid point in an n X n grid. - Albert Swafford, Jun 11 2021
Maximum Wiener index over all connected graphs with n+1 vertices. - Allan Bickle, Jul 09 2022
The third Euler row (1,4,1) has an additional connection with the tetrahedral numbers besides the n^3 identity stated above: a^2(n) + 4*a^2(n+1) + a^2(n+2) = a(n^2+4n+4), which can be shown with algebra. E.g., a^2(2) + 4*a^2(3) + a^2(4) = 16 + 400 + 400 = a(16). Although an analogous thing happens with the (1,1) row of Euler's triangle and triangular numbers C(n+1,2) = A000217(n) = T(n), namely both T(n-1) + T(n) = n^2 and T^2(n-1) + T^2(n) = T(n^2) are true, only one (the usual identity) still holds for the Euler row (1,11,11,1) and the C(n,4) numbers in A000332. That is, the dot product of (1,11,11,1) with the squares of 4 consecutive terms of A000332 is not generally a term of A000332. - Richard Peterson, Aug 21 2022
For n > 1, a(n-2) is the number of solutions of the Diophantine equation x1 + x2 + x3 + x4 + x5 = n, subject to the constraints 0 <= x1, 1 <= x2, 2 <= x3, 0 <= x4 <= 1, 0 <= x5 and x5 is even. - Daniel Checa, Nov 03 2022
a(n+1) is also the number of vertices of the generalized Pitman-Stanley polytope with parameters 2, n, and vector (1,1, ... ,1), which is integrally equivalent to a flow polytope over the grid graph having 2 rows and n columns. - William T. Dugan, Sep 18 2023
a(n) is the number of binary words of length (n+1) containing exactly one substring 01. a(2) = 4: 001, 010, 011, 101. - Nordine Fahssi, Dec 09 2024

Examples

			a(2) = 3*4*5/6 = 10, the number of balls in a pyramid of 3 layers of balls, 6 in a triangle at the bottom, 3 in the middle layer and 1 on top.
Consider the square array
  1  2  3  4  5  6 ...
  2  4  6  8 10 12 ...
  3  6  9 12 16 20 ...
  4  8 12 16 20 24 ...
  5 10 15 20 25 30 ...
  ...
then a(n) = sum of n-th antidiagonal. - _Amarnath Murthy_, Apr 06 2003
G.f. = x + 4*x^2 + 10*x^3 + 20*x^4 + 35*x^5 + 56*x^6 + 84*x^7 + 120*x^8 + 165*x^9 + ...
Example for a(3+1) = 20 nondecreasing 3-letter words over {1,2,3,4}: 111, 222, 333; 444, 112, 113, 114, 223, 224, 122, 224, 133, 233, 144, 244, 344; 123, 124, 134, 234.  4 + 4*3 + 4 = 20. - _Wolfdieter Lang_, Jul 29 2014
Example for a(4-2) = 4 independent components of a rank 3 antisymmetric tensor A of dimension 4: A(1,2,3), A(1,2,4), A(1,3,4) and A(2,3,4). - _Wolfdieter Lang_, Dec 10 2015
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 828.
  • V. I. Arnold (ed.), Arnold's Problems, Springer, 2004, comments on Problem 1990-11 (p. 75), pp. 503-510. Numbers N_0.
  • A. H. Beiler, Recreations in the Theory of Numbers, Dover, NY, 1964, p. 194.
  • J. H. Conway and R. K. Guy, The Book of Numbers, Copernicus Press, NY, 1996, pp. 44, 70.
  • H. S. M. Coxeter, Polyhedral numbers, pp. 25-35 of R. S. Cohen, J. J. Stachel and M. W. Wartofsky, eds., For Dirk Struik: Scientific, historical and political essays in honor of Dirk J. Struik, Reidel, Dordrecht, 1974.
  • E. Deza and M. M. Deza, Figurate numbers, World Scientific Publishing (2012), page 93.
  • L. E. Dickson, History of the Theory of Numbers. Carnegie Institute Public. 256, Washington, DC, Vol. 1, 1919; Vol. 2, 1920; Vol. 3, 1923, see vol. 2, p. 4.
  • M. V. Diudea, I. Gutman, and J. Lorentz, Molecular Topology, Nova Science, 2001, Huntington, N.Y. pp. 152-156.
  • Jan Gullberg, Mathematics from the Birth of Numbers, W. W. Norton & Co., NY & London, 1997, §8.6 Figurate Numbers, pp. 292-293.
  • J. C. P. Miller, editor, Table of Binomial Coefficients. Royal Society Mathematical Tables, Vol. 3, Cambridge Univ. Press, 1954.
  • V. Ovsienko and S. Tabachnikov, Projective Differential Geometry Old and New, Cambridge Tracts in Mathematics (no. 165), Cambridge Univ. Press, 2005.
  • Kenneth A Ross, First Digits of Squares and Cubes, Math. Mag. 85 (2012) 36-42. doi:10.4169/math.mag.85.1.36.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • A. Szenes, The combinatorics of the Verlinde formulas (N.J. Hitchin et al., ed.), in Vector bundles in algebraic geometry, Cambridge, 1995.
  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, pages 11-13.
  • D. Wells, The Penguin Dictionary of Curious and Interesting Numbers, Penguin Books, 1987, pp. 126-127.
  • B. Zwiebach, A First Course in String Theory, Cambridge, 2004; see p. 226.

Crossrefs

Bisections give A000447 and A002492.
Sums of 2 consecutive terms give A000330.
a(3n-3) = A006566(n). A000447(n) = a(2n-2). A002492(n) = a(2n+1).
Column 0 of triangle A094415.
Partial sums are A000332. - Jonathan Vos Post, Mar 27 2011
Cf. A216499 (the analogous sequence for level-1 phylogenetic networks).
Cf. A068980 (partitions), A231303 (spin physics).
Cf. similar sequences listed in A237616.
Cf. A104712 (second column, if offset is 2).
Cf. A145397 (non-tetrahedral numbers). - Daniel Forgues, Apr 11 2015
Cf. A127324.
Cf. A007814, A275019 (2-adic valuation).
Cf. A000578 (cubes), A005900 (octahedral numbers), A006566 (dodecahedral numbers), A006564 (icosahedral numbers).
Cf. A002817 (4-cycle count of \bar P_{n+4}), A060446 (5-cycle count of \bar P_{n+3}), A302695 (6-cycle count of \bar P_{n+5})
Row 2 of A325000 (simplex facets and vertices) and A327084 (simplex edges and ridges).
Cf. A085691 (matchsticks), A122432 (unsigned row sums).
Cf. (triangle colorings) A006527 (oriented), A000290 (achiral), A327085 (chiral simplex edges and ridges).
Row 3 of A321791 (cycles of n colors using k or fewer colors).
The Wiener indices of powers of paths for k = 1..6 are given in A000292, A002623, A014125, A122046, A122047, and A175724, respectively.

Programs

  • GAP
    a:=n->Binomial(n+2,3);; A000292:=List([0..50],n->a(n)); # Muniru A Asiru, Feb 28 2018
    
  • Haskell
    a000292 n = n * (n + 1) * (n + 2) `div` 6
    a000292_list = scanl1 (+) a000217_list
    -- Reinhard Zumkeller, Jun 16 2013, Feb 09 2012, Nov 21 2011
    
  • Magma
    [n*(n+1)*(n+2)/6: n in [0..50]]; // Wesley Ivan Hurt, Jun 03 2014
    
  • Maple
    a:=n->n*(n+1)*(n+2)/6; seq(a(n), n=0..50);
    A000292 := n->binomial(n+2,3); seq(A000292(n), n=0..50);
    isA000292 := proc(n)
        option remember;
        local a,i ;
        for i from iroot(6*n,3)-1 do
            a := A000292(i) ;
            if a > n then
                return false;
            elif a = n then
                return true;
            end if;
        end do:
    end proc: # R. J. Mathar, Aug 14 2024
  • Mathematica
    Table[Binomial[n + 2, 3], {n, 0, 20}] (* Zerinvary Lajos, Jan 31 2010 *)
    Accumulate[Accumulate[Range[0, 50]]] (* Harvey P. Dale, Dec 10 2011 *)
    Table[n (n + 1)(n + 2)/6, {n,0,100}] (* Wesley Ivan Hurt, Sep 25 2013 *)
    Nest[Accumulate, Range[0, 50], 2] (* Harvey P. Dale, May 24 2017 *)
    Binomial[Range[20] + 1, 3] (* Eric W. Weisstein, Sep 08 2017 *)
    LinearRecurrence[{4, -6, 4, -1}, {0, 1, 4, 10}, 20] (* Eric W. Weisstein, Sep 08 2017 *)
    CoefficientList[Series[x/(-1 + x)^4, {x, 0, 20}], x] (* Eric W. Weisstein, Sep 08 2017 *)
    Table[Range[n].Range[n,1,-1],{n,0,50}] (* Harvey P. Dale, Mar 02 2024 *)
  • Maxima
    A000292(n):=n*(n+1)*(n+2)/6$ makelist(A000292(n),n,0,60); /* Martin Ettl, Oct 24 2012 */
    
