cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 869 results. Next

A000335 Euler transform of A000292.

Original entry on oeis.org

1, 5, 15, 45, 120, 331, 855, 2214, 5545, 13741, 33362, 80091, 189339, 442799, 1023192, 2340904, 5302061, 11902618, 26488454, 58479965, 128120214, 278680698, 602009786, 1292027222, 2755684669, 5842618668, 12317175320, 25825429276, 53865355154, 111786084504, 230867856903, 474585792077, 971209629993
Offset: 1

Views

Author

Keywords

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Maple
    with(numtheory): etr:= proc(p) local b; b:=proc(n) option remember; local d,j; if n=0 then 1 else add(add(d*p(d), d=divisors(j)) *b(n-j), j=1..n)/n fi end end: a:= etr(n-> binomial(n+2,3)): seq(a(n), n=1..26); # Alois P. Heinz, Sep 08 2008
  • Mathematica
    max = 33; f[x_] := Exp[ Sum[ x^k/(1-x^k)^4/k, {k, 1, max}]]; Drop[ CoefficientList[ Series[ f[x], {x, 0, max}], x], 1](* Jean-François Alcover, Nov 21 2011, after Joerg Arndt *)
    nmax=50; Rest[CoefficientList[Series[Product[1/(1-x^k)^(k*(k+1)*(k+2)/6),{k,1,nmax}],{x,0,nmax}],x]] (* Vaclav Kotesovec, Mar 11 2015 *)
    etr[p_] := Module[{b}, b[n_] := b[n] = If[n==0, 1, Sum[DivisorSum[j, #*p[#] &]*b[n-j], {j, 1, n}]/n]; b]; a = etr[Binomial[#+2, 3]&]; Table[a[n], {n, 1, 40}] (* Jean-François Alcover, Nov 24 2015, after Alois P. Heinz *)
  • PARI
    a(n)=if(n<1, 0, polcoeff(exp(sum(k=1, n, x^k/(1-x^k)^4/k, x*O(x^n))), n)) /* Joerg Arndt, Apr 16 2010 */
    
  • PARI
    N=66; x='x+O('x^66); gf=-1 + exp(sum(k=1, N, x^k/(1-x^k)^4/k)); Vec(gf) /* Joerg Arndt, Jul 06 2011 */
    
  • Sage
    # uses[EulerTransform from A166861] and prepends a(0) = 1.
    a = EulerTransform(lambda n: n*(n+1)*(n+2)//6)
    print([a(n) for n in range(33)]) # Peter Luschny, Nov 17 2022

Formula

a(n) ~ Zeta(5)^(379/3600) / (2^(521/1800) * sqrt(5*Pi) * n^(2179/3600)) * exp(Zeta'(-1)/3 - Zeta(3) / (8*Pi^2) - Pi^16 / (3110400000 * Zeta(5)^3) + Pi^8*Zeta(3) / (216000 * Zeta(5)^2) - Zeta(3)^2 / (90*Zeta(5)) + Zeta'(-3)/6 + (Pi^12 / (10800000 * 2^(2/5) * Zeta(5)^(11/5)) - Pi^4 * Zeta(3) / (900 * 2^(2/5) * Zeta(5)^(6/5))) * n^(1/5) + (Zeta(3) / (3 * 2^(4/5) * Zeta(5)^(2/5)) - Pi^8 / (36000 * 2^(4/5) * Zeta(5)^(7/5))) * n^(2/5) + Pi^4 / (180 * 2^(1/5) * Zeta(5)^(3/5)) * n^(3/5) + 5*Zeta(5)^(1/5) / 2^(8/5) * n^(4/5)). - Vaclav Kotesovec, Mar 12 2015

A104246 Minimal number of tetrahedral numbers (A000292(k) = k(k+1)(k+2)/6) needed to sum to n.

