cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 34 results. Next

A000294 Expansion of g.f. Product_{k >= 1} (1 - x^k)^(-k*(k+1)/2).

Original entry on oeis.org

1, 1, 4, 10, 26, 59, 141, 310, 692, 1483, 3162, 6583, 13602, 27613, 55579, 110445, 217554, 424148, 820294, 1572647, 2992892, 5652954, 10605608, 19765082, 36609945, 67405569, 123412204, 224728451, 407119735, 733878402, 1316631730, 2351322765, 4180714647, 7401898452, 13051476707, 22922301583, 40105025130, 69909106888, 121427077241, 210179991927, 362583131144
Offset: 0

Views

Author

Keywords

Comments

Number of partitions of n if there are k(k+1)/2 kinds of k (k=1,2,...). E.g., a(3)=10 because we have six kinds of 3, three kinds of 2+1 because there are three kinds of 2 and 1+1+1+1. - Emeric Deutsch, Mar 23 2005
Euler transform of the triangular numbers 1,3,6,10,...
Equals A028377: [1, 1, 3, 9, 19, 46, 100, ...] convolved with the aerated version of A000294: [1, 0, 1, 0, 4, 0, 10, 0, 26, 0, 59, ...]. - Gary W. Adamson, Jun 13 2009
The formula for p3(n) in the article by S. Finch (page 2) is incomplete, terms with n^(1/2) and n^(1/4) are also needed. These terms are in the article by Mustonen and Rajesh (page 2) and agree with my results, but in both articles the multiplicative constant is marked only as C, resp. c3(m). The following is a closed form of this constant: Pi^(1/24) * exp(1/24 - Zeta(3) / (8*Pi^2) + 75*Zeta(3)^3 / (2*Pi^8)) / (A^(1/2) * 2^(157/96) * 15^(13/96)) = A255939 = 0.213595160470..., where A = A074962 is the Glaisher-Kinkelin constant and Zeta(3) = A002117. - Vaclav Kotesovec, Mar 11 2015 [The new version of "Integer Partitions" by S. Finch contains the missing terms, see pages 2 and 5. - Vaclav Kotesovec, May 12 2015]
Number of solid partitions of corner-hook volume n (see arXiv:2009.00592 among links for definition). E.g., a(2) = 1 because there is only one solid partition [[[2]]] with cohook volume 2; a(3) = 4 because we have three solid partitions with two 1's (entry at (1,1,1) contributes 1, another entry at (2,1,1) or (1,2,1) or (1,1,2) contributes 2 to corner-hook volume) and one solid partition with single entry 3 (which contributes 3 to the corner-hook volume). Namely as 3D arrays [[[1],[1]]],[[[1]],[[1]]],[[[1]],[[1]]], [[[3]]]. - Alimzhan Amanov, Jul 13 2021

References

  • R. Chandra, Tables of solid partitions, Proceedings of the Indian National Science Academy, 26 (1960), 134-139.
  • V. S. Nanda, Tables of solid partitions, Proceedings of the Indian National Science Academy, 19 (1953), 313-314.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. also A278403 (log of o.g.f.).

Programs

  • Maple
    with(numtheory): etr:= proc(p) local b; b:=proc(n) option remember; local d,j; if n=0 then 1 else add(add(d*p(d), d=divisors(j)) *b(n-j), j=1..n)/n fi end end: a:= etr(n-> n*(n+1)/2): seq(a(n), n=0..30);  # Alois P. Heinz, Sep 08 2008
  • Mathematica
    a[0] = 1; a[n_] := a[n] = 1/(2*n)*Sum[(DivisorSigma[2, k]+DivisorSigma[3, k])*a[n-k], {k, 1, n}]; Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Mar 05 2014, after Vladeta Jovovic *)
    nmax=50; CoefficientList[Series[Product[1/(1-x^k)^(k*(k+1)/2),{k,1,nmax}],{x,0,nmax}],x] (* Vaclav Kotesovec, Mar 11 2015 *)
  • PARI
    a(n)=if(n<0, 0, polcoeff(exp(sum(k=1, n, x^k/(1-x^k)^3/k, x*O(x^n))), n)) \\ Joerg Arndt, Apr 16 2010
    
  • SageMath
    # uses[EulerTransform from A166861]
    b = EulerTransform(lambda n: binomial(n+1, 2))
    print([b(n) for n in range(37)]) # Peter Luschny, Nov 11 2020