  • PARI
    a(n) = (n) * (n+1) * (n+2) / 6  \\ corrected by Harry J. Smith, Dec 22 2008
    
  • PARI
    a=vector(10000);a[2]=1;for(i=3,#a,a[i]=a[i-2]+i*i); \\ Stanislav Sykora, Nov 07 2013
    
  • PARI
    is(n)=my(k=sqrtnint(6*n,3)); k*(k+1)*(k+2)==6*n \\ Charles R Greathouse IV, Dec 13 2016
    
  • Python
    # Compare A000217.
    def A000292():
        x, y, z = 1, 1, 1
        yield 0
        while True:
            yield x
            x, y, z = x + y + z + 1, y + z + 1, z + 1
    a = A000292(); print([next(a) for i in range(45)]) # Peter Luschny, Aug 03 2019

Formula

a(n) = C(n+2,3) = n*(n+1)*(n+2)/6 (see the name).
G.f.: x / (1 - x)^4.
a(n) = -a(-4 - n) for all in Z.
a(n) = Sum_{k=0..n} A000217(k) = Sum_{k=1..n} Sum_{j=0..k} j, partial sums of the triangular numbers.
a(2n)= A002492(n). a(2n+1)=A000447(n+1).
a(n) = Sum_{1 <= i <= j <= n} |i - j|. - Amarnath Murthy, Aug 05 2002
a(n) = (n+3)*a(n-1)/n. - Ralf Stephan, Apr 26 2003
Sums of three consecutive terms give A006003. - Ralf Stephan, Apr 26 2003
Determinant of the n X n symmetric Pascal matrix M_(i, j) = C(i+j+2, i). - Benoit Cloitre, Aug 19 2003
The sum of a series constructed by the products of the index and the length of the series (n) minus the index (i): a(n) = sum[i(n-i)]. - Martin Steven McCormick (mathseq(AT)wazer.net), Apr 06 2005
a(n) = Sum_{k=0..floor((n-1)/2)} (n-2k)^2 [offset 0]; a(n+1) = Sum_{k=0..n} k^2*(1-(-1)^(n+k-1))/2 [offset 0]. - Paul Barry, Apr 16 2005
a(n) = -A108299(n+5, 6) = A108299(n+6, 7). - Reinhard Zumkeller, Jun 01 2005
a(n) = -A110555(n+4, 3). - Reinhard Zumkeller, Jul 27 2005
Values of the Verlinde formula for SL_2, with g = 2: a(n) = Sum_{j=1..n-1} n/(2*sin^2(j*Pi/n)). - Simone Severini, Sep 25 2006
a(n-1) = (1/(1!*2!))*Sum_{1 <= x_1, x_2 <= n} |det V(x_1, x_2)| = (1/2)*Sum_{1 <= i,j <= n} |i-j|, where V(x_1, x_2) is the Vandermonde matrix of order 2. Column 2 of A133112. - Peter Bala, Sep 13 2007
Starting with 1 = binomial transform of [1, 3, 3, 1, ...]; e.g., a(4) = 20 = (1, 3, 3, 1) dot (1, 3, 3, 1) = (1 + 9 + 9 + 1). - Gary W. Adamson, Nov 04 2007
a(n) = A006503(n) - A002378(n). - Reinhard Zumkeller, Sep 24 2008
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4) for n >= 4. - Jaume Oliver Lafont, Nov 18 2008
Sum_{n>=1} 1/a(n) = 3/2, case x = 1 in Gradstein-Ryshik 1.513.7. - R. J. Mathar, Jan 27 2009
E.g.f.:((x^3)/6 + x^2 + x)*exp(x). - Geoffrey Critzer, Feb 21 2009
Limit_{n -> oo} A171973(n)/a(n) = sqrt(2)/2. - Reinhard Zumkeller, Jan 20 2010
With offset 1, a(n) = (1/6)*floor(n^5/(n^2 + 1)). - Gary Detlefs, Feb 14 2010
a(n) = Sum_{k = 1..n} k*(n-k+1). - Vladimir Shevelev, Jul 30 2010
a(n) = (3*n^2 + 6*n + 2)/(6*(h(n+2) - h(n-1))), n > 0, where h(n) is the n-th harmonic number. - Gary Detlefs, Jul 01 2011
a(n) = coefficient of x^2 in the Maclaurin expansion of 1 + 1/(x+1) + 1/(x+1)^2 + 1/(x+1)^3 + ... + 1/(x+1)^n. - Francesco Daddi, Aug 02 2011
a(n) = coefficient of x^4 in the Maclaurin expansion of sin(x)*exp((n+1)*x). - Francesco Daddi, Aug 04 2011
a(n) = 2*A002415(n+1)/(n+1). - Tom Copeland, Sep 13 2011
a(n) = A004006(n) - n - 1. - Reinhard Zumkeller, Mar 31 2012
a(n) = (A007531(n) + A027480(n) + A007290(n))/11. - J. M. Bergot, May 28 2012
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) + 1. - Ant King, Oct 18 2012
G.f.: x*U(0) where U(k) = 1 + 2*x*(k+2)/( 2*k+1 - x*(2*k+1)*(2*k+5)/(x*(2*k+5)+(2*k+2)/U(k+1) )); (continued fraction, 3rd kind, 3-step). - Sergei N. Gladkovskii, Dec 01 2012
a(n^2 - 1) = (1/2)*(a(n^2 - n - 2) + a(n^2 + n - 2)) and
a(n^2 + n - 2) - a(n^2 - 1) = a(n-1)*(3*n^2 - 2) = 10*A024166(n-1), by Berselli's formula in A222716. - Jonathan Sondow, Mar 04 2013
G.f.: x + 4*x^2/(Q(0)-4*x) where Q(k) = 1 + k*(x+1) + 4*x - x*(k+1)*(k+5)/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, Mar 14 2013
a(n+1) = det(C(i+3,j+2), 1 <= i,j <= n), where C(n,k) are binomial coefficients. - Mircea Merca, Apr 06 2013
a(n) = a(n-2) + n^2, for n > 1. - Ivan N. Ianakiev, Apr 16 2013
a(2n) = 4*(a(n-1) + a(n)), for n > 0. - Ivan N. Ianakiev, Apr 26 2013
G.f.: x*G(0)/2, where G(k) = 1 + 1/(1 - x/(x + (k+1)/(k+4)/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Jun 02 2013
a(n) = n + 2*a(n-1) - a(n-2), with a(0) = a(-1) = 0. - Richard R. Forberg, Jul 11 2013
a(n)*(m+1)^3 + a(m)*(n+1) = a(n*m + n + m), for any nonnegative integers m and n. This is a 3D analog of Euler's theorem about triangular numbers, namely t(n)*(2m+1)^2 + t(m) = t(2nm + n + m), where t(n) is the n-th triangular number. - Ivan N. Ianakiev, Aug 20 2013
Sum_{n>=0} a(n)/(n+1)! = 2*e/3 = 1.8121878856393... . Sum_{n>=1} a(n)/n! = 13*e/6 = 5.88961062832... . - Richard R. Forberg, Dec 25 2013
a(n+1) = A023855(n+1) + A023856(n). - Wesley Ivan Hurt, Sep 24 2013
a(n) = A024916(n) + A076664(n), n >= 1. - Omar E. Pol, Feb 11 2014
a(n) = A212560(n) - A059722(n). - J. M. Bergot, Mar 08 2014
Sum_{n>=1} (-1)^(n + 1)/a(n) = 12*log(2) - 15/2 = 0.8177661667... See A242024, A242023. - Richard R. Forberg, Aug 11 2014
3/(Sum_{n>=m} 1/a(n)) = A002378(m), for m > 0. - Richard R. Forberg, Aug 12 2014
a(n) = Sum_{i=1..n} Sum_{j=i..n} min(i,j). - Enrique Pérez Herrero, Dec 03 2014
Arithmetic mean of Square pyramidal number and Triangular number: a(n) = (A000330(n) + A000217(n))/2. - Luciano Ancora, Mar 14 2015
a(k*n) = a(k)*a(n) + 4*a(k-1)*a(n-1) + a(k-2)*a(n-2). - Robert Israel, Apr 20 2015
Dirichlet g.f.: (zeta(s-3) + 3*zeta(s-2) + 2*zeta(s-1))/6. - Ilya Gutkovskiy, Jul 01 2016
a(n) = A080851(1,n-1) - R. J. Mathar, Jul 28 2016
a(n) = (A000578(n+1) - (n+1) ) / 6. - Zhandos Mambetaliyev, Nov 24 2016
G.f.: x/(1 - x)^4 = (x * r(x) * r(x^2) * r(x^4) * r(x^8) * ...), where r(x) = (1 + x)^4 = (1 + 4x + 6x^2 + 4x^3 + x^4); and x/(1 - x)^4 = (x * r(x) * r(x^3) * r(x^9) * r(x^27) * ...) where r(x) = (1 + x + x^2)^4. - Gary W. Adamson, Jan 23 2017
a(n) = A000332(n+3) - A000332(n+2). - Bruce J. Nicholson, Apr 08 2017
a(n) = A001296(n) - A050534(n+1). - Cyril Damamme, Feb 26 2018
a(n) = Sum_{k=1..n} (-1)^(n-k)*A122432(n-1, k-1), for n >= 1, and a(0) = 0. - Wolfdieter Lang, Apr 06 2020
From Robert A. Russell, Oct 20 2020: (Start)
a(n) = A006527(n) - a(n-2) = (A006527(n) + A000290(n)) / 2 = a(n-2) + A000290(n).
a(n-2) = A006527(n) - a(n) = (A006527(n) - A000290(n)) / 2 = a(n) - A000290(n).
a(n) = 1*C(n,1) + 2*C(n,2) + 1*C(n,3), where the coefficient of C(n,k) is the number of unoriented triangle colorings using exactly k colors.
a(n-2) = 1*C(n,3), where the coefficient of C(n,k) is the number of chiral pairs of triangle colorings using exactly k colors.
a(n-2) = A327085(2,n). (End)
From Amiram Eldar, Jan 25 2021: (Start)
Product_{n>=1} (1 + 1/a(n)) = sinh(sqrt(2)*Pi)/(3*sqrt(2)*Pi).
Product_{n>=2} (1 - 1/a(n)) = sqrt(2)*sinh(sqrt(2)*Pi)/(33*Pi). (End)
a(n) = A002623(n-1) + A002623(n-2), for n>1. - Ivan N. Ianakiev, Nov 14 2021