Original entry on oeis.org

1, 2, 3, 1, 2, 3, 4, 2, 3, 1, 2, 3, 4, 2, 3, 4, 5, 3, 4, 1, 2, 3, 4, 2, 3, 4, 5, 3, 4, 2, 3, 4, 5, 3, 1, 2, 3, 4, 2, 2, 3, 4, 3, 3, 2, 3, 4, 4, 3, 3, 4, 5, 4, 4, 2, 1, 2, 3, 3, 2, 3, 4, 4, 3, 3, 2, 3, 4, 4, 2, 3, 4, 5, 3, 3, 2, 3, 4, 4, 3, 4, 5, 5, 1, 2, 3, 4, 2, 3, 3, 2, 3, 4, 2, 3, 3, 4, 3, 4, 4, 3, 4
Offset: 1

Views

Author

Eric W. Weisstein, Feb 26 2005

Keywords

Comments

According to Dickson, Pollock conjectures that a(n) <= 5 for all n. Watson shows that a(n) <= 8 for all n, and Salzer and Levine show that a(n) <= 5 for n <= 452479659. - N. J. A. Sloane, Jul 15 2011
Possible correction of the first comment by Sloane 2011: it appears to me from the linked reference by Salzer and Levine 1968 that 452479659 is instead the upper limit for sums of five Qx = Tx + x, where Tx are the tetrahedral numbers we want. They also mention an upper limit for sums of five Tx, which is: a(n) <= 5 for n <= 276976383. - Ewoud Dronkert, May 30 2024
If we use the greedy algorithm for this, we get A281367. - N. J. A. Sloane, Jan 30 2017
Could be extended with a(0) = 0, in analogy to A061336. Kim (2003, first row of table "d = 3" on p. 73) gives max {a(n)} = 5 as a "numerical result", but the value has no "* denoting exact values" (see Remark at end of paper), which means this could be incorrect. - M. F. Hasler, Mar 06 2017, edited Sep 22 2022

References

  • Dickson, L. E., History of the Theory of Numbers, Vol. 2: Diophantine Analysis. New York: Dover, 1952, see p. 13.

Crossrefs

Cf. A000292 (tetrahedral numbers, indices of 1s), A102795 (indices of 2s), A102796 (indices of 3s), A102797 (indices of 4s), A000797 (numbers that need 5 tetrahedral numbers).
See also A102798-A102806, A102855-A102858, A193101, A193105, A281367 (the "triangular nachos" numbers).
Cf. A061336 (analog for triangular numbers).

Programs

  • Maple
    tet:=[seq((n^3-n)/6,n=1..20)];
    LAGRANGE(tet,8, 120); # the LAGRANGE transform of a sequence is defined in A193101. - N. J. A. Sloane, Jul 15 2011
    # alternative
    N := 10000:
    L := [seq(0,i=1..N)] :
    # put 1's where tetrahedral numbers reside
    for i from 1 to N do
        Aj := A000292(i) ;
        if Aj <= N then
            L := subsop(Aj=1,L) ;
        end if;
    end do:
    for a from 1 do
        # select positions of a's, skip forward by all available Aj and
        # if that addresses a not-yet-set position in the array put a+1 there.
        for i from 1 to N do
            if op(i,L) =a then
                for j from 1 do
                    Aj := A000292(j) ;
                    if i+Aj <=N and op(i+Aj,L) = 0 then
                        L := subsop(i+Aj=a+1,L) ;
                    end if;
                    if i +Aj > N then
                        break ;
                    end if;
                end do:
            end if;
        end do:
        # if all L[] are non-zero, terminate the loop
        allset := true;
        for i from 1 to N do
            if op(i,L) = 0 then
                allset := false ;
                break ;
            end if;
        end do:
        if allset then
            break ;
        end if;
    end do:
    seq( L[i],i=1..N) ; # R. J. Mathar, Jun 06 2025
  • PARI
    \\ available on request. - M. F. Hasler, Mar 06 2017
    