Formula

a(n) = (1/(2*n))*Sum_{k=1..n} (sigma[2](k)+sigma[3](k))*a(n-k). - Vladeta Jovovic, Sep 17 2002
a(n) ~ Pi^(1/24) * exp(1/24 - Zeta(3) / (8*Pi^2) + 75*Zeta(3)^3 / (2*Pi^8) - 15^(5/4) * Zeta(3)^2 * n^(1/4) / (2^(7/4)*Pi^5) + 15^(1/2) * Zeta(3) * n^(1/2) / (2^(1/2)*Pi^2) + 2^(7/4) * Pi * n^(3/4) / (3*15^(1/4))) / (A^(1/2) * 2^(157/96) * 15^(13/96) * n^(61/96)), where A = A074962 = 1.2824271291... is the Glaisher-Kinkelin constant and Zeta(3) = A002117 = 1.202056903... . - Vaclav Kotesovec, Mar 11 2015
G.f.: exp(Sum_{k>=1} (sigma_2(k) + sigma_3(k))*x^k/(2*k)). - Ilya Gutkovskiy, Aug 21 2018

Extensions

More terms from Sascha Kurz, Aug 15 2002

A259068 Decimal expansion of zeta'(-3) (the derivative of Riemann's zeta function at -3).

Original entry on oeis.org

0, 0, 5, 3, 7, 8, 5, 7, 6, 3, 5, 7, 7, 7, 4, 3, 0, 1, 1, 4, 4, 4, 1, 6, 9, 7, 4, 2, 1, 0, 4, 1, 3, 8, 4, 2, 8, 9, 5, 6, 6, 4, 4, 3, 9, 7, 4, 2, 2, 9, 5, 5, 0, 7, 0, 5, 9, 4, 4, 7, 0, 2, 3, 2, 2, 3, 3, 2, 4, 5, 0, 1, 9, 9, 7, 9, 2, 4, 0, 6, 9, 5, 8, 6, 0, 9, 5, 1, 0, 3, 8, 7, 0, 8, 2, 5, 6, 8, 3, 2, 6, 7, 1, 2, 2, 4, 3
Offset: 0

Views

Author

Jean-François Alcover, Jun 18 2015

Keywords

Examples

			0.0053785763577743011444169742104138428956644397422955070594470232233245...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 2.15.1 Generalized Glaisher constants, p. 136-137.

Crossrefs

Programs

  • Mathematica
    Join[{0, 0}, RealDigits[Zeta'[-3], 10, 105] // First]

Formula

zeta'(-n) = (BernoulliB(n+1)*HarmonicNumber(n))/(n+1) - log(A(n)), where A(n) is the n-th Bendersky constant, that is the n-th generalized Glaisher constant.
zeta'(-3) = -11/720 - log(A(3)), where A(3) is A243263.
Equals -11/720 + (gamma + log(2*Pi))/120 - 3*Zeta'(4)/(4*Pi^4), where gamma is the Euler-Mascheroni constant A001620. - Vaclav Kotesovec, Jul 24 2015

A000391 Euler transform of A000332.

Original entry on oeis.org

1, 6, 21, 71, 216, 672, 1982, 5817, 16582, 46633, 128704, 350665, 941715, 2499640, 6557378, 17024095, 43756166, 111433472, 281303882, 704320180, 1749727370, 4314842893, 10565857064, 25700414815, 62115621317, 149214574760, 356354881511, 846292135184
Offset: 1

Views

Author

Keywords

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Maple
    with(numtheory): etr:= proc(p) local b; b:=proc(n) option remember; local d,j; if n=0 then 1 else add(add(d*p(d), d=divisors(j)) *b(n-j), j=1..n)/n fi end end: a:= etr(n-> binomial(n+3,4)): seq(a(n), n=1..30); # Alois P. Heinz, Sep 08 2008
  • Mathematica
    nn = 50; b = Table[Binomial[n, 4], {n, 4, nn + 4}]; Rest[CoefficientList[Series[Product[1/(1 - x^m)^b[[m]], {m, nn}], {x, 0, nn}], x]] (* T. D. Noe, Jun 21 2012 *)
    nmax=50; Rest[CoefficientList[Series[Product[1/(1-x^k)^(k*(k+1)*(k+2)*(k+3)/24),{k,1,nmax}],{x,0,nmax}],x]] (* Vaclav Kotesovec, Mar 11 2015 *)
  • PARI
    a(n)=if(n<0, 0, polcoeff(exp(sum(k=1, n, x^k/(1-x^k)^5/k, x*O(x^n))), n)) /* Joerg Arndt, Apr 16 2010 */