Extensions

Corrected and edited by Daniel Forgues, May 14 2010

A006003 a(n) = n*(n^2 + 1)/2.

Original entry on oeis.org

0, 1, 5, 15, 34, 65, 111, 175, 260, 369, 505, 671, 870, 1105, 1379, 1695, 2056, 2465, 2925, 3439, 4010, 4641, 5335, 6095, 6924, 7825, 8801, 9855, 10990, 12209, 13515, 14911, 16400, 17985, 19669, 21455, 23346, 25345, 27455, 29679, 32020, 34481, 37065, 39775
Offset: 0

Views

Author

Keywords

Comments

Write the natural numbers in groups: 1; 2,3; 4,5,6; 7,8,9,10; ... and add the groups. In other words, "sum of the next n natural numbers". - Felice Russo
Number of rhombi in an n X n rhombus, if 'crossformed' rhombi are allowed. - Matti De Craene (Matti.DeCraene(AT)rug.ac.be), May 14 2000
Also the sum of the integers between T(n-1)+1 and T(n), the n-th triangular number (A000217). Sum of n-th row of A000027 regarded as a triangular array.
Unlike the cubes which have a similar definition, it is possible for 2 terms of this sequence to sum to a third. E.g., a(36) + a(37) = 23346 + 25345 = 48691 = a(46). Might be called 2nd-order triangular numbers, thus defining 3rd-order triangular numbers (A027441) as n(n^3+1)/2, etc. - Jon Perry, Jan 14 2004
Also as a(n)=(1/6)*(3*n^3+3*n), n > 0: structured trigonal diamond numbers (vertex structure 4) (cf. A000330 = alternate vertex; A000447 = structured diamonds; A100145 for more on structured numbers). - James A. Record (james.record(AT)gmail.com), Nov 07 2004
The sequence M(n) of magic constants for n X n magic squares (numbered 1 through n^2) from n=3 begins M(n) = 15, 34, 65, 111, 175, 260, ... - Lekraj Beedassy, Apr 16 2005 [comment corrected by Colin Hall, Sep 11 2009]
The sequence Q(n) of magic constants for the n-queens problem in chess begins 0, 0, 0, 0, 34, 65, 111, 175, 260, ... - Paul Muljadi, Aug 23 2005
Alternate terms of A057587. - Jeremy Gardiner, Apr 10 2005
Also partial differences of A063488(n) = (2*n-1)*(n^2-n+2)/2. a(n) = A063488(n) - A063488(n-1) for n>1. - Alexander Adamchuk, Jun 03 2006
In an n X n grid of numbers from 1 to n^2, select -- in any manner -- one number from each row and column. Sum the selected numbers. The sum is independent of the choices and is equal to the n-th term of this sequence. - F.-J. Papp (fjpapp(AT)umich.edu), Jun 06 2006
Nonnegative X values of solutions to the equation (X-Y)^3 - (X+Y) = 0. To find Y values: b(n) = (n^3-n)/2. - Mohamed Bouhamida, May 16 2006
For the equation: m*(X-Y)^k - (X+Y) = 0 with X >= Y, k >= 2 and m is an odd number the X values are given by the sequence defined by a(n) = (m*n^k+n)/2. The Y values are given by the sequence defined by b(n) = (m*n^k-n)/2. - Mohamed Bouhamida, May 16 2006
If X is an n-set and Y a fixed 3-subset of X then a(n-3) is equal to the number of 4-subsets of X intersecting Y. - Milan Janjic, Jul 30 2007
(m*(2n)^k+n, m*(2n)^k-n) solves the Diophantine equation: 2m*(X-Y)^k - (X+Y) = 0 with X >= Y, k >= 2 where m is a positive integer. - Mohamed Bouhamida, Oct 02 2007
Also c^(1/2) in a^(1/2) + b^(1/2) = c^(1/2) such that a^2 + b = c. - Cino Hilliard, Feb 09 2008
a(n) = n*A000217(n) - Sum_{i=0..n-1} A001477(i). - Bruno Berselli, Apr 25 2010
a(n) is the number of triples (w,x,y) having all terms in {0,...,n} such that at least one of these inequalities fails: x+y < w, y+w < x, w+x < y. - Clark Kimberling, Jun 14 2012
Sum of n-th row of the triangle in A209297. - Reinhard Zumkeller, Jan 19 2013
The sequence starting with "1" is the third partial sum of (1, 2, 3, 3, 3, ...). - Gary W. Adamson, Sep 11 2015
a(n) is the largest eigenvalue of the matrix returned by the MATLAB command magic(n) for n > 0. - Altug Alkan, Nov 10 2015
a(n) is the number of triples (x,y,z) having all terms in {1,...,n} such that all these triangle inequalities are satisfied: x+y > z, y+z > x, z+x > y. - Heinz Dabrock, Jun 03 2016
Shares its digital root with the stella octangula numbers (A007588). See A267017. - Peter M. Chema, Aug 28 2016
Can be proved to be the number of nonnegative solutions of a system of three linear Diophantine equations for n >= 0 even: 2*a_{11} + a_{12} + a_{13} = n, 2*a_{22} + a_{12} + a_{23} = n and 2*a_{33} + a_{13} + a_{23} = n. The number of solutions is f(n) = (1/16)*(n+2)*(n^2 + 4n + 8) and a(n) = n*(n^2 + 1)/2 is obtained by remapping n -> 2*n-2. - Kamil Bradler, Oct 11 2016
For n > 0, a(n) coincides with the trace of the matrix formed by writing the numbers 1...n^2 back and forth along the antidiagonals (proved, see A078475 for the examples of matrix). - Stefano Spezia, Aug 07 2018
The trace of an n X n square matrix where the elements are entered on the ascending antidiagonals. The determinant is A069480. - Robert G. Wilson v, Aug 07 2018
Bisections are A317297 and A005917. - Omar E. Pol, Sep 01 2018
Number of achiral colorings of the vertices (or faces) of a regular tetrahedron with n available colors. An achiral coloring is identical to its reflection. - Robert A. Russell, Jan 22 2020
a(n) is the n-th centered triangular pyramidal number. - Lechoslaw Ratajczak, Nov 02 2021
a(n) is the number of words of length n defined on 4 letters {b,c,d,e} that contain one or no b's, one c or two d's, and any number of e's. For example, a(3) = 15 since the words are (number of permutations in parentheses): bce (6), bdd (3), cee (3), and dde (3). - Enrique Navarrete, Jun 21 2025