  • PARI
    seq(N) = {
      my(a = vector(N, k, 8), T = k->(k*(k+1)*(k+2))\6);
      for (n = 1, N,
        my (k1 = sqrtnint((6*n)\8, 3), k2 = sqrtnint(6*n, 3));
        while(n < T(k2), k2--); if (n == T(k2), a[n] = 1; next());
        for (k = k1, k2, a[n] = min(a[n], a[n - T(k)] + 1))); a;
    };
    seq(102)  \\ Gheorghe Coserea, Mar 14 2017

Extensions

Edited by N. J. A. Sloane, Jul 15 2011
Edited by M. F. Hasler, Mar 06 2017

A282582 Number of compositions (ordered partitions) of n into tetrahedral (or triangular pyramidal) numbers (A000292).

Original entry on oeis.org

1, 1, 1, 1, 2, 3, 4, 5, 7, 10, 15, 21, 29, 40, 57, 81, 114, 159, 223, 314, 444, 625, 878, 1233, 1736, 2445, 3441, 4838, 6804, 9573, 13473, 18957, 26668, 37514, 52780, 74264, 104488, 147000, 206808, 290961, 409369, 575955, 810314, 1140029, 1603924, 2256603, 3174867, 4466763, 6284339, 8841533, 12439323
Offset: 0

Views

Author

Ilya Gutkovskiy, Feb 19 2017

Keywords

Examples

			a(8) = 7 because we have [4, 4], [4, 1, 1, 1, 1], [1, 4, 1, 1, 1], [1, 1, 4, 1, 1], [1, 1, 1, 4, 1], [1, 1, 1, 1, 4] and [1, 1, 1, 1, 1, 1, 1, 1].
		

Crossrefs

Programs

  • Mathematica
    nmax = 50; CoefficientList[Series[1/(1 - Sum[x^(k (k + 1) (k + 2)/6), {k, 1, nmax}]), {x, 0, nmax}], x]
  • PARI
    Vec(1/(1 - sum(k=1, 50, x^(k*(k + 1)*(k + 2)/6)) + O(x^51))) \\ Indranil Ghosh, Mar 15 2017

Formula

G.f.: 1/(1 - Sum_{k>=1} x^(k*(k+1)*(k+2)/6)).

A053012 Platonic numbers: a(n) is a tetrahedral (A000292), cube (A000578), octahedral (A005900), dodecahedral (A006566) or icosahedral (A006564) number.

Original entry on oeis.org

1, 4, 6, 8, 10, 12, 19, 20, 27, 35, 44, 48, 56, 64, 84, 85, 120, 124, 125, 146, 165, 216, 220, 231, 255, 286, 343, 344, 364, 455, 456, 489, 512, 560, 670, 680, 729, 742, 816, 891, 969, 1000, 1128, 1140, 1156, 1330, 1331, 1469, 1540, 1629, 1728, 1771, 1834
Offset: 1

Views

Author

Klaus Strassburger (strass(AT)ddfi.uni-duesseldorf.de), Feb 22 2000

Keywords

Comments

19, the 3rd octahedral number, is the only prime platonic number. - Jean-François Alcover, Oct 11 2012

Crossrefs

Numbers of partitions into Platonic numbers: A226748, A226749.

Programs

  • Haskell
    a053012 n = a053012_list !! (n-1)
    a053012_list = tail $ f
       [a000292_list, a000578_list, a005900_list, a006566_list, a006564_list]
       where f pss = m : f (map (dropWhile (<= m)) pss)
                     where m = minimum (map head pss)
    -- Reinhard Zumkeller, Jun 17 2013
    
