A242882
Number of compositions of n into parts with distinct multiplicities.
Original entry on oeis.org
1, 1, 2, 2, 6, 12, 16, 40, 60, 82, 216, 538, 788, 2034, 3740, 6320, 13336, 27498, 42936, 93534, 173520, 351374, 734650, 1592952, 3033194, 6310640, 12506972, 25296110, 49709476, 101546612, 195037028, 391548336, 764947954, 1527004522, 2953533640, 5946359758
Offset: 0
a(0) = 1: the empty composition.
a(1) = 1: [1].
a(2) = 2: [1,1], [2].
a(3) = 2: [1,1,1], [3].
a(4) = 6: [1,1,1,1], [1,1,2], [1,2,1], [2,1,1], [2,2], [4].
a(5) = 12: [1,1,1,1,1], [1,1,1,2], [1,1,2,1], [1,2,1,1], [2,1,1,1], [1,2,2], [2,1,2], [2,2,1], [1,1,3], [1,3,1], [3,1,1], [5].
Cf.
A098859 (the same for partitions).
-
b:= proc(n, i, s) option remember; `if`(n=0, add(j, j=s)!,
`if`(i<1, 0, add(`if`(j>0 and j in s, 0,
b(n-i*j, i-1, `if`(j=0, s, s union {j}))/j!), j=0..n/i)))
end:
a:= n-> b(n$2, {}):
seq(a(n), n=0..45);
-
b[n_, i_, s_] := b[n, i, s] = If[n == 0, Sum[j, {j, s}]!, If[i < 1, 0, Sum[If[j > 0 && MemberQ[s, j], 0, b[n - i*j, i - 1, If[j == 0, s, s ~Union~ {j}]]/j!], {j, 0, n/i}]]];
a[n_] := b[n, n, {}];
Table[a[n], {n, 0, 45}] (* Jean-François Alcover, May 17 2018, translated from Maple *)
-
a(n)={((r,k,b,w)->if(!k||!r, if(r,0,w!), sum(m=0, r\k, if(!m || !bittest(b,m), self()(r-k*m, k-1, bitor(b,1<Andrew Howroyd, Aug 31 2019
A242887
Number T(n,k) of compositions of n into parts with distinct multiplicities and with exactly k parts; triangle T(n,k), n>=0, 0<=k<=n, read by rows.
Original entry on oeis.org
1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 1, 3, 1, 0, 1, 0, 6, 4, 1, 0, 1, 1, 4, 4, 5, 1, 0, 1, 0, 9, 8, 15, 6, 1, 0, 1, 1, 9, 5, 15, 21, 7, 1, 0, 1, 0, 10, 8, 20, 6, 28, 8, 1, 0, 1, 1, 12, 12, 6, 96, 42, 36, 9, 1, 0, 1, 0, 15, 12, 30, 192, 168, 64, 45, 10, 1, 0, 1, 1, 13, 9, 20, 142, 238, 204, 93, 55, 11, 1
Offset: 0
T(5,1) = 1: [5].
T(5,3) = 6: [1,2,2], [2,1,2], [2,2,1], [1,1,3], [1,3,1], [3,1,1].
T(5,4) = 4: [1,1,1,2], [1,1,2,1], [1,2,1,1], [2,1,1,1].
T(5,5) = 1: [1,1,1,1,1].
Triangle T(n,k) begins:
1;
0, 1;
0, 1, 1;
0, 1, 0, 1;
0, 1, 1, 3, 1;
0, 1, 0, 6, 4, 1;
0, 1, 1, 4, 4, 5, 1;
0, 1, 0, 9, 8, 15, 6, 1;
0, 1, 1, 9, 5, 15, 21, 7, 1;
0, 1, 0, 10, 8, 20, 6, 28, 8, 1;
0, 1, 1, 12, 12, 6, 96, 42, 36, 9, 1;
Columns k=0-10 give:
A000007,
A057427,
A059841 (for n>1),
A321773,
A321774,
A321775,
A321776,
A321777,
A321778,
A321779,
A321780.
-
b:= proc(n, i, s) option remember; `if`(n=0, add(j, j=s)!,
`if`(i<1, 0, expand(add(`if`(j>0 and j in s, 0, x^j*
b(n-i*j, i-1,`if`(j=0, s, s union {j}))/j!), j=0..n/i))))
end:
T:= n-> (p-> seq(coeff(p,x,i), i=0..degree(p)))(b(n$2, {})):
seq(T(n), n=0..16);
-
b[n_, i_, s_] := b[n, i, s] = If[n==0, Total[s]!, If[i<1, 0, Expand[Sum[ If[j>0 && MemberQ[s, j], 0, x^j*b[n-i*j, i-1, If[j==0, s, s ~Union~ {j}] ]/j!], {j, 0, n/i}]]]]; T[n_] := Function[p, Table[Coefficient[p, x, i], {i, 0, Exponent[p, x]}]][b[n, n, {}]]; Table[T[n], {n, 0, 16}] // Flatten (* Jean-François Alcover, Feb 08 2017, translated from Maple *)
-
T(n)={Vecrev(((r,k,b,w)->if(!k||!r, if(r,0,w!*x^w), sum(m=0, r\k, if(!m || !bittest(b,m), self()(r-k*m, k-1, bitor(b,1<Andrew Howroyd, Aug 31 2019
A182485
Number of partitions of n into exactly k different parts with distinct multiplicities; triangle T(n,k), n>=0, 0<=k<=max{i:A000292(i)<=n}, read by rows.