Examples

			G.f. = x + 5*x^2 + 15*x^3 + 34*x^4 + 65*x^5 + 111*x^6 + 175*x^7 + 260*x^8 + ...
For a(2)=5, the five tetrahedra have faces AAAA, AAAB, AABB, ABBB, and BBBB with colors A and B. - _Robert A. Russell_, Jan 31 2020
		

References

  • J.-M. De Koninck, Ces nombres qui nous fascinent, Entry 15, p. 5, Ellipses, Paris 2008.
  • F.-J. Papp, Colloquium Talk, Department of Mathematics, University of Michigan-Dearborn, March 6, 2005.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A000330, A000537, A066886, A057587, A027480, A002817 (partial sums).
Cf. A000578 (cubes).
(1/12)*t*(n^3-n)+n for t = 2, 4, 6, ... gives A004006, A006527, this sequence, A005900, A004068, A000578, A004126, A000447, A004188, A004466, A004467, A007588, A062025, A063521, A063522, A063523.
Antidiagonal sums of array in A000027. Row sums of the triangular view of A000027.
Cf. A063488 (sum of two consecutive terms), A005917 (bisection), A317297 (bisection).
Cf. A105374 / 8.
Tetrahedron colorings: A006008 (oriented), A000332(n+3) (unoriented), A000332 (chiral), A037270 (edges).
Other polyhedron colorings: A337898 (cube faces, octahedron vertices), A337897 (octahedron faces, cube vertices), A337962 (dodecahedron faces, icosahedron vertices), A337960 (icosahedron faces, dodecahedron vertices).
Row 3 of A325001 (simplex vertices and facets) and A337886 (simplex faces and peaks).

Programs

  • GAP
    a_n:=List([0..nmax], n->n*(n^2 + 1)/2); # Stefano Spezia, Aug 12 2018
    
  • Haskell
    a006003 n = n * (n ^ 2 + 1) `div` 2
    a006003_list = scanl (+) 0 a005448_list
    -- Reinhard Zumkeller, Jun 20 2013
    
  • MATLAB
    % Also works with FreeMat.
    for(n=0:nmax); tm=n*(n^2 + 1)/2; fprintf('%d\t%0.f\n', n, tm); end
    % Stefano Spezia, Aug 12 2018
    
  • Magma
    [n*(n^2 + 1)/2 : n in [0..50]]; // Wesley Ivan Hurt, Sep 11 2015
    
  • Magma
    [Binomial(n,3)+Binomial(n-1,3)+Binomial(n-2,3): n in [2..60]]; // Vincenzo Librandi, Sep 12 2015
    
  • Mathematica
    Table[ n(n^2 + 1)/2, {n, 0, 45}]
    LinearRecurrence[{4,-6,4,-1}, {0,1,5,15},50] (* Harvey P. Dale, May 16 2012 *)
    CoefficientList[Series[x (1 + x + x^2)/(x - 1)^4, {x, 0, 45}], x] (* Vincenzo Librandi, Sep 12 2015 *)
    With[{n=50},Total/@TakeList[Range[(n(n^2+1))/2],Range[0,n]]] (* Requires Mathematica version 11 or later *) (* Harvey P. Dale, Nov 28 2017 *)
  • Maxima
    a(n):=n*(n^2 + 1)/2$ makelist(a(n), n, 0, nmax); /* Stefano Spezia, Aug 12 2018 */
    
  • PARI
    {a(n) = n * (n^2 + 1) / 2}; /* Michael Somos, Dec 24 2011 */
    
  • PARI
    concat(0, Vec(x*(1+x+x^2)/(x-1)^4 + O(x^20))) \\ Felix Fröhlich, Oct 11 2016
    
  • Python
    def A006003(n): return n*(n**2+1)>>1 # Chai Wah Wu, Mar 25 2024

Formula

a(n) = binomial(n+2, 3) + binomial(n+1, 3) + binomial(n, 3). [corrected by Michel Marcus, Jan 22 2020]
G.f.: x*(1+x+x^2)/(x-1)^4. - Floor van Lamoen, Feb 11 2002
Partial sums of A005448. - Jonathan Vos Post, Mar 16 2006
Binomial transform of [1, 4, 6, 3, 0, 0, 0, ...] = (1, 5, 15, 34, 65, ...). - Gary W. Adamson, Aug 10 2007
a(n) = -a(-n) for all n in Z. - Michael Somos, Dec 24 2011
a(n) = Sum_{k = 1..n} A(k-1, k-1-n) where A(i, j) = i^2 + i*j + j^2 + i + j + 1. - Michael Somos, Jan 02 2012
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4), with a(0)=0, a(1)=1, a(2)=5, a(3)=15. - Harvey P. Dale, May 16 2012
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) + 3. - Ant King, Jun 13 2012
a(n) = A000217(n) + n*A000217(n-1). - Bruno Berselli, Jun 07 2013
a(n) = A057145(n+3,n). - Luciano Ancora, Apr 10 2015
E.g.f.: (1/2)*(2*x + 3*x^2 + x^3)*exp(x). - G. C. Greubel, Dec 18 2015; corrected by Ilya Gutkovskiy, Oct 12 2016
a(n) = T(n) + T(n-1) + T(n-2), where T means the tetrahedral numbers, A000292. - Heinz Dabrock, Jun 03 2016
From Ilya Gutkovskiy, Oct 11 2016: (Start)
Convolution of A001477 and A008486.
Convolution of A000217 and A158799.
Sum_{n>=1} 1/a(n) = H(-i) + H(i) = 1.343731971048019675756781..., where H(k) is the harmonic number, i is the imaginary unit. (End)
a(n) = A000578(n) - A135503(n). - Miquel Cerda, Dec 25 2016
Euler transform of length 3 sequence [5, 0, -1]. - Michael Somos, Dec 25 2016
a(n) = A037270(n)/n for n > 0. - Kritsada Moomuang, Dec 15 2018
a(n) = 3*A000292(n-1) + n. - Bruce J. Nicholson, Nov 23 2019
a(n) = A011863(n) - A011863(n-2). - Bruce J. Nicholson, Dec 22 2019
From Robert A. Russell, Jan 22 2020: (Start)
a(n) = C(n,1) + 3*C(n,2) + 3*C(n,3), where the coefficient of C(n,k) is the number of tetrahedron colorings using exactly k colors.
a(n) = C(n+3,4) - C(n,4).
a(n) = 2*A000332(n+3) - A006008(n) = A006008(n) - 2*A000332(n) = A000332(n+3) - A000332(n).
a(n) = A325001(3,n). (End)
From Amiram Eldar, Aug 21 2023: (Start)
Sum_{n>=1} 1/a(n) = 2 * (A248177 + A001620).
Product_{n>=2} (1 - 1/a(n)) = cosh(sqrt(7)*Pi/2)*cosech(Pi)/4.
Product_{n>=1} (1 + 1/a(n)) = cosh(sqrt(7)*Pi/2)*cosech(Pi). (End)

Extensions

Better description from Albert Rich (Albert_Rich(AT)msn.com), Mar 1997

A005917 Rhombic dodecahedral numbers: a(n) = n^4 - (n - 1)^4.