  • Mathematica
    nn = 25; t1 = Table[n (n + 1) (n + 2)/6, {n, nn}]; t2 = Table[n^3, {n, nn}]; t3 = Table[(2*n^3 + n)/3, {n, nn}]; t4 = Table[n (3*n - 1) (3*n - 2)/2, {n, nn}]; t5 = Table[n (5*n^2 - 5*n + 2)/2, {n, nn}]; Select[Union[t1, t2, t3, t4, t5], # <= t1[[-1]] &] (* T. D. Noe, Oct 13 2012 *)
  • PARI
    listpoly(lim, poly[..])=my(v=List()); for(i=1,#poly, my(P=poly[i], x=variable(P), f=k->subst(P,x,k),n,t); while((t=f(n++))<=lim, listput(v, t))); Set(v)
    list(lim)=my(n='n); listpoly(lim, n*(n+1)*(n+2)/6, n^3, (2*n^3+n)/3, n*(3*n-1)*(3*n-2)/2, n*(5*n^2-5*n+2)/2) \\ Charles R Greathouse IV, Oct 11 2016

A242896 Number T(n,k) of compositions of n into k parts with distinct multiplicities, where parts are counted without multiplicities; triangle T(n,k), n>=0, 0<=k<=max{i:A000292(i)<=n}, read by rows.

Original entry on oeis.org

1, 0, 1, 0, 2, 0, 2, 0, 3, 3, 0, 2, 10, 0, 4, 12, 0, 2, 38, 0, 4, 56, 0, 3, 79, 0, 4, 152, 60, 0, 2, 251, 285, 0, 6, 284, 498, 0, 2, 594, 1438, 0, 4, 920, 2816, 0, 4, 1108, 5208, 0, 5, 2136, 11195, 0, 2, 3402, 24094, 0, 6, 4407, 38523, 0, 2, 8350, 85182
Offset: 0

Views

Author

Alois P. Heinz, May 25 2014

Keywords

Examples

			T(5,1) = 2: [1,1,1,1,1], [5].
T(5,2) = 10: [1,1,1,2], [1,1,2,1], [1,2,1,1], [2,1,1,1], [1,2,2], [2,1,2], [2,2,1], [1,1,3], [1,3,1], [3,1,1].
Triangle T(n,k) begins:
  1;
  0, 1;
  0, 2;
  0, 2;
  0, 3,   3;
  0, 2,  10;
  0, 4,  12;
  0, 2,  38;
  0, 4,  56;
  0, 3,  79;
  0, 4, 152, 60;
		

Crossrefs

Row sums give A242882.
Cf. A182485 (the same for partitions), A242887.

Programs

  • Maple
    b:= proc(n, i, s) option remember; `if`(n=0, add(j, j=s)!,
          `if`(i<1, 0, expand(add(`if`(j>0 and j in s, 0, `if`(j=0, 1, x)*
           b(n-i*j, i-1, `if`(j=0, s, s union {j}))/j!), j=0..n/i))))
        end:
    T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n$2, {})):
    seq(T(n), n=0..16);
  • Mathematica
    b[n_, i_, s_List] := b[n, i, s] = If[n == 0, Total[s]!, If[i<1, 0, Expand[ Sum[ If[j>0 && MemberQ[s, j], 0, If[j == 0, 1, x]*b[n-i*j, i-1, If[j == 0, s, s ~Union~ {j}]]/j!], {j, 0, n/i}]]]]; T[n_] := Function[{p}, Table[Coefficient[p, x, i], {i, 0, Exponent[p, x]}]][b[n, n, {}]]; Table[T[n], {n, 0, 16}] // Flatten (* Jean-François Alcover, Feb 11 2015, after Alois P. Heinz *)

A182485 Number of partitions of n into exactly k different parts with distinct multiplicities; triangle T(n,k), n>=0, 0<=k<=max{i:A000292(i)<=n}, read by rows.