Original entry on oeis.org
1, 0, 1, 0, 2, 0, 2, 0, 3, 1, 0, 2, 3, 0, 4, 3, 0, 2, 8, 0, 4, 9, 0, 3, 12, 0, 4, 16, 1, 0, 2, 22, 4, 0, 6, 20, 5, 0, 2, 31, 12, 0, 4, 35, 16, 0, 4, 34, 24, 0, 5, 44, 33, 0, 2, 51, 52, 0, 6, 53, 57, 0, 2, 62, 89, 0, 6, 65, 100, 1, 0, 4, 68, 131, 5, 0, 4, 87
Offset: 0
T(0,0) = 1: [].
T(1,1) = 1: [1].
T(2,1) = 2: [1,1], [2].
T(4,1) = 3: [1,1,1,1], [2,2], [4].
T(4,2) = 1: [2,1,1]; part 2 occurs once and part 1 occurs twice.
T(5,2) = 3: [2,1,1,1], [2,2,1], [3,1,1].
T(7,2) = 8: [2,1,1,1,1,1], [2,2,1,1,1], [2,2,2,1], [3,1,1,1,1], [3,2,2], [3,3,1], [4,1,1,1], [5,1,1].
T(10,1) = 4: [1,1,1,1,1,1,1,1,1,1], [2,2,2,2,2], [5,5], [10].
T(10,3) = 1: [3,2,2,1,1,1].
Triangle T(n,k) begins:
1;
0, 1;
0, 2;
0, 2;
0, 3, 1;
0, 2, 3;
0, 4, 3;
0, 2, 8;
0, 4, 9;
0, 3, 12;
0, 4, 16, 1;
First row with length (t+1):
A000292(t).
Cf.
A242896 (the same for compositions):
-
b:= proc(n, i, t, s) option remember;
`if`(nops(s)>t, 0, `if`(n=0, 1, `if`(i<1, 0, b(n, i-1, t, s)+
add(`if`(j in s, 0, b(n-i*j, i-1, t, s union {j})), j=1..n/i))))
end:
g:= proc(n) local i; for i while i*(i+1)*(i+2)/6<=n do od; i-1 end:
T:= n-> seq(b(n, n, k, {}) -b(n, n, k-1, {}), k=0..g(n)):
seq(T(n), n=0..30);
-
b[n_, i_, t_, s_] := b[n, i, t, s] = If[Length[s] > t, 0, If[n == 0, 1, If[i < 1, 0, b[n, i-1, t, s] + Sum[If[MemberQ[s, j], 0, b[n-i*j, i-1, t, s ~Union~ {j}]], {j, 1, n/i}]]]]; g[n_] := Module[{i}, For[ i = 1, i*(i+1)*(i+2)/6 <= n , i++]; i-1 ]; t[n_] := Table [b[n, n, k, {}] - b[n, n, k-1, {}], {k, 0, g[n]}]; Table [t[n], {n, 0, 30}] // Flatten (* Jean-François Alcover, Dec 19 2013, translated from Maple *)
A242900
Number of compositions of n into exactly two different parts with distinct multiplicities.
Original entry on oeis.org
3, 10, 12, 38, 56, 79, 152, 251, 284, 594, 920, 1108, 2136, 3402, 4407, 8350, 12863, 17328, 33218, 52527, 70074, 133247, 214551, 294299, 547360, 883572, 1234509, 2284840, 3667144, 5219161, 9551081, 15386201, 22079741, 40061664, 64666975, 93985744, 168363731
Offset: 4
a(4) = 3: [2,1,1], [1,2,1], [1,1,2].
a(5) = 10: [2,1,1,1], [1,2,1,1], [1,1,2,1], [1,1,1,2], [2,2,1], [2,1,2], [1,2,2], [3,1,1], [1,3,1], [1,1,3].
Cf.
A182473 (the same for partitions),
A131661 (multiplicities may be equal).
-
with(numtheory):
a:= n-> add(add(add(`if`(dm, binomial((n-p*m)
/d+m, m), 0), d=divisors(n-p*m)), m=1..n/p), p=2..n-1):
seq(a(n), n=4..60);
-
div[0] = {}; div[n_] := Divisors[n]; a[n_] := Sum[Sum[Sum[If[dJean-François Alcover, Feb 11 2015, after Alois P. Heinz *)
A246230
Number of compositions of n into exactly three different parts with distinct multiplicities.