Original entry on oeis.org

1, 15, 65, 175, 369, 671, 1105, 1695, 2465, 3439, 4641, 6095, 7825, 9855, 12209, 14911, 17985, 21455, 25345, 29679, 34481, 39775, 45585, 51935, 58849, 66351, 74465, 83215, 92625, 102719, 113521, 125055, 137345, 150415, 164289, 178991
Offset: 1

Views

Author

Keywords

Comments

Final digits of a(n), i.e., a(n) mod 10, are repeated periodically with period of length 5 {1,5,5,5,9}. There is a symmetry in this list since the sum of two numbers equally distant from the ends is equal to 10 = 1 + 9 = 5 + 5 = 2*5. Last two digits of a(n), i.e., a(n) mod 100, are repeated periodically with period of length 50. - Alexander Adamchuk, Aug 11 2006
a(n) = VarScheme(n,2) in the scheme displayed in A128195. - Peter Luschny, Feb 26 2007
If Y is a 3-subset of a 2n-set X then, for n >= 2, a(n-2) is the number of 4-subsets of X intersecting Y. - Milan Janjic, Nov 18 2007
The numbers are the constant number found in magic squares of order n, where n is an odd number, see the comment in A006003. A Magic Square of side 1 is 1; 3 is 15; 5 is 65 and so on. - David Quentin Dauthier, Nov 07 2008
Two times the area of the triangle with vertices at (0,0), ((n - 1)^2, n^2), and (n^2, (n - 1)^2). - J. M. Bergot, Jun 25 2013
Bisection of A006003. - Omar E. Pol, Sep 01 2018
Construct an array M with M(0,n) = 2*n^2 + 4*n + 1 = A056220(n+1), M(n,0) = 2*n^2 + 1 = A058331(n) and M(n,n) = 2*n*(n+1) + 1 = A001844(n). Row(n) begins with all the increasing odd numbers from A058331(n) to A001844(n) and column(n) begins with all the decreasing odd numbers from A056220(n+1) to A001844(n). The sum of the terms in row(n) plus those in column(n) minus M(n,n) equals a(n+1). The first five rows of array M are [1, 7, 17, 31, 49, ...]; [3, 5, 15, 29, 47, ...]; [9, 11, 13, 27, 45, ...]; [19, 21, 23, 25, 43, ...]; [33, 35, 37, 39, 41, ...]. - J. M. Bergot, Jul 16 2013 [This contribution was moved here from A047926 by Petros Hadjicostas, Mar 08 2021.]
For n>=2, these are the primitive sides s of squares of type 2 described in A344332. - Bernard Schott, Jun 04 2021
(a(n) + 1) / 2 = A212133(n) is the number of cells in the n-th rhombic-dodecahedral polycube. - George Sicherman, Jan 21 2024

References

  • J. H. Conway and R. K. Guy, The Book of Numbers, p. 53.
  • E. Deza and M. M. Deza, Figurate Numbers, World Scientific Publishing, 2012, pp. 123-124.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

(1/12)*t*(2*n^3 - 3*n^2 + n) + 2*n - 1 for t = 2, 4, 6, ... gives A049480, A005894, A063488, A001845, A063489, A005898, A063490, A057813, A063491, A005902, A063492, A063493, A063494, A063495, A063496.
Column k=3 of A047969.

Programs

  • Haskell
    a005917 n = a005917_list !! (n-1)
    a005917_list = map sum $ f 1 [1, 3 ..] where
       f x ws = us : f (x + 2) vs where (us, vs) = splitAt x ws
    -- Reinhard Zumkeller, Nov 13 2014
    
  • Magma
    [n^4 - (n-1)^4: n in [1..50]]; // Vincenzo Librandi, Aug 01 2011
    
  • Mathematica
    Table[n^4-(n-1)^4,{n,40}]  (* Harvey P. Dale, Apr 01 2011 *)
    #[[2]]-#[[1]]&/@Partition[Range[0,40]^4,2,1] (* More efficient than the above Mathematica program because it only has to calculate each 4th power once *) (* Harvey P. Dale, Feb 07 2015 *)
    Differences[Range[0,40]^4] (* Harvey P. Dale, Aug 11 2023 *)
  • PARI
    a(n)=n^4-(n-1)^4 \\ Charles R Greathouse IV, Jul 31 2011
    
  • Python
    A005917_list, m = [], [24, -12, 2, 1]
    for _ in range(10**2):
        A005917_list.append(m[-1])
        for i in range(3):
            m[i+1] += m[i] # Chai Wah Wu, Dec 15 2015

Formula

a(n) = (2*n - 1)*(2*n^2 - 2*n + 1).
Sum_{i=1..n} a(i) = n^4 = A000583(n). First differences of A000583.
G.f.: x*(1+x)*(1+10*x+x^2)/(1-x)^4. - Simon Plouffe in his 1992 dissertation
More generally, g.f. for n^m - (n - 1)^m is Euler(m, x)/(1 - x)^m, where Euler(m, x) is Eulerian polynomial of degree m (cf. A008292). E.g.f.: x*(exp(y/(1 - x)) - exp(x*y/(1 - x)))/(exp(x*y/(1 - x))-x*exp(y/(1 - x))). - Vladeta Jovovic, May 08 2002
a(n) = sum of the next (2*n - 1) odd numbers; i.e., group the odd numbers so that the n-th group contains (2*n - 1) elements like this: (1), (3, 5, 7), (9, 11, 13, 15, 17), (19, 21, 23, 25, 27, 29, 31), ... E.g., a(3) = 65 because 9 + 11 + 13 + 15 + 17 = 65. - Xavier Acloque, Oct 11 2003
a(n) = 2*n - 1 + 12*Sum_{i = 1..n} (i - 1)^2. - Xavier Acloque, Oct 16 2003
a(n) = (4*binomial(n,2) + 1)*sqrt(8*binomial(n,2) + 1). - Paul Barry, Mar 14 2004
Binomial transform of [1, 14, 36, 24, 0, 0, 0, ...], if the offset is 0. - Gary W. Adamson, Dec 20 2007
Sum_{i=1..n-1}(a(i) + a(i+1)) = 8*Sum_{i=1..n}(i^3 + i) = 16*A002817(n-1) for n > 1. - Bruno Berselli, Mar 04 2011
a(n+1) = a(n) + 2*(6*n^2 + 1) = a(n) + A005914(n). - Vincenzo Librandi, Mar 16 2011
a(n) = -a(-n+1). a(n) = (1/6)*(A181475(n) - A181475(n-2)). - Bruno Berselli, Sep 26 2011
a(n) = A045975(2*n-1,n) = A204558(2*n-1)/(2*n - 1). - Reinhard Zumkeller, Jan 18 2012
a(n+1) = Sum_{k=0..2*n+1} (A176850(n,k) - A176850(n-1,k))*(2*k + 1), n >= 1. - L. Edson Jeffery, Nov 02 2012
a(n) = A005408(n-1) * A001844(n-1) = (2*(n - 1) + 1) * (2*(n - 1)*n + 1) = A000290(n-1)*12 + 2 + a(n-1). - Bruce J. Nicholson, May 17 2017
a(n) = A007588(n) + A007588(n-1) = A000292(2n-1) + A000292(2n-2) + A000292(2n-3) = A002817(2n-1) - A002817(2n-2). - Bruce J. Nicholson, Oct 22 2017
a(n) = A005898(n-1) + 6*A000330(n-1) (cf. Deza, Deza, 2012, p. 123, Section 2.6.2). - Felix Fröhlich, Oct 01 2018
a(n) = A300758(n-1) + A005408(n-1). - Bruce J. Nicholson, Apr 23 2020
G.f.: polylog(-4, x)*(1-x)/x. See the Simon Plouffe formula above (with expanded numerator), and the g.f. of the rows of A008292 by Vladeta Jovovic, Sep 02 2002. - Wolfdieter Lang, May 10 2021

A001296 4-dimensional pyramidal numbers: a(n) = (3*n+1)*binomial(n+2, 3)/4. Also Stirling2(n+2, n).