Original entry on oeis.org

1, 0, 1, 0, 2, 0, 2, 0, 3, 1, 0, 2, 3, 0, 4, 3, 0, 2, 8, 0, 4, 9, 0, 3, 12, 0, 4, 16, 1, 0, 2, 22, 4, 0, 6, 20, 5, 0, 2, 31, 12, 0, 4, 35, 16, 0, 4, 34, 24, 0, 5, 44, 33, 0, 2, 51, 52, 0, 6, 53, 57, 0, 2, 62, 89, 0, 6, 65, 100, 1, 0, 4, 68, 131, 5, 0, 4, 87
Offset: 0

Views

Author

Alois P. Heinz, May 01 2012

Keywords

Examples

			T(0,0) = 1: [].
T(1,1) = 1: [1].
T(2,1) = 2: [1,1], [2].
T(4,1) = 3: [1,1,1,1], [2,2], [4].
T(4,2) = 1: [2,1,1]; part 2 occurs once and part 1 occurs twice.
T(5,2) = 3: [2,1,1,1], [2,2,1], [3,1,1].
T(7,2) = 8: [2,1,1,1,1,1], [2,2,1,1,1], [2,2,2,1], [3,1,1,1,1], [3,2,2], [3,3,1], [4,1,1,1], [5,1,1].
T(10,1) = 4: [1,1,1,1,1,1,1,1,1,1], [2,2,2,2,2], [5,5], [10].
T(10,3) = 1: [3,2,2,1,1,1].
Triangle T(n,k) begins:
  1;
  0, 1;
  0, 2;
  0, 2;
  0, 3,  1;
  0, 2,  3;
  0, 4,  3;
  0, 2,  8;
  0, 4,  9;
  0, 3, 12;
  0, 4, 16, 1;
		

Crossrefs

Row sums give: A098859.
First row with length (t+1): A000292(t).
Cf. A242896 (the same for compositions):

Programs

  • Maple
    b:= proc(n, i, t, s) option remember;
          `if`(nops(s)>t, 0, `if`(n=0, 1, `if`(i<1, 0, b(n, i-1, t, s)+
          add(`if`(j in s, 0, b(n-i*j, i-1, t, s union {j})), j=1..n/i))))
        end:
    g:= proc(n) local i; for i while i*(i+1)*(i+2)/6<=n do od; i-1 end:
    T:= n-> seq(b(n, n, k, {}) -b(n, n, k-1, {}), k=0..g(n)):
    seq(T(n), n=0..30);
  • Mathematica
    b[n_, i_, t_, s_] := b[n, i, t, s] = If[Length[s] > t, 0, If[n == 0, 1, If[i < 1, 0, b[n, i-1, t, s] + Sum[If[MemberQ[s, j], 0, b[n-i*j, i-1, t, s ~Union~ {j}]], {j, 1, n/i}]]]]; g[n_] := Module[{i}, For[ i = 1, i*(i+1)*(i+2)/6 <= n , i++]; i-1 ]; t[n_] := Table [b[n, n, k, {}] - b[n, n, k-1, {}], {k, 0, g[n]}]; Table [t[n], {n, 0, 30}] // Flatten (* Jean-François Alcover, Dec 19 2013, translated from Maple *)

A145453 Exponential transform of binomial(n,3) = A000292(n-2).

Original entry on oeis.org

1, 0, 0, 1, 4, 10, 30, 175, 1176, 7084, 42120, 286605, 2270180, 19213766, 166326524, 1497096055, 14374680880, 147259920760, 1582837679056, 17659771122969, 204674606377140, 2473357218561250, 31148510170120420, 407154732691440811, 5504706823227724904
Offset: 0

Views

Author

Alois P. Heinz, Oct 10 2008

Keywords

Comments

a(n) is the number of ways of placing n labeled balls into indistinguishable boxes, where in each filled box 3 balls are seen at the top.
a(n) is also the number of forests of labeled rooted trees of height at most 1, with n labels, where each root contains 3 labels.

Crossrefs

3rd column of A145460, A143398.

Programs

  • Maple
    a:= proc(n) option remember; `if`(n=0, 1,
          add(binomial(n-1, j-1) *binomial(j,3) *a(n-j), j=1..n))
        end:
    seq(a(n), n=0..30);
  • Mathematica
    Table[Sum[BellY[n, k, Binomial[Range[n], 3]], {k, 0, n}], {n, 0, 25}] (* Vladimir Reshetnikov, Nov 09 2016 *)

Formula

E.g.f.: exp(exp(x)*x^3/3!).