Original entry on oeis.org
60, 285, 498, 1438, 2816, 5208, 11195, 24094, 38523, 85182, 148051, 255922, 512428, 991423, 1573152, 3318750, 5820718, 9712145, 19523028, 36637218, 58805129, 121712569, 216006156, 360123456, 720094287, 1340734558, 2184432420, 4453145090, 7987036106, 13417450294
Offset: 10
-
b[n_, i_, s_List] := b[n, i, s] = If[n == 0, Total[s]!, If[i<1, 0, Expand[ Sum[ If[j>0 && MemberQ[s, j], 0, If[j == 0, 1, x]*b[n-i*j, i-1, If[j == 0, s, s ~Union~{j}]]/j!], {j, 0, n/i}]]]]; a[n_] := Coefficient[b[n, n, {}], x, 3]; Table[a[n], {n, 10, 40}] (* Jean-François Alcover, Feb 11 2015, after Alois P. Heinz *)
A246231
Number of compositions of n into exactly four different parts with distinct multiplicities.
Original entry on oeis.org
12600, 78120, 189000, 549000, 1389960, 2858640, 6471699, 15289662, 29639082, 64025820, 134997382, 267550925, 545274648, 1161661901, 2223888268, 4552401195, 9185643748, 17829746962, 35102264675, 71613947350, 135793314152, 270167493481, 534784841445
Offset: 20
-
b[n_, i_, s_List] := b[n, i, s] = If[n == 0, Total[s]!, If[i<1, 0, Expand[ Sum[ If[j>0 && MemberQ[s, j], 0, If[j == 0, 1, x]*b[n-i*j, i-1, If[j == 0, s, s ~Union~ {j}]]/j!], {j, 0, n/i}]]]]; a[n_] := Coefficient[b[n, n, {}], x, 4]; Table[a[n], {n, 20, 50}] (* Jean-François Alcover, Feb 11 2015, after Alois P. Heinz *)
A246232
Number of compositions of n into exactly five different parts with distinct multiplicities.
Original entry on oeis.org
37837800, 290089800, 913512600, 2870988120, 8647198560, 20798177400, 52611741000, 134182896120, 299814913440, 688027838400, 1598171790600, 3415039782840, 7488313184520, 16753428299160, 34973088459120, 74787505653264, 162128661286152, 333915200009352
Offset: 35
-
b[n_, i_, s_List] := b[n, i, s] = If[n == 0, Total[s]!, If[i<1, 0, Expand[ Sum[ If[j>0 && MemberQ[s, j], 0, If[j == 0, 1, x]*b[n-i*j, i-1, If[j == 0, s, s ~Union~ {j}]]/j!], {j, 0, n/i}]]]]; a[n_] := Coefficient[b[n, n, {}], x, 5]; Table[a[n], {n, 35, 60}] (* Jean-François Alcover, Feb 11 2015, after Alois P. Heinz *)
A246233
Number of compositions of n into exactly six different parts with distinct multiplicities.
Original entry on oeis.org
2053230379200, 18772392038400, 73402986056400, 257607082933200, 886531102657200, 2509031227903200, 7078865111398080, 19909183290796800, 51039390957675120, 128693357256063600, 326570236365292920, 777083694958410840, 1847217791018559960, 4410908197048833480
Offset: 56
-
$RecursionLimit = 1000; b[n_, i_, s_List] := b[n, i, s] = If[n == 0, Total[s]!, If[i < 1, 0, Expand[ Sum[ If[j > 0 && MemberQ[s, j], 0, If[j == 0, 1, x]*b[n - i*j, i - 1, If[j == 0, s, s~Union~{j}]]/j!], {j, 0, n/i}]]]]; a[n_] := Coefficient[b[n, n, {}], x, 6]; Table[a[n], {n, 56, 80}] (* Jean-François Alcover, Feb 11 2015, after Alois P. Heinz *)
A246234
Number of compositions of n into exactly seven different parts with distinct multiplicities.
Original entry on oeis.org
2431106898187968000, 25830510793247160000, 121150160426367072000, 478913588068635720000, 1848522650426852400000, 6067325851827648408000, 19158973516499432616000, 59882095876893754464000, 173801554657753702680000, 487295849448575903736000
Offset: 84
-
$RecursionLimit = 1000; b[n_, i_, s_List] := b[n, i, s] = If[n == 0, Total[s]!, If[i < 1, 0, Expand[ Sum[ If[j > 0 && MemberQ[s, j], 0, If[j == 0, 1, x]*b[n - i*j, i - 1, If[j == 0, s, s ~Union~ {j}]]/j!], {j, 0, n/i}]]]]; a[n_] := Coefficient[b[n, n, {}], x, 7]; Table[a[n], {n, 84, 100}] (* Jean-François Alcover, Feb 11 2015, after Alois P. Heinz *)
Showing 1-9 of 9 results.