Original entry on oeis.org

0, 1, 7, 25, 65, 140, 266, 462, 750, 1155, 1705, 2431, 3367, 4550, 6020, 7820, 9996, 12597, 15675, 19285, 23485, 28336, 33902, 40250, 47450, 55575, 64701, 74907, 86275, 98890, 112840, 128216, 145112, 163625, 183855, 205905, 229881, 255892, 284050, 314470
Offset: 0

Views

Author

Keywords

Comments

Permutations avoiding 12-3 that contain the pattern 31-2 exactly once.
Kekulé numbers for certain benzenoids. - Emeric Deutsch, Nov 18 2005
Partial sums of A002411. - Jonathan Vos Post, Mar 16 2006
If Y is a 3-subset of an n-set X then, for n>=6, a(n-5) is the number of 6-subsets of X having at least two elements in common with Y. - Milan Janjic, Nov 23 2007
Starting with 1 = binomial transform of [1, 6, 12, 10, 3, 0, 0, 0, ...]. Equals row sums of triangle A143037. - Gary W. Adamson, Jul 18 2008
Rephrasing the Perry formula of 2003: a(n) is the sum of all products of all two numbers less than or equal to n, including the squares. Example: for n=3 the sum of these products is 1*1 + 1*2 + 1*3 + 2*2 + 2*3 + 3*3 = 25. - J. M. Bergot, Jul 16 2011
Half of the partial sums of A011379. [Jolley, Summation of Series, Dover (1961), page 12 eq (66).] - R. J. Mathar, Oct 03 2011
Also the number of (w,x,y,z) with all terms in {1,...,n+1} and w < x >= y > z (see A211795). - Clark Kimberling, May 19 2012
Convolution of A000027 with A000326. - Bruno Berselli, Dec 06 2012
This sequence is related to A000292 by a(n) = n*A000292(n) - Sum_{i=0..n-1} A000292(i) for n>0. - Bruno Berselli, Nov 23 2017
a(n-2) is the maximum number of intersections made from the perpendicular bisectors of all pair combinations of n points. - Ian Tam, Dec 22 2020

Examples

			G.f. = x + 7*x^2 + 25*x^3 + 65*x^4 + 140*x^5 + 266*x^6 + 462*x^7 + 750*x^8 + 1155*x^9 + ...
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 835.
  • A. H. Beiler, Recreations in the Theory of Numbers, Dover, NY, 1964, p. 195.
  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 227, #16.
  • S. J. Cyvin and I. Gutman, Kekulé structures in benzenoid hydrocarbons, Lecture Notes in Chemistry, No. 46, Springer, New York, 1988 (see p. 166, Table 10.4/I/3).
  • F. N. David, M. G. Kendall and D. E. Barton, Symmetric Function and Allied Tables, Cambridge, 1966, p. 223.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

a(n)=f(n, 2) where f is given in A034261.
a(n)= A093560(n+3, 4), (3, 1)-Pascal column.
Cf. A220212 for a list of sequences produced by the convolution of the natural numbers with the k-gonal numbers.
Cf. similar sequences listed in A241765 and A254142.
Cf. A000914.

Programs

  • Magma
    /* A000027 convolved with A000326: */ A000326:=func; [&+[(n-i+1)*A000326(i): i in [0..n]]: n in [0..40]]; // Bruno Berselli, Dec 06 2012
    
  • Magma
    [(3*n+1)*Binomial(n+2,3)/4: n in [0..40]]; // Vincenzo Librandi, Jul 30 2014
  • Maple
    A001296:=-(1+2*z)/(z-1)**5; # Simon Plouffe in his 1992 dissertation for sequence without the leading zero
  • Mathematica
    Table[n*(1+n)*(2+n)*(1+3*n)/24, {n, 0, 100}]
    CoefficientList[Series[x (1 + 2 x)/(1 - x)^5, {x, 0, 40}], x] (* Vincenzo Librandi, Jul 30 2014 *)
    Table[StirlingS2[n+2, n], {n, 0, 40}] (* Jean-François Alcover, Jun 24 2015 *)
    Table[ListCorrelate[Accumulate[Range[n]],Range[n]],{n,0,40}]//Flatten (* or *) LinearRecurrence[{5,-10,10,-5,1},{0,1,7,25,65},40] (* Harvey P. Dale, Aug 14 2017 *)
  • PARI
    t(n)=n*(n+1)/2
    for(i=1,30,print1(","sum(j=1,i,j*t(j))))
    
  • PARI
    {a(n) = n * (n+1) * (n+2) * (3*n+1) / 24}; /* Michael Somos, Sep 04 2017 */
    
  • Sage
    [stirling_number2(n+2,n) for n in range(0,38)] # Zerinvary Lajos, Mar 14 2009
    

Formula

a(n) = n*(1+n)*(2+n)*(1+3*n)/24. - T. D. Noe, Jan 21 2008
G.f.: x*(1+2*x)/(1-x)^5. - Paul Barry, Jul 23 2003
a(n) = Sum_{j=0..n} j*A000217(j). - Jon Perry, Jul 28 2003
E.g.f. with offset -1: exp(x)*(1*(x^2)/2! + 4*(x^3)/3! + 3*(x^4)/4!). For the coefficients [1, 4, 3] see triangle A112493.
E.g.f. x*exp(x)*(24 + 60*x + 28*x^2 + 3*x^3)/24 (above e.g.f. differentiated).
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4) + 3. - Kieren MacMillan, Sep 29 2008
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5). - Jaume Oliver Lafont, Nov 23 2008
O.g.f. is D^2(x/(1-x)) = D^3(x), where D is the operator x/(1-x)*d/dx. - Peter Bala, Jul 02 2012
a(n) = A153978(n)/2. - J. M. Bergot, Aug 09 2013
a(n) = A002817(n) + A000292(n-1). - J. M. Bergot, Aug 29 2013; [corrected by Cyril Damamme, Feb 26 2018]
a(n) = A000914(n+1) - 2 * A000330(n+1). - Antal Pinter, Dec 31 2015
a(n) = A080852(3,n-1). - R. J. Mathar, Jul 28 2016
a(n) = 1*(1+2+...+n) + 2*(2+3+...+n) + ... + n*n. For example, a(6) = 266 = 1(1+2+3+4+5+6) + 2*(2+3+4+5+6) + 3*(3+4+5+6) + 4*(4+5+6) + 5*(5+6) + 6*(6).- J. M. Bergot, Apr 20 2017
a(n) = A000914(-2-n) for all n in Z. - Michael Somos, Sep 04 2017
a(n) = A000292(n) + A050534(n+1). - Cyril Damamme, Feb 26 2018
From Amiram Eldar, Jul 02 2020: (Start)
Sum_{n>=1} 1/a(n) = (6/5) * (47 - 3*sqrt(3)*Pi - 27*log(3)).
Sum_{n>=1} (-1)^(n+1)/a(n) = (6/5) * (16*log(2) + 6*sqrt(3)*Pi - 43). (End)

A050534 Tritriangular numbers: a(n) = binomial(binomial(n,2),2) = n*(n+1)*(n-1)*(n-2)/8.

Original entry on oeis.org

0, 0, 0, 3, 15, 45, 105, 210, 378, 630, 990, 1485, 2145, 3003, 4095, 5460, 7140, 9180, 11628, 14535, 17955, 21945, 26565, 31878, 37950, 44850, 52650, 61425, 71253, 82215, 94395, 107880, 122760, 139128, 157080, 176715, 198135, 221445, 246753, 274170, 303810, 335790
Offset: 0

Views

Author

Klaus Strassburger (strass(AT)ddfi.uni-duesseldorf.de), Dec 29 1999

Keywords

Comments

"There are n straight lines in a plane, no two of which are parallel and no three of which are concurrent. Their points of intersection being joined, show that the number of new lines drawn is (1/8)n(n-1)(n-2)(n-3)." (Schmall, 1915).
Several different versions of this sequence are possible, beginning with either one, two or three 0's.
If Y is a 3-subset of an n-set X then, for n>=6, a(n-4) is the number of (n-6)-subsets of X which have exactly one element in common with Y. - Milan Janjic, Dec 28 2007
Number of distinct ways to select 2 pairs of objects from a set of n+1 objects, when order doesn't matter. For example, with n = 3 (4 objects), the 3 possibilities are (12)(34), (13)(24), and (14)(23). - Brian Parsonnet, Jan 03 2012
Partial sums of A027480. - J. M. Bergot, Jul 09 2013
For the set {1,2,...,n}, the sum of the 2 smallest elements of all subsets with 3 elements is a(n) (see Bulut et al. link). - Serhat Bulut, Jan 20 2015
a(n) is also the number of subgroups of S_{n+1} (the symmetric group on n+1 elements) that are isomorphic to D_4 (the dihedral group of order 8). - Geoffrey Critzer, Sep 13 2015
a(n) is the coefficient of x1^(n-3)*x2^2 in exponential Bell polynomial B_{n+1}(x1,x2,...) (number of ways to select 2 pairs among n+1 objects, see above), hence its link with A000292 and A001296 (see formula). - Cyril Damamme, Feb 26 2018
Also the number of 4-cycles in the complete graph K_{n+1}. - Eric W. Weisstein, Mar 13 2018
Number of chiral pairs of colorings of the 4 edges or vertices of a square using n or fewer colors. Each member of a chiral pair is a reflection, but not a rotation, of the other. - Robert A. Russell, Oct 20 2020

Examples

			For a(3)=3, the chiral pairs of square colorings are AABC-AACB, ABBC-ACBB, and ABCC-ACCB. - _Robert A. Russell_, Oct 20 2020
		

References

  • Arthur T. Benjamin and Jennifer Quinn, Proofs that really count: the art of combinatorial proof, M.A.A. 2003, id. 154.
  • Louis Comtet, Advanced Combinatorics, Reidel, 1974, Problem 1, page 72.
  • Richard P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Problem 5.5, case k=2.