Formula

a(n) ~ Pi^(3/160) / (2 * 3^(243/320) * 7^(83/960) * n^(563/960)) * exp(Zeta'(-1)/4 - 143 * Zeta(3) / (240 * Pi^2) + 53461 * Zeta(5) / (3200 * Pi^4) + 107163 * Zeta(3) * Zeta(5)^2 / (2*Pi^12) - 24754653 * Zeta(5)^3 / (10*Pi^14) + 413420708484 * Zeta(5)^5 / (5*Pi^24) + Zeta'(-3)/4 + (-847 * 7^(1/6) * Pi / (19200 * sqrt(3)) - 189 * sqrt(3) * 7^(1/6) * Zeta(3) * Zeta(5) / (2*Pi^7) + 305613 * sqrt(3) * 7^(1/6) * Zeta(5)^2 / (80*Pi^9) - 614365479 * sqrt(3) * 7^(1/6) * Zeta(5)^4 / (4*Pi^19)) * n^(1/6) + (3 * 7^(1/3) * Zeta(3) / (4*Pi^2) - 693 * 7^(1/3) * Zeta(5) / (40*Pi^4) + 857304 * 7^(1/3) * Zeta(5)^3 / Pi^14) * n^(1/3) + (11 * sqrt(7/3) * Pi / 120 - 1701 * sqrt(21) * Zeta(5)^2 / Pi^9) * sqrt(n) + 27 * 7^(2/3) * Zeta(5) / (2*Pi^4) * n^(2/3) + 2*sqrt(3)*Pi / (5*7^(1/6)) * n^(5/6)). - Vaclav Kotesovec, Mar 12 2015

A000417 Euler transform of A000389.

Original entry on oeis.org

1, 7, 28, 105, 357, 1232, 4067, 13301, 42357, 132845, 409262, 1243767, 3727360, 11036649, 32300795, 93538278, 268164868, 761656685, 2144259516, 5986658951, 16583102077, 45593269265, 124464561544, 337479729179, 909156910290, 2434121462871, 6478440788169
Offset: 1

Views

Author

Keywords

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Maple
    with(numtheory): etr:= proc(p) local b; b:=proc(n) option remember; local d,j; if n=0 then 1 else add(add(d*p(d), d=divisors(j)) *b(n-j), j=1..n)/n fi end end: a:= etr(n-> binomial(n+4,5)): seq(a(n), n=1..30); # Alois P. Heinz, Sep 08 2008
  • Mathematica
    nn = 100; b = Table[Binomial[n, 5], {n, 5, nn + 5}]; Rest[CoefficientList[Series[Product[1/(1 - x^m)^b[[m]], {m, nn}], {x, 0, nn}], x]] (* T. D. Noe, Jun 20 2012 *)
  • PARI
    a(n)=if(n<0, 0, polcoeff(exp(sum(k=1, n, x^k/(1-x^k)^6/k, x*O(x^n))), n)) /* Joerg Arndt, Apr 16 2010 */

Formula

a(n) ~ (3*Zeta(7))^(31103/423360) / (2^(180577/423360) * sqrt(7*Pi) * n^(242783/423360)) * exp(Zeta'(-1)/5 - 5*Zeta(3)/(48*Pi^2) + Zeta(5)/(16*Pi^4) - Pi^36/(1162964338810860915 * Zeta(7)^5) + Pi^24 * Zeta(5) / (413420708484 * Zeta(7)^4) - Pi^22 / (137806902828 * Zeta(7)^3) - Pi^12 * Zeta(5)^2 / (551124 * Zeta(7)^3) + Pi^12 * Zeta(3) / (11252115 * Zeta(7)^2) + Pi^10 * Zeta(5) / (122472 * Zeta(7)^2) + 49*Zeta(5)^3 / (216 * Zeta(7)^2) - Pi^8 / (108864 * Zeta(7)) - Zeta(3) * Zeta(5) / (15*Zeta(7)) + Zeta'(-5)/120 + 7*Zeta'(-3)/24 + (22 * 2^(6/7) * Pi^30 / (46901442470561469 * 3^(1/7) * Zeta(7)^(29/7)) - 10 * 2^(6/7) * Pi^18 * Zeta(5) / (8931928887 * 3^(1/7) * Zeta(7)^(22/7)) + Pi^16 / (141776649 * 6^(1/7) * Zeta(7)^(15/7)) + 2^(6/7) * Pi^6 * Zeta(5)^2 / (1701 * 3^(1/7) * Zeta(7)^(15/7)) - 2^(6/7) * Pi^6 * Zeta(3) / (19845 * 3^(1/7) * Zeta(7)^(8/7)) - Pi^4 * Zeta(5) / (216 * 6^(1/7) * Zeta(7)^(8/7))) * n^(1/7) + (-2 * 2^(5/7) * Pi^24 / (3938980639167 * 3^(2/7) * Zeta(7)^(23/7)) + Pi^12 * Zeta(5) / (500094 * 6^(2/7) * Zeta(7)^(16/7)) - Pi^10 / (142884 * 6^(2/7) * Zeta(7)^(9/7)) - 7*Zeta(5)^2 / (12 * 6^(2/7) * Zeta(7)^(9/7)) + Zeta(3)/(5 * (6*Zeta(7))^(2/7))) * n^(2/7) + (5 * 2^(4/7) * Pi^18 / (8931928887 * 3^(3/7) * Zeta(7)^(17/7)) - Pi^6 * Zeta(5) / (567 * 6^(3/7) * Zeta(7)^(10/7)) + Pi^4 / (108 * (6*Zeta(7))^(3/7))) * n^(3/7) + (-Pi^12 / (750141 * 6^(4/7) * Zeta(7)^(11/7)) + 7*Zeta(5) / (4 * (6 * Zeta(7))^(4/7))) * n^(4/7) + 2^(2/7) * Pi^6 / (945 * (3*Zeta(7))^(5/7)) * n^(5/7) + 7*Zeta(7)^(1/7) / 6^(6/7) * n^(6/7)). - Vaclav Kotesovec, Mar 12 2015

