Original entry on oeis.org
1, 5, 15, 45, 120, 331, 855, 2214, 5545, 13741, 33362, 80091, 189339, 442799, 1023192, 2340904, 5302061, 11902618, 26488454, 58479965, 128120214, 278680698, 602009786, 1292027222, 2755684669, 5842618668, 12317175320, 25825429276, 53865355154, 111786084504, 230867856903, 474585792077, 971209629993
Offset: 1
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- T. D. Noe, Table of n, a(n) for n=1..500
- A. O. L. Atkin, P. Bratley, I. G. McDonald and J. K. S. McKay, Some computations for m-dimensional partitions, Proc. Camb. Phil. Soc., 63 (1967), 1097-1100.
- A. O. L. Atkin, P. Bratley, I. G. McDonald and J. K. S. McKay, Some computations for m-dimensional partitions, Proc. Camb. Phil. Soc., 63 (1967), 1097-1100. [Annotated scanned copy]
- Srivatsan Balakrishnan, Suresh Govindarajan and Naveen S. Prabhakar, On the asymptotics of higher-dimensional partitions, arXiv:1105.6231 [cond-mat.stat-mech], 2011, p. 20.
- N. J. A. Sloane, Transforms
-
with(numtheory): etr:= proc(p) local b; b:=proc(n) option remember; local d,j; if n=0 then 1 else add(add(d*p(d), d=divisors(j)) *b(n-j), j=1..n)/n fi end end: a:= etr(n-> binomial(n+2,3)): seq(a(n), n=1..26); # Alois P. Heinz, Sep 08 2008
-
max = 33; f[x_] := Exp[ Sum[ x^k/(1-x^k)^4/k, {k, 1, max}]]; Drop[ CoefficientList[ Series[ f[x], {x, 0, max}], x], 1](* Jean-François Alcover, Nov 21 2011, after Joerg Arndt *)
nmax=50; Rest[CoefficientList[Series[Product[1/(1-x^k)^(k*(k+1)*(k+2)/6),{k,1,nmax}],{x,0,nmax}],x]] (* Vaclav Kotesovec, Mar 11 2015 *)
etr[p_] := Module[{b}, b[n_] := b[n] = If[n==0, 1, Sum[DivisorSum[j, #*p[#] &]*b[n-j], {j, 1, n}]/n]; b]; a = etr[Binomial[#+2, 3]&]; Table[a[n], {n, 1, 40}] (* Jean-François Alcover, Nov 24 2015, after Alois P. Heinz *)
-
a(n)=if(n<1, 0, polcoeff(exp(sum(k=1, n, x^k/(1-x^k)^4/k, x*O(x^n))), n)) /* Joerg Arndt, Apr 16 2010 */
-
N=66; x='x+O('x^66); gf=-1 + exp(sum(k=1, N, x^k/(1-x^k)^4/k)); Vec(gf) /* Joerg Arndt, Jul 06 2011 */
-
# uses[EulerTransform from A166861] and prepends a(0) = 1.
a = EulerTransform(lambda n: n*(n+1)*(n+2)//6)
print([a(n) for n in range(33)]) # Peter Luschny, Nov 17 2022
A104246
Minimal number of tetrahedral numbers (A000292(k) = k(k+1)(k+2)/6) needed to sum to n.
Original entry on oeis.org
1, 2, 3, 1, 2, 3, 4, 2, 3, 1, 2, 3, 4, 2, 3, 4, 5, 3, 4, 1, 2, 3, 4, 2, 3, 4, 5, 3, 4, 2, 3, 4, 5, 3, 1, 2, 3, 4, 2, 2, 3, 4, 3, 3, 2, 3, 4, 4, 3, 3, 4, 5, 4, 4, 2, 1, 2, 3, 3, 2, 3, 4, 4, 3, 3, 2, 3, 4, 4, 2, 3, 4, 5, 3, 3, 2, 3, 4, 4, 3, 4, 5, 5, 1, 2, 3, 4, 2, 3, 3, 2, 3, 4, 2, 3, 3, 4, 3, 4, 4, 3, 4
Offset: 1
- Dickson, L. E., History of the Theory of Numbers, Vol. 2: Diophantine Analysis. New York: Dover, 1952, see p. 13.