Crossrefs

Cf. A000217, A000332, A033487, A107394, A034827, A210569, Second column of triangle A001498.
Cf. similar sequences listed in A241765.
Cf. (square colorings) A006528 (oriented), A002817 (unoriented), A002411 (achiral),
Row 2 of A325006 (orthoplex facets, orthotope vertices) and A337409 (orthotope edges, orthoplex ridges).
Row 4 of A293496 (cycles of n colors using k or fewer colors).

Programs

  • GAP
    List([0..40],n->3*Binomial(n+1,4)); # Muniru A Asiru, Mar 20 2018
  • Magma
    [3*Binomial(n+1, 4): n in [0..40]]; // Vincenzo Librandi, Feb 14 2015
    
  • Maple
    [seq(binomial(n+1,4)*3,n=0..40)]; # Zerinvary Lajos, Jul 18 2006
  • Mathematica
    Table[Binomial[Binomial[n, 2], 2], {n, 0, 50}] (* Stefan Steinerberger, Apr 08 2006 *)
    LinearRecurrence[{5, -10, 10, -5, 1}, {0, 0, 0, 3, 15}, 40] (* Harvey P. Dale, Dec 14 2011 *)
    (* Start from Eric W. Weisstein, Mar 13 2018 *)
    Binomial[Binomial[Range[0, 20], 2], 2]
    Nest[Binomial[#, 2] &, Range[0, 20], 2]
    Nest[PolygonalNumber[# - 1] &, Range[0, 20], 2]
    CoefficientList[Series[3 x^3/(1 - x)^5, {x, 0, 20}], x]
    (* End *)
  • PARI
    a(n)=n*(n+1)*(n-1)*(n-2)/8 \\ Charles R Greathouse IV, Nov 20 2012
    
  • PARI
    x='x+O('x^100); concat([0, 0, 0], Vec(3*x^3/(1-x)^5)) \\ Altug Alkan, Nov 01 2015
    
  • Sage
    [(binomial(binomial(n,2),2)) for n in range(0, 39)] # Zerinvary Lajos, Nov 30 2009
    

Formula

a(n) = 3*binomial(n+1, 4) = 3*A000332(n+1).
From Vladeta Jovovic, May 03 2002: (Start)
Recurrence: a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5).
G.f.: 3*x^3 / (1-x)^5. (End)
a(n+1) = T(T(n)) - T(n); a(n+2) = T(T(n)+n) where T is A000217. - Jon Perry, Jun 11 2003
a(n+1) = T(n)^2 - T(T(n)) where T is A000217. - Jon Perry, Jul 23 2003
a(n) = T(T(n-1)-1) where T is A000217. - Jon E. Schoenfield, Dec 14 2014
a(n) = 3*C(n, 4) + 3*C(n, 3), for n>3.
From Alexander Adamchuk, Apr 11 2006: (Start)
a(n) = (1/2)*Sum_{k=1..n} k*(k-1)*(k-2).
a(n) = A033487(n-2)/2, n>1.
a(n) = C(n-1,2)*C(n+1,2)/2, n>2. (End)
a(n) = A052762(n+1)/8. - Zerinvary Lajos, Apr 26 2007
a(n) = (4x^4 - 4x^3 - x^2 + x)/2 where x = floor(n/2)*(-1)^n for n >= 0. - William A. Tedeschi, Aug 24 2010
E.g.f.: x^3*exp(x)*(4+x)/8. - Robert Israel, Nov 01 2015
a(n) = Sum_{k=1..n} Sum_{i=1..k} (n-i-1)*(n-k). - Wesley Ivan Hurt, Sep 12 2017
a(n) = A001296(n-1) - A000292(n-1). - Cyril Damamme, Feb 26 2018
Sum_{n>=3} 1/a(n) = 4/9. - Vaclav Kotesovec, May 01 2018
a(n) = A006528(n) - A002817(n) = (A006528(n) - A002411(n)) / 2 = A002817(n) - A002411(n). - Robert A. Russell, Oct 20 2020
Sum_{n>=3} (-1)^(n+1)/a(n) = 32*log(2)/3 - 64/9. - Amiram Eldar, Jan 09 2022
a(n) = Sum_{k=1..2} (-1)^(k+1)*binomial(n,2-k)*binomial(n,2+k). - Gerry Martens, Oct 09 2022

Extensions

Additional comments from Antreas P. Hatzipolakis, May 03 2002

A002721 Number of 3 X 3 X 3 arrays M_ijk (1 <= i,j,k <= 3) with entries satisfying 0 <= M_ijk <= n and all line sums equal to n.

Original entry on oeis.org

1, 12, 132, 847, 3921, 14506, 45402, 124707, 308407, 699766, 1477686, 2936517, 5540107, 9993192, 17333536, 29048541, 47220357, 74703832, 115341952, 174223731, 257989821, 375191422, 536708382, 756232687, 1050823851, 1441543026, 1954172962
Offset: 0

Views

Author

Keywords

Comments

Number of 3 X 3 X 3 arrays M_ijk (1 <= i,j,k <= 3) satisfying Sum_i M_ijk = n (all j,k), Sum_j M_ijk = n (all i,k), Sum_k M_ijk = n (all i,j) and 0 <= M_ijk <= n.
The constraints imply that Sum_{i,j,k} M_ijk = 9n.
This is a "magic cube" in Stanley's notation (see Stanley references). - N. J. A. Sloane, Jul 07 2014

Examples

			Comment from _N. J. A. Sloane_, Jul 06 2014: (Start)
Here are four of the twelve arrays showing that a(1) = 12 (each row shows top face, middle face, bottom face):
 -----------
 100 010 001
 010 001 100
 001 100 010
 -----------
 100 001 010
 010 100 001
 001 010 100
 -----------
 001 010 100
 010 100 001
 100 001 010
 -----------
 001 100 010
 010 001 100
 100 010 001
 -----------
Each face must show one of the six 3 X 3 permutation matrices. There are 6 choices for the top face, and for each of these there are two choices for the second face and the third face is then determined, for a total of a(1)=6*2*1=12. (End)
		

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • R. P. Stanley, Enumerative Combinatorics, Wadsworth, Vol. 1, Second Edition, Section 4.6.1.

Crossrefs

See A001496 for the two-dimensional 4 X 4 analog. Cf. also A002817.

Programs

  • Magma
    [(1/4032)*n*(n+1)*(n*(n+1)*(n*(n+1)*(31*n*(n+1)+1004)+6820)+4272)+1 : n in [0..30] ]; // Wesley Ivan Hurt, Jul 01 2014
  • Maple
    A002721:=n->(1/4032)*n*(n+1)*(n*(n+1)*(n*(n+1)*(31*n*(n+1)+1004)+6820)+ 4272)+1: seq(A002721(n), n=0..30); # Wesley Ivan Hurt, Jul 01 2014
  • Mathematica
    CoefficientList[Series[-(x^8 + 3*x^7 + 60*x^6 + 7*x^5 + 168*x^4 + 7*x^3 + 60*x^2 + 3*x + 1)/(x - 1)^9, {x, 0, 30}], x] (* Wesley Ivan Hurt, Jul 01 2014 *)
  • PARI
    Vec(-(x^8+3*x^7+60*x^6+7*x^5+168*x^4+7*x^3+60*x^2+3*x+1)/(x-1)^9 + O(x^100)) \\ Colin Barker, Jul 01 2014
    

Formula

a(n) = (1/4032) * m * (m * (m * (31 * m + 1004) + 6820) + 4272) + 1, where m = n*(n+1) (from the Bell reference). - Sean A. Irvine, Jul 01 2014
G.f.: -(x^8+3*x^7+60*x^6+7*x^5+168*x^4+7*x^3+60*x^2+3*x+1) / (x-1)^9. - Colin Barker, Jul 01 2014

Extensions

More terms from Sean A. Irvine, Jul 01 2014
Edited by N. J. A. Sloane, Jul 06 2014

A257493 Number A(n,k) of n X n nonnegative integer matrices with all row and column sums equal to k; square array A(n,k), n >= 0, k >= 0, read by antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 6, 1, 1, 1, 4, 21, 24, 1, 1, 1, 5, 55, 282, 120, 1, 1, 1, 6, 120, 2008, 6210, 720, 1, 1, 1, 7, 231, 10147, 153040, 202410, 5040, 1, 1, 1, 8, 406, 40176, 2224955, 20933840, 9135630, 40320, 1, 1, 1, 9, 666, 132724, 22069251, 1047649905, 4662857360, 545007960, 362880, 1
Offset: 0

Views

Author

Alois P. Heinz, Apr 26 2015

Keywords

Comments

Also the number of ordered factorizations of m^k into n factors, where m is a product of exactly n distinct primes and each factor is a product of k primes (counted with multiplicity). A(2,2) = 3: (2*3)^2 = 36 = 4*9 = 6*6 = 9*4.