Extensions

More terms from Sean A. Irvine, Nov 14 2010

A000428 Euler transform of A000579.

Original entry on oeis.org

1, 8, 36, 148, 554, 2094, 7624, 27428, 96231, 332159, 1126792, 3769418, 12437966, 40544836, 130643734, 416494314, 1314512589, 4110009734, 12737116845, 39144344587, 119350793207, 361173596536, 1085171968872
Offset: 1

Views

Author

Keywords

Comments

In general, if g.f. = Product_{k>=1} 1/(1-x^k)^binomial(k+m-2,m-1) and m >= 1, then log(a(n)) ~ (m+1) * Zeta(m+1)^(1/(m+1)) * (n/m)^(m/(m+1)). - Vaclav Kotesovec, Mar 12 2015

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Maple
    with(numtheory): etr:= proc(p) local b; b:=proc(n) option remember; local d,j; if n=0 then 1 else add(add(d*p(d), d=divisors(j)) *b(n-j), j=1..n)/n fi end end: a:= etr(n-> binomial(n+5,6)): seq(a(n), n=1..30); # Alois P. Heinz, Sep 08 2008
  • Mathematica
    nn = 30; b = Table[Binomial[n, 6], {n, 6, nn + 6}]; Rest[CoefficientList[Series[Product[1/(1 - x^m)^b[[m]], {m, nn}], {x, 0, nn}], x]] (* T. D. Noe, Jun 20 2012 *)
  • PARI
    a(n)=if(n<0, 0, polcoeff(exp(sum(k=1, n, x^k/(1-x^k)^7/k, x*O(x^n))), n)) /* Joerg Arndt, Apr 16 2010 */

A107895 Euler transform of n!.

Original entry on oeis.org

1, 1, 3, 9, 36, 168, 961, 6403, 49302, 430190, 4199279, 45326013, 535867338, 6884000262, 95453970483, 1420538043009, 22579098396600, 381704267100888, 6837775526561031, 129377310771795789, 2578101967764973314, 53965231260126083854, 1183813954026245944519
Offset: 0

Views

Author

Thomas Wieder, May 26 2005

Keywords

Crossrefs

Programs

  • Maple
    EulerTrans := proc(p) local b; b := proc(n) option remember; local d, j;
    `if`(n=0,1, add(add(d*p(d),d=numtheory[divisors](j)) *b(n-j),j=1..n)/n) end end:
    A107895 := EulerTrans(n->n!):  seq(A107895(n),n=0..20);
    # After Alois P. Heinz, A000335.  [Peter Luschny, Jul 07 2011]
  • Mathematica
    EulerTrans[p_] := Module[{b}, b[n_] := b[n] = Module[{d, j}, If[n == 0, 1, Sum[Sum[d*p[d], {d, Divisors[j]}]*b[n-j], {j, 1, n}]/n]]; b]; A107895 = EulerTrans[Factorial]; Table[A107895[n], {n, 0, 22}] (* Jean-François Alcover, Feb 25 2014, after Alois P. Heinz *)

Formula

a(n) ~ n! * (1 + 1/n + 3/n^2 + 12/n^3 + 66/n^4 + 450/n^5 + 3679/n^6 + 35260/n^7 + 388511/n^8 + 4844584/n^9 + 67502450/n^10), for next coefficients see A248871. - Vaclav Kotesovec, Mar 14 2015
G.f.: Product_{n>=1} 1/(1-x^n)^(n!). - Vaclav Kotesovec, Aug 04 2015

A279215 Expansion of Product_{k>=1} 1/(1 - x^k)^(k*(k+1)*(2*k+1)/6).

