A242882
Number of compositions of n into parts with distinct multiplicities.
Original entry on oeis.org
1, 1, 2, 2, 6, 12, 16, 40, 60, 82, 216, 538, 788, 2034, 3740, 6320, 13336, 27498, 42936, 93534, 173520, 351374, 734650, 1592952, 3033194, 6310640, 12506972, 25296110, 49709476, 101546612, 195037028, 391548336, 764947954, 1527004522, 2953533640, 5946359758
Offset: 0
a(0) = 1: the empty composition.
a(1) = 1: [1].
a(2) = 2: [1,1], [2].
a(3) = 2: [1,1,1], [3].
a(4) = 6: [1,1,1,1], [1,1,2], [1,2,1], [2,1,1], [2,2], [4].
a(5) = 12: [1,1,1,1,1], [1,1,1,2], [1,1,2,1], [1,2,1,1], [2,1,1,1], [1,2,2], [2,1,2], [2,2,1], [1,1,3], [1,3,1], [3,1,1], [5].
Cf.
A098859 (the same for partitions).
-
b:= proc(n, i, s) option remember; `if`(n=0, add(j, j=s)!,
`if`(i<1, 0, add(`if`(j>0 and j in s, 0,
b(n-i*j, i-1, `if`(j=0, s, s union {j}))/j!), j=0..n/i)))
end:
a:= n-> b(n$2, {}):
seq(a(n), n=0..45);
-
b[n_, i_, s_] := b[n, i, s] = If[n == 0, Sum[j, {j, s}]!, If[i < 1, 0, Sum[If[j > 0 && MemberQ[s, j], 0, b[n - i*j, i - 1, If[j == 0, s, s ~Union~ {j}]]/j!], {j, 0, n/i}]]];
a[n_] := b[n, n, {}];
Table[a[n], {n, 0, 45}] (* Jean-François Alcover, May 17 2018, translated from Maple *)
-
a(n)={((r,k,b,w)->if(!k||!r, if(r,0,w!), sum(m=0, r\k, if(!m || !bittest(b,m), self()(r-k*m, k-1, bitor(b,1<Andrew Howroyd, Aug 31 2019
A242896
Number T(n,k) of compositions of n into k parts with distinct multiplicities, where parts are counted without multiplicities; triangle T(n,k), n>=0, 0<=k<=max{i:A000292(i)<=n}, read by rows.
Original entry on oeis.org
1, 0, 1, 0, 2, 0, 2, 0, 3, 3, 0, 2, 10, 0, 4, 12, 0, 2, 38, 0, 4, 56, 0, 3, 79, 0, 4, 152, 60, 0, 2, 251, 285, 0, 6, 284, 498, 0, 2, 594, 1438, 0, 4, 920, 2816, 0, 4, 1108, 5208, 0, 5, 2136, 11195, 0, 2, 3402, 24094, 0, 6, 4407, 38523, 0, 2, 8350, 85182
Offset: 0
T(5,1) = 2: [1,1,1,1,1], [5].
T(5,2) = 10: [1,1,1,2], [1,1,2,1], [1,2,1,1], [2,1,1,1], [1,2,2], [2,1,2], [2,2,1], [1,1,3], [1,3,1], [3,1,1].
Triangle T(n,k) begins:
1;
0, 1;
0, 2;
0, 2;
0, 3, 3;
0, 2, 10;
0, 4, 12;
0, 2, 38;
0, 4, 56;
0, 3, 79;
0, 4, 152, 60;
-
b:= proc(n, i, s) option remember; `if`(n=0, add(j, j=s)!,
`if`(i<1, 0, expand(add(`if`(j>0 and j in s, 0, `if`(j=0, 1, x)*
b(n-i*j, i-1, `if`(j=0, s, s union {j}))/j!), j=0..n/i))))
end:
T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n$2, {})):
seq(T(n), n=0..16);
-
b[n_, i_, s_List] := b[n, i, s] = If[n == 0, Total[s]!, If[i<1, 0, Expand[ Sum[ If[j>0 && MemberQ[s, j], 0, If[j == 0, 1, x]*b[n-i*j, i-1, If[j == 0, s, s ~Union~ {j}]]/j!], {j, 0, n/i}]]]]; T[n_] := Function[{p}, Table[Coefficient[p, x, i], {i, 0, Exponent[p, x]}]][b[n, n, {}]]; Table[T[n], {n, 0, 16}] // Flatten (* Jean-François Alcover, Feb 11 2015, after Alois P. Heinz *)
A321773
Number of compositions of n into parts with distinct multiplicities and with exactly three parts.