- Lars Blomberg, Table of n, a(n) for n = 1..10000
- Hyun Kwang Kim, On regular polytope numbers, Proc. Amer. Math. Soc. 131 (2003), pp. 65-75.
- F. Pollock, On the Extension of the Principle of Fermat's Theorem of the Polygonal Numbers to the Higher Orders of Series Whose Ultimate Differences Are Constant. With a New Theorem Proposed, Applicable to All the Orders, Abs. Papers Commun. Roy. Soc. London 5, 922-924, 1843-1850.
- H. E. Salzer and N. Levine, Table of Integers Not Exceeding 1000000 that are Not Expressible as the Sum of Four Tetrahedral Numbers, Math. Comp. 12, 141-144, 1958.
- H. E. Salzer and N. Levine, Proof that every integer <= 452,479,659 is a sum of five numbers of the form Q_x = (x^3+5x)/6, x >= 0, Math. Comp., (1968), 191-192.
- N. J. A. Sloane, Transforms.
- G. L. Watson, Sums of eight values of a cubic polynomial, J. London Math. Soc., 27 (1952), 217-224.
- Eric Weisstein's World of Mathematics, Tetrahedral Number.
Cf.
A000292 (tetrahedral numbers, indices of 1s),
A102795 (indices of 2s),
A102796 (indices of 3s),
A102797 (indices of 4s),
A000797 (numbers that need 5 tetrahedral numbers).
Cf.
A061336 (analog for triangular numbers).
-
tet:=[seq((n^3-n)/6,n=1..20)];
LAGRANGE(tet,8, 120); # the LAGRANGE transform of a sequence is defined in A193101. - N. J. A. Sloane, Jul 15 2011
# alternative
N := 10000:
L := [seq(0,i=1..N)] :
# put 1's where tetrahedral numbers reside
for i from 1 to N do
Aj := A000292(i) ;
if Aj <= N then
L := subsop(Aj=1,L) ;
end if;
end do:
for a from 1 do
# select positions of a's, skip forward by all available Aj and
# if that addresses a not-yet-set position in the array put a+1 there.
for i from 1 to N do
if op(i,L) =a then
for j from 1 do
Aj := A000292(j) ;
if i+Aj <=N and op(i+Aj,L) = 0 then
L := subsop(i+Aj=a+1,L) ;
end if;
if i +Aj > N then
break ;
end if;
end do:
end if;
end do:
# if all L[] are non-zero, terminate the loop
allset := true;
for i from 1 to N do
if op(i,L) = 0 then
allset := false ;
break ;
end if;
end do:
if allset then
break ;
end if;
end do:
seq( L[i],i=1..N) ; # R. J. Mathar, Jun 06 2025
-
\\ available on request. - M. F. Hasler, Mar 06 2017
-
seq(N) = {
my(a = vector(N, k, 8), T = k->(k*(k+1)*(k+2))\6);
for (n = 1, N,
my (k1 = sqrtnint((6*n)\8, 3), k2 = sqrtnint(6*n, 3));
while(n < T(k2), k2--); if (n == T(k2), a[n] = 1; next());
for (k = k1, k2, a[n] = min(a[n], a[n - T(k)] + 1))); a;
};
seq(102) \\ Gheorghe Coserea, Mar 14 2017
A282582
Number of compositions (ordered partitions) of n into tetrahedral (or triangular pyramidal) numbers (A000292).
Original entry on oeis.org
1, 1, 1, 1, 2, 3, 4, 5, 7, 10, 15, 21, 29, 40, 57, 81, 114, 159, 223, 314, 444, 625, 878, 1233, 1736, 2445, 3441, 4838, 6804, 9573, 13473, 18957, 26668, 37514, 52780, 74264, 104488, 147000, 206808, 290961, 409369, 575955, 810314, 1140029, 1603924, 2256603, 3174867, 4466763, 6284339, 8841533, 12439323
Offset: 0
a(8) = 7 because we have [4, 4], [4, 1, 1, 1, 1], [1, 4, 1, 1, 1], [1, 1, 4, 1, 1], [1, 1, 1, 4, 1], [1, 1, 1, 1, 4] and [1, 1, 1, 1, 1, 1, 1, 1].