Examples

			Square array A(n,k) begins:
  1,   1,      1,        1,          1,           1,            1, ...
  1,   1,      1,        1,          1,           1,            1, ...
  1,   2,      3,        4,          5,           6,            7, ...
  1,   6,     21,       55,        120,         231,          406, ...
  1,  24,    282,     2008,      10147,       40176,       132724, ...
  1, 120,   6210,   153040,    2224955,    22069251,    164176640, ...
  1, 720, 202410, 20933840, 1047649905, 30767936616, 602351808741, ...
		

Crossrefs

Rows n=0+1, 2-9 give: A000012, A000027(k+1), A002817(k+1), A001496, A003438, A003439, A008552, A160318, A160319.
Main diagonal gives A110058.
Cf. A257463 (unordered factorizations), A333733 (non-isomorphic matrices), A008300 (binary matrices).

Programs

  • Maple
    with(numtheory):
    b:= proc(n, k) option remember; `if`(n=1, 1, add(
          `if`(bigomega(d)=k, b(n/d, k), 0), d=divisors(n)))
        end:
    A:= (n, k)-> b(mul(ithprime(i), i=1..n)^k, k):
    seq(seq(A(n, d-n), n=0..d), d=0..8);
  • Mathematica
    b[n_, k_] := b[n, k] = If[n==1, 1, Sum[If[PrimeOmega[d]==k, b[n/d, k], 0], {d, Divisors[n]}]]; A[n_, k_] := b[Product[Prime[i], {i, 1, n}]^k, k]; Table[A[n, d-n], {d, 0, 10}, {n, 0, d}] // Flatten (* Jean-François Alcover, Feb 20 2016, after Alois P. Heinz *)
  • PARI
    T(n, k)={
      local(M=Map(Mat([n, 1])));
      my(acc(p, v)=my(z); mapput(M, p, if(mapisdefined(M, p, &z), z+v, v)));
      my(recurse(h, p, q, v, e) = if(!p, if(!e, acc(q, v)), my(i=poldegree(p), t=pollead(p)); self()(k, p-t*x^i, q+t*x^i, v, e); for(m=1, h-i, for(j=1, min(t, e\m), self()(if(j==t, k, i+m-1), p-j*x^i, q+j*x^(i+m), binomial(t, j)*v, e-j*m)))));
      for(r=1, n, my(src=Mat(M)); M=Map(); for(i=1, matsize(src)[1], recurse(k, src[i, 1], 0, src[i, 2], k))); vecsum(Mat(M)[, 2])
    } \\ Andrew Howroyd, Apr 04 2020
  • Sage
    bigomega = sloane.A001222
    @cached_function
    def b(n, k):
        if n == 1:
            return 1
        return sum(b(n//d, k) if bigomega(d) == k else 0 for d in n.divisors())
    def A(n, k):
        return b(prod(nth_prime(i) for i in (1..n))^k, k)
    [A(n, d-n) for d in (0..10) for n in (0..d)] # Freddy Barrera, Dec 27 2018, translated from Maple
    
  • Sage
    from sage.combinat.integer_matrices import IntegerMatrices
    [IntegerMatrices([d-n]*n, [d-n]*n).cardinality() for d in (0..10) for n in (0..d)] # Freddy Barrera, Dec 27 2018
    

A006000 a(n) = (n+1)*(n^2+n+2)/2; g.f.: (1 + 2*x^2) / (1 - x)^4.

Original entry on oeis.org

1, 4, 12, 28, 55, 96, 154, 232, 333, 460, 616, 804, 1027, 1288, 1590, 1936, 2329, 2772, 3268, 3820, 4431, 5104, 5842, 6648, 7525, 8476, 9504, 10612, 11803, 13080, 14446, 15904, 17457, 19108, 20860, 22716, 24679, 26752, 28938, 31240, 33661, 36204, 38872, 41668, 44595, 47656, 50854, 54192
Offset: 0

Views

Author

Keywords

Comments

Enumerates certain paraffins.
a(n) is the (n+1)st (n+3)-gonal number. - Floor van Lamoen, Oct 20 2001
Sum of n terms of an arithmetic progression with the first term 1 and the common difference n: a(1)=1, a(2) = 1+3, a(3) = 1+4+7, a(4) = 1+5+9+13, etc. - Amarnath Murthy, Mar 25 2004
This is identical to: first triangular number A000217, 2nd square number A000290, 3rd pentagonal number A000326, 4th hexagonal number A000384, 5th heptagonal number A000566, 6th octagonal number A000567, ..., (n+1)-th (n+3)-gonal number = main diagonal of rectangular array T(n,k) of polygonal numbers, by diagonals, referred to in A086271. - Jonathan Vos Post, Dec 19 2007
Also (n + 1)! times the determinant of the n X n matrix given by m(i,j) = (i+1)/i if i=j and otherwise 1. For example, (6 + 1)!*Det[{{2,1,1,1,1,1}, {1,3/2,1,1,1,1},{1,1,4/3,1,1,1}, {1,1,1,5/4,1,1}, {1,1,1,1,6/5,1}, {1,1,1,1,1,7/6}}] = 154 = a(6). - John M. Campbell, May 20 2011
a(n-1) = N_2(n), n>=1, is the number of 2-faces of n planes in generic position in three-dimensional space. See comment under A000125 for general arrangement. Comment to Arnold's problem 1990-11, see the Arnold reference, p. 506. - Wolfdieter Lang, May 27 2011
For n>2, a(n) is 2 * (average cycle weight of primitive Hamiltonian cycles on a simply weighted K_n) (see link). - Jon Perry, Nov 23 2014
a(n) is the partial sums of A104249. - J. M. Bergot, Dec 28 2014
Sum of the numbers in the 1st column of an n X n square array whose elements are the numbers from 1..n^2, listed in increasing order by rows. - Wesley Ivan Hurt, May 17 2021
From Enrique Navarrete, Mar 27 2023: (Start)
a(n) is the number of ordered set partitions of an (n+1)-set into 2 sets such that the first set has 0, 1, or 2 elements, the second set has no restrictions, and we choose an element from the second set. For n=4, the a(4) = 55 set partitions of [5] are the following (where the element selected from the second set is in parentheses):
{ }, {(1), 2, 3, 4, 5} (5 of these);
{1}, {(2), 3, 4, 5} (20 of these);
{1, 2}, {(3), 4, 5} (30 of these). (End)

References

  • V. I. Arnold (ed.), Arnold's Problems, Springer, 2004, comments on Problem 1990-11 (p. 75), pp. 503-510. Numbers N_2.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A000124.

Programs

Formula

a(n) = Sum_{j=1..n+1} (binomial(0,0*j) + binomial(n+1,2)). - Zerinvary Lajos, Jul 25 2006
a(n-1) = n + (n^3 - n^2)/2 = n + n*T(n-1) where T(n-1) is a triangular number, n >= 1. - William A. Tedeschi, Aug 22 2010
a(n) = A002817(n)*4/n for n > 0. - Jon Perry, Nov 21 2014
E.g.f.: (1 + x)*(2 + 4*x + x^2)*exp(x)/2. - Robert Israel, Nov 24 2014
a(n) = A057145(n+3,n+1). - R. J. Mathar, Jul 28 2016
a(n) = A000124(n) * (n+1). - Alois P. Heinz, Aug 31 2023
Showing 1-10 of 69 results. Next