A190717 Triplicated tetrahedral numbers A000292.

Original entry on oeis.org

1, 1, 1, 4, 4, 4, 10, 10, 10, 20, 20, 20, 35, 35, 35, 56, 56, 56, 84, 84, 84, 120, 120, 120, 165, 165, 165, 220, 220, 220, 286, 286, 286, 364, 364, 364, 455, 455, 455, 560, 560, 560, 680, 680, 680, 816, 816, 816, 969, 969, 969
Offset: 0

Views

Author

Johannes W. Meijer, May 18 2011

Keywords

Comments

The Ca1 and Ze3 triangle sums, see A180662 for their definitions, of the triangle A159797 are linear sums of shifted versions of the triplicated tetrahedral numbers, e.g. Ca1(n) = a(n-1) + a(n-2) + 2*a(n-3) + a(n-6).
The Ca1, Ca2, Ze3 and Ze4 triangle sums of the Connell sequence A001614 as a triangle are also linear sums of shifted versions of the sequence given above.

Crossrefs

Cf. A000292 (tetrahedral numbers), A058187 (duplicated), this sequence (triplicated), A190718 (quadruplicated), A049347, A144677.

Programs

  • Maple
    A190717:= proc(n) option remember; A190717(n):= binomial(floor(n/3)+3,3) end: seq(A190717(n),n=0..50);
  • Mathematica
    LinearRecurrence[{1,0,3,-3,0,-3,3,0,1,-1},{1,1,1,4,4,4,10,10,10,20},60] (* Harvey P. Dale, Mar 09 2018 *)

Formula

a(n) = binomial(floor(n/3)+3,3).
a(n) + a(n-1) + a(n-2) = A144677(n).
a(n) = Sum_{k=0..n} (A144677(n-k)*A049347(k)).
G.f.: 1/((x-1)^4*(x^2+x+1)^3).
Sum_{n>=0} 1/a(n) = 9/2. - Amiram Eldar, Aug 18 2022

A190718 Quadruplicated tetrahedral numbers A000292.

Original entry on oeis.org

1, 1, 1, 1, 4, 4, 4, 4, 10, 10, 10, 10, 20, 20, 20, 20, 35, 35, 35, 35, 56, 56, 56, 56, 84, 84, 84, 84, 120, 120, 120, 120, 165, 165, 165, 165, 220, 220, 220, 220, 286, 286, 286, 286, 364, 364, 364, 364, 455, 455, 455, 455
Offset: 0

Views

Author

Johannes W. Meijer, May 18 2011

Keywords

Comments

The Gi1 triangle sums, for the definitions of these and other triangle sums see A180662, of the triangle A159797 are linear sums of shifted versions of the quadruplicated tetrahedral numbers A000292, i.e., Gi1(n) = a(n-1) + a(n-2) + a(n-3) + 2*a(n-4) + a(n-8).
The Gi1 and Gi2 triangle sums of the Connell sequence A001614 as a triangle are also linear sums of shifted versions of the sequence given above.

Crossrefs

Cf. A000292 (tetrahedral numbers), A058187 (duplicated), A190717 (triplicated).

Programs

  • Maple
    A190718:= proc(n) binomial(floor(n/4)+3,3) end:
    seq(A190718(n),n=0..52);
  • Mathematica
    LinearRecurrence[{1,0,0,3,-3,0,0,-3,3,0,0,1,-1},{1,1,1,1,4,4,4,4,10,10,10,10,20},60] (* Harvey P. Dale, Oct 20 2012 *)

Formula

a(n) = binomial(floor(n/4)+3,3).
a(n-3) + a(n-2) + a(n-1) + a(n) = A144678(n).
a(n) = +a(n-1) +3*a(n-4) -3*a(n-5) -3*a(n-8) +3*a(n-9) +a(n-12) -a(n-13).
G.f.: 1 / ( (1+x)^3*(1+x^2)^3*(x-1)^4 ).
Sum_{n>=0} 1/a(n) = 6. - Amiram Eldar, Aug 18 2022

A118391 Numerator of sum of reciprocals of first n tetrahedral numbers A000292.