-
nmax = 50; CoefficientList[Series[1/(1 - Sum[x^(k (k + 1) (k + 2)/6), {k, 1, nmax}]), {x, 0, nmax}], x]
-
Vec(1/(1 - sum(k=1, 50, x^(k*(k + 1)*(k + 2)/6)) + O(x^51))) \\ Indranil Ghosh, Mar 15 2017
A053012
Platonic numbers: a(n) is a tetrahedral (A000292), cube (A000578), octahedral (A005900), dodecahedral (A006566) or icosahedral (A006564) number.
Original entry on oeis.org
1, 4, 6, 8, 10, 12, 19, 20, 27, 35, 44, 48, 56, 64, 84, 85, 120, 124, 125, 146, 165, 216, 220, 231, 255, 286, 343, 344, 364, 455, 456, 489, 512, 560, 670, 680, 729, 742, 816, 891, 969, 1000, 1128, 1140, 1156, 1330, 1331, 1469, 1540, 1629, 1728, 1771, 1834
Offset: 1
Klaus Strassburger (strass(AT)ddfi.uni-duesseldorf.de), Feb 22 2000
-
a053012 n = a053012_list !! (n-1)
a053012_list = tail $ f
[a000292_list, a000578_list, a005900_list, a006566_list, a006564_list]
where f pss = m : f (map (dropWhile (<= m)) pss)
where m = minimum (map head pss)
-- Reinhard Zumkeller, Jun 17 2013
-
nn = 25; t1 = Table[n (n + 1) (n + 2)/6, {n, nn}]; t2 = Table[n^3, {n, nn}]; t3 = Table[(2*n^3 + n)/3, {n, nn}]; t4 = Table[n (3*n - 1) (3*n - 2)/2, {n, nn}]; t5 = Table[n (5*n^2 - 5*n + 2)/2, {n, nn}]; Select[Union[t1, t2, t3, t4, t5], # <= t1[[-1]] &] (* T. D. Noe, Oct 13 2012 *)
-
listpoly(lim, poly[..])=my(v=List()); for(i=1,#poly, my(P=poly[i], x=variable(P), f=k->subst(P,x,k),n,t); while((t=f(n++))<=lim, listput(v, t))); Set(v)
list(lim)=my(n='n); listpoly(lim, n*(n+1)*(n+2)/6, n^3, (2*n^3+n)/3, n*(3*n-1)*(3*n-2)/2, n*(5*n^2-5*n+2)/2) \\ Charles R Greathouse IV, Oct 11 2016
A242896
Number T(n,k) of compositions of n into k parts with distinct multiplicities, where parts are counted without multiplicities; triangle T(n,k), n>=0, 0<=k<=max{i:A000292(i)<=n}, read by rows.
Original entry on oeis.org
1, 0, 1, 0, 2, 0, 2, 0, 3, 3, 0, 2, 10, 0, 4, 12, 0, 2, 38, 0, 4, 56, 0, 3, 79, 0, 4, 152, 60, 0, 2, 251, 285, 0, 6, 284, 498, 0, 2, 594, 1438, 0, 4, 920, 2816, 0, 4, 1108, 5208, 0, 5, 2136, 11195, 0, 2, 3402, 24094, 0, 6, 4407, 38523, 0, 2, 8350, 85182
Offset: 0
T(5,1) = 2: [1,1,1,1,1], [5].
T(5,2) = 10: [1,1,1,2], [1,1,2,1], [1,2,1,1], [2,1,1,1], [1,2,2], [2,1,2], [2,2,1], [1,1,3], [1,3,1], [3,1,1].
Triangle T(n,k) begins:
1;
0, 1;
0, 2;
0, 2;
0, 3, 3;
0, 2, 10;
0, 4, 12;
0, 2, 38;
0, 4, 56;
0, 3, 79;
0, 4, 152, 60;
-
b:= proc(n, i, s) option remember; `if`(n=0, add(j, j=s)!,
`if`(i<1, 0, expand(add(`if`(j>0 and j in s, 0, `if`(j=0, 1, x)*
b(n-i*j, i-1, `if`(j=0, s, s union {j}))/j!), j=0..n/i))))
end:
T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n$2, {})):
seq(T(n), n=0..16);
-
b[n_, i_, s_List] := b[n, i, s] = If[n == 0, Total[s]!, If[i<1, 0, Expand[ Sum[ If[j>0 && MemberQ[s, j], 0, If[j == 0, 1, x]*b[n-i*j, i-1, If[j == 0, s, s ~Union~ {j}]]/j!], {j, 0, n/i}]]]]; T[n_] := Function[{p}, Table[Coefficient[p, x, i], {i, 0, Exponent[p, x]}]][b[n, n, {}]]; Table[T[n], {n, 0, 16}] // Flatten (* Jean-François Alcover, Feb 11 2015, after Alois P. Heinz *)
A182485
Number of partitions of n into exactly k different parts with distinct multiplicities; triangle T(n,k), n>=0, 0<=k<=max{i:A000292(i)<=n}, read by rows.