Original entry on oeis.org
1, 3, 6, 4, 9, 9, 10, 12, 15, 13, 18, 18, 19, 21, 24, 22, 27, 27, 28, 30, 33, 31, 36, 36, 37, 39, 42, 40, 45, 45, 46, 48, 51, 49, 54, 54, 55, 57, 60, 58, 63, 63, 64, 66, 69, 67, 72, 72, 73, 75, 78, 76, 81, 81, 82, 84, 87, 85, 90, 90, 91, 93, 96, 94, 99, 99
Offset: 3
From _Gus Wiseman_, Nov 11 2020: (Start)
Also the number of 3-part non-strict compositions of n. For example, the a(3) = 1 through a(11) = 15 triples are:
111 112 113 114 115 116 117 118 119
121 122 141 133 161 144 181 155
211 131 222 151 224 171 226 191
212 411 223 233 225 244 227
221 232 242 252 262 272
311 313 323 333 334 335
322 332 414 343 344
331 422 441 424 353
511 611 522 433 434
711 442 443
622 515
811 533
551
722
911
(End)
A235451 counts 3-part compositions with distinct run-lengths
A001399(n-6) counts 3-part compositions in the complement.
A261982 counts non-strict compositions of any length.
A032020 counts strict compositions.
A242771 counts triples that are not strictly increasing.
-
Table[Length[Join@@Permutations/@Select[IntegerPartitions[n,{3}],!UnsameQ@@#&]],{n,0,100}] (* Gus Wiseman, Nov 11 2020 *)
A321772
Number of compositions of 2n into parts with distinct multiplicities and with exactly n parts.
Original entry on oeis.org
1, 1, 1, 4, 5, 6, 142, 428, 1269, 3874, 20336, 114522, 429002, 1743184, 6456192, 23749014, 93997909, 368890906, 1122546076, 4496925530, 17437145160, 76147395524, 310155556998, 1417665712388, 5528899930962, 21923449788406, 82833896451112, 347234278501138
Offset: 0
a(0) = 1: the empty composition.
a(1) = 1: 2.
a(2) = 1: 22.
a(3) = 4: 222, 114, 141, 411.
A321774
Number of compositions of n into parts with distinct multiplicities and with exactly four parts.
Original entry on oeis.org
1, 4, 4, 8, 5, 8, 12, 12, 9, 16, 16, 16, 17, 20, 20, 24, 21, 24, 28, 28, 25, 32, 32, 32, 33, 36, 36, 40, 37, 40, 44, 44, 41, 48, 48, 48, 49, 52, 52, 56, 53, 56, 60, 60, 57, 64, 64, 64, 65, 68, 68, 72, 69, 72, 76, 76, 73, 80, 80, 80, 81, 84, 84, 88, 85, 88, 92
Offset: 4
A321775
Number of compositions of n into parts with distinct multiplicities and with exactly five parts.
Original entry on oeis.org
1, 5, 15, 15, 20, 6, 30, 20, 35, 35, 21, 35, 50, 40, 50, 36, 55, 55, 65, 55, 56, 70, 70, 70, 85, 61, 85, 85, 90, 90, 86, 90, 105, 105, 105, 91, 120, 110, 120, 120, 111, 125, 135, 125, 140, 126, 140, 140, 155, 145, 141, 155, 160, 160, 170, 146, 175, 175, 175
Offset: 5
A321776
Number of compositions of n into parts with distinct multiplicities and with exactly six parts.
Original entry on oeis.org
1, 6, 21, 6, 96, 192, 142, 372, 357, 372, 543, 798, 598, 1098, 1098, 1044, 1359, 1764, 1459, 2184, 2100, 2130, 2580, 3090, 2635, 3576, 3561, 3576, 4116, 4776, 4162, 5382, 5337, 5382, 6057, 6768, 6058, 7548, 7518, 7548, 8259, 9174, 8359, 10074, 10014, 10020
Offset: 6
A321777
Number of compositions of n into parts with distinct multiplicities and with exactly seven parts.
Original entry on oeis.org
1, 7, 28, 42, 168, 238, 280, 428, 595, 595, 826, 910, 1078, 1232, 1716, 1498, 2023, 2093, 2450, 2450, 2996, 3228, 3626, 3710, 4193, 4263, 4998, 4928, 5916, 5838, 6426, 6510, 7371, 7455, 8316, 8464, 9198, 9268, 10318, 10248, 11319, 11473, 12524, 12460, 13636
Offset: 7
A321778
Number of compositions of n into parts with distinct multiplicities and with exactly eight parts.
Original entry on oeis.org
1, 8, 36, 64, 204, 680, 848, 1528, 1269, 2032, 2368, 3096, 2452, 4440, 4196, 5120, 5393, 7024, 6968, 8816, 7248, 9944, 10840, 11904, 11393, 14312, 14676, 16720, 14684, 18688, 18968, 21544, 20501, 24008, 25072, 26592, 24604, 30288, 30428, 33200, 31905, 36672
Offset: 8
A321779
Number of compositions of n into parts with distinct multiplicities and with exactly nine parts.
Original entry on oeis.org
1, 9, 45, 93, 423, 1143, 969, 3573, 4716, 3874, 7488, 8370, 5976, 9756, 13320, 8748, 17361, 16821, 18451, 21861, 25803, 18201, 32481, 30969, 27492, 34380, 44586, 37192, 48528, 47232, 44748, 56682, 62901, 50517, 70713, 68445, 70795, 76509, 88605, 72813, 96048
Offset: 9
Showing 1-10 of 12 results.