Original entry on oeis.org

1, 5, 27, 7, 10, 81, 35, 22, 81, 65, 77, 135, 52, 119, 405, 76, 85, 567, 209, 115, 378, 275, 299, 486, 175, 377, 1215, 217, 232, 1485, 527, 280, 891, 629, 665, 1053, 370, 779, 2457, 430, 451, 2835, 989, 517, 1620, 1127, 1175, 1836, 637, 1325, 4131, 715, 742
Offset: 1

Views

Author

Jonathan Vos Post, Apr 27 2006

Keywords

Comments

Denominators are A118392. Fractions are: 1/1, 5/4, 27/20, 7/5, 10/7, 81/56, 35/24, 22/15, 81/55, 65/44, 77/52, 135/91, 52/35, 119/80, 405/272, 76/51, 85/57, 567/380, 209/140, 115/77, 378/253, 275/184, 299/200, 486/325, 175/117, 377/252, 1215/812, 217/145, 232/155, 1485/992.
2n+3 divides a(2n). 2n-1 divides a(2n-1). p divides a(p) for prime p>2. The only primes in a(n) are a(2) = 5 and a(4) = 7. - Alexander Adamchuk, May 08 2007

Examples

			a(1) = 1 = numerator of 1/1.
a(2) = 5 = numerator of 5/4 = 1/1 + 1/4.
a(3) = 27 = numerator of 27/20 = 1/1 + 1/4 + 1/10.
a(4) = 7 = numerator of 7/5 = 1/1 + 1/4 + 1/10 + 1/20.
a(5) = 10 = numerator of 10/7 = 1/1 + 1/4 + 1/10 + 1/20 + 1/35.
a(20) = 115 = numerator of 115/77 = 1/1 + 1/4 + 1/10 + 1/20 + 1/35 + 1/56 + 1/84 + 1/120 + 1/165 + 1/220 + 1/286 + 1/364 + 1/455 + 1/560 + 1/680 + 1/816 + 1/969 + 1/1140 + 1/1330 + 1/1540.
		

Crossrefs

Programs

  • Magma
    [Numerator(3*n*(n+3)/(2*(n+1)*(n+2))): n in [1..60]]; // G. C. Greubel, Feb 18 2021
  • Maple
    A118391:= n-> numer(3*n*(n+3)/(2*(n+1)*(n+2))); seq(A118391(n), n=1..60) # G. C. Greubel, Feb 18 2021
  • Mathematica
    Table[ Numerator[3n(n+3)/(2(n+1)(n+2))], {n,1,100} ] (* Alexander Adamchuk, May 08 2007 *)
    Accumulate[1/Binomial[Range[60]+2,3]]//Numerator (* Harvey P. Dale, Aug 31 2023 *)
  • PARI
    s=0;for(i=3,50,s+=1/binomial(i,3);print(numerator(s))) /* Phil Carmody, Mar 27 2012 */
    
  • Sage
    [numerator(3*n*(n+3)/(2*(n+1)*(n+2))) for n in (1..60)] # G. C. Greubel, Feb 18 2021
    

Formula

A118391(n)/A118392(n) = Sum_{i=1..n} 1/A000292(n).
A118391(n)/A118392(n) = Sum_{i=1..n} 1/C(n+2,3).
A118391(n)/A118392(n) = Sum_{i=1..n} 6/(n*(n+1)*(n+2)).
a(n) = Numerator( 3*n*(n+3)/(2*(n+1)*(n+2)) ). - Alexander Adamchuk, May 08 2007

Extensions

More terms from Alexander Adamchuk, May 08 2007
Showing 1-10 of 869 results. Next