Original entry on oeis.org
1, 0, 1, 0, 2, 0, 2, 0, 3, 1, 0, 2, 3, 0, 4, 3, 0, 2, 8, 0, 4, 9, 0, 3, 12, 0, 4, 16, 1, 0, 2, 22, 4, 0, 6, 20, 5, 0, 2, 31, 12, 0, 4, 35, 16, 0, 4, 34, 24, 0, 5, 44, 33, 0, 2, 51, 52, 0, 6, 53, 57, 0, 2, 62, 89, 0, 6, 65, 100, 1, 0, 4, 68, 131, 5, 0, 4, 87
Offset: 0
T(0,0) = 1: [].
T(1,1) = 1: [1].
T(2,1) = 2: [1,1], [2].
T(4,1) = 3: [1,1,1,1], [2,2], [4].
T(4,2) = 1: [2,1,1]; part 2 occurs once and part 1 occurs twice.
T(5,2) = 3: [2,1,1,1], [2,2,1], [3,1,1].
T(7,2) = 8: [2,1,1,1,1,1], [2,2,1,1,1], [2,2,2,1], [3,1,1,1,1], [3,2,2], [3,3,1], [4,1,1,1], [5,1,1].
T(10,1) = 4: [1,1,1,1,1,1,1,1,1,1], [2,2,2,2,2], [5,5], [10].
T(10,3) = 1: [3,2,2,1,1,1].
Triangle T(n,k) begins:
1;
0, 1;
0, 2;
0, 2;
0, 3, 1;
0, 2, 3;
0, 4, 3;
0, 2, 8;
0, 4, 9;
0, 3, 12;
0, 4, 16, 1;
First row with length (t+1):
A000292(t).
Cf.
A242896 (the same for compositions):
-
b:= proc(n, i, t, s) option remember;
`if`(nops(s)>t, 0, `if`(n=0, 1, `if`(i<1, 0, b(n, i-1, t, s)+
add(`if`(j in s, 0, b(n-i*j, i-1, t, s union {j})), j=1..n/i))))
end:
g:= proc(n) local i; for i while i*(i+1)*(i+2)/6<=n do od; i-1 end:
T:= n-> seq(b(n, n, k, {}) -b(n, n, k-1, {}), k=0..g(n)):
seq(T(n), n=0..30);
-
b[n_, i_, t_, s_] := b[n, i, t, s] = If[Length[s] > t, 0, If[n == 0, 1, If[i < 1, 0, b[n, i-1, t, s] + Sum[If[MemberQ[s, j], 0, b[n-i*j, i-1, t, s ~Union~ {j}]], {j, 1, n/i}]]]]; g[n_] := Module[{i}, For[ i = 1, i*(i+1)*(i+2)/6 <= n , i++]; i-1 ]; t[n_] := Table [b[n, n, k, {}] - b[n, n, k-1, {}], {k, 0, g[n]}]; Table [t[n], {n, 0, 30}] // Flatten (* Jean-François Alcover, Dec 19 2013, translated from Maple *)
A145453
Exponential transform of binomial(n,3) = A000292(n-2).
Original entry on oeis.org
1, 0, 0, 1, 4, 10, 30, 175, 1176, 7084, 42120, 286605, 2270180, 19213766, 166326524, 1497096055, 14374680880, 147259920760, 1582837679056, 17659771122969, 204674606377140, 2473357218561250, 31148510170120420, 407154732691440811, 5504706823227724904
Offset: 0
-
a:= proc(n) option remember; `if`(n=0, 1,
add(binomial(n-1, j-1) *binomial(j,3) *a(n-j), j=1..n))
end:
seq(a(n), n=0..30);
-
Table[Sum[BellY[n, k, Binomial[Range[n], 3]], {k, 0, n}], {n, 0, 25}] (* Vladimir Reshetnikov, Nov 09 2016 *)
A190717
Triplicated tetrahedral numbers A000292.
Original entry on oeis.org
1, 1, 1, 4, 4, 4, 10, 10, 10, 20, 20, 20, 35, 35, 35, 56, 56, 56, 84, 84, 84, 120, 120, 120, 165, 165, 165, 220, 220, 220, 286, 286, 286, 364, 364, 364, 455, 455, 455, 560, 560, 560, 680, 680, 680, 816, 816, 816, 969, 969, 969
Offset: 0
- Index entries for linear recurrences with constant coefficients, signature (1,0,3,-3,0,-3,3,0,1,-1).
-
A190717:= proc(n) option remember; A190717(n):= binomial(floor(n/3)+3,3) end: seq(A190717(n),n=0..50);
-
LinearRecurrence[{1,0,3,-3,0,-3,3,0,1,-1},{1,1,1,4,4,4,10,10,10,20},60] (* Harvey P. Dale, Mar 09 2018 *)
A190718
Quadruplicated tetrahedral numbers A000292.
Original entry on oeis.org
1, 1, 1, 1, 4, 4, 4, 4, 10, 10, 10, 10, 20, 20, 20, 20, 35, 35, 35, 35, 56, 56, 56, 56, 84, 84, 84, 84, 120, 120, 120, 120, 165, 165, 165, 165, 220, 220, 220, 220, 286, 286, 286, 286, 364, 364, 364, 364, 455, 455, 455, 455
Offset: 0
- Index entries for linear recurrences with constant coefficients, signature (1,0,0,3,-3,0,0,-3,3,0,0,1,-1).
-
A190718:= proc(n) binomial(floor(n/4)+3,3) end:
seq(A190718(n),n=0..52);
-
LinearRecurrence[{1,0,0,3,-3,0,0,-3,3,0,0,1,-1},{1,1,1,1,4,4,4,4,10,10,10,10,20},60] (* Harvey P. Dale, Oct 20 2012 *)
A118391
Numerator of sum of reciprocals of first n tetrahedral numbers A000292.
Original entry on oeis.org
1, 5, 27, 7, 10, 81, 35, 22, 81, 65, 77, 135, 52, 119, 405, 76, 85, 567, 209, 115, 378, 275, 299, 486, 175, 377, 1215, 217, 232, 1485, 527, 280, 891, 629, 665, 1053, 370, 779, 2457, 430, 451, 2835, 989, 517, 1620, 1127, 1175, 1836, 637, 1325, 4131, 715, 742
Offset: 1
a(1) = 1 = numerator of 1/1.
a(2) = 5 = numerator of 5/4 = 1/1 + 1/4.
a(3) = 27 = numerator of 27/20 = 1/1 + 1/4 + 1/10.
a(4) = 7 = numerator of 7/5 = 1/1 + 1/4 + 1/10 + 1/20.
a(5) = 10 = numerator of 10/7 = 1/1 + 1/4 + 1/10 + 1/20 + 1/35.
a(20) = 115 = numerator of 115/77 = 1/1 + 1/4 + 1/10 + 1/20 + 1/35 + 1/56 + 1/84 + 1/120 + 1/165 + 1/220 + 1/286 + 1/364 + 1/455 + 1/560 + 1/680 + 1/816 + 1/969 + 1/1140 + 1/1330 + 1/1540.
-
[Numerator(3*n*(n+3)/(2*(n+1)*(n+2))): n in [1..60]]; // G. C. Greubel, Feb 18 2021
-
A118391:= n-> numer(3*n*(n+3)/(2*(n+1)*(n+2))); seq(A118391(n), n=1..60) # G. C. Greubel, Feb 18 2021
-
Table[ Numerator[3n(n+3)/(2(n+1)(n+2))], {n,1,100} ] (* Alexander Adamchuk, May 08 2007 *)
Accumulate[1/Binomial[Range[60]+2,3]]//Numerator (* Harvey P. Dale, Aug 31 2023 *)
-
s=0;for(i=3,50,s+=1/binomial(i,3);print(numerator(s))) /* Phil Carmody, Mar 27 2012 */
-
[numerator(3*n*(n+3)/(2*(n+1)*(n+2))) for n in (1..60)] # G. C. Greubel, Feb 18 2021
Showing 1-10 of 869 results.
Comments