Original entry on oeis.org

1, 1, 6, 20, 65, 190, 571, 1616, 4555, 12439, 33515, 88517, 230738, 592321, 1502384, 3763946, 9328899, 22880511, 55585077, 133806273, 319373068, 756124040, 1776497540, 4143489680, 9597505006, 22083821765, 50494638926, 114758996621, 259303832735, 582655202940, 1302234303910, 2895530963661, 6406348746390
Offset: 0

Views

Author

Ilya Gutkovskiy, Dec 08 2016

Keywords

Comments

Euler transform of the square pyramidal numbers (A000330).

Crossrefs

Programs

  • Mathematica
    nmax=32; CoefficientList[Series[Product[1/(1 - x^k)^(k (k + 1) (2 k + 1)/6), {k, 1, nmax}], {x, 0, nmax}], x]

Formula

G.f.: Product_{k>=1} 1/(1 - x^k)^(k*(k+1)*(2*k+1)/6).
a(n) ~ exp(Zeta'(-1)/6 - Zeta(3)/(8*Pi^2) - Pi^16/(24883200000*Zeta(5)^3) + Pi^8*Zeta(3)/(1728000*Zeta(5)^2) - Zeta(3)^2/(720*Zeta(5)) + Zeta'(-3)/3 + (Pi^12/(43200000*2^(3/5)*Zeta(5)^(11/5)) - Pi^4*Zeta(3) / (3600*2^(3/5) * Zeta(5)^(6/5))) * n^(1/5) + (-Pi^8/(144000*2^(1/5)*Zeta(5)^(7/5)) + Zeta(3)/(12*2^(1/5)*Zeta(5)^(2/5))) * n^(2/5) + Pi^4/(180*2^(4/5)*Zeta(5)^(3/5)) * n^(3/5) + 5*Zeta(5)^(1/5)/2^(7/5) * n^(4/5)) * Zeta(5)^(23/225) / (2^(29/150) * sqrt(5*Pi) * n^(271/450)). - Vaclav Kotesovec, Dec 08 2016

A279216 Expansion of Product_{k>=1} 1/(1 - x^k)^(k^2*(k+1)/2).

Original entry on oeis.org

1, 1, 7, 25, 86, 269, 862, 2606, 7812, 22704, 64989, 182356, 504414, 1373694, 3693367, 9804435, 25733084, 66808578, 171719539, 437183839, 1103143657, 2760037810, 6850400668, 16873338215, 41260373472, 100196920196, 241712863504, 579416535973, 1380517695672, 3270075208145, 7702580246941
Offset: 0

Views

Author

Ilya Gutkovskiy, Dec 08 2016

Keywords

Comments

Euler transform of the pentagonal pyramidal numbers (A002411).

Crossrefs

Programs

  • Mathematica
    nmax=30; CoefficientList[Series[Product[1/(1 - x^k)^(k^2 (k + 1)/2), {k, 1, nmax}], {x, 0, nmax}], x]

Formula

G.f.: Product_{k>=1} 1/(1 - x^k)^(k^2*(k+1)/2).
a(n) ~ exp(-Zeta(3)/(8*Pi^2) - Pi^16/(83980800000*Zeta(5)^3) + Zeta'(-3)/2 + (Pi^12/(97200000*2^(2/5)*3^(1/5)*Zeta(5)^(11/5))) * n^(1/5) + (-Pi^8/(108000*2^(4/5)*3^(2/5)*Zeta(5)^(7/5))) * n^(2/5) + (Pi^4/(180*2^(1/5)*(3*Zeta(5))^(3/5))) * n^(3/5) + ((5*(3*Zeta(5))^(1/5))/(2^(8/5))) * n^(4/5)) * (3*Zeta(5))^(119/1200) / (2^(181/600) * sqrt(5*Pi) * n^(719/1200)). - Vaclav Kotesovec, Dec 08 2016

A258352 Expansion of Product_{k>=1} 1/(1-x^k)^(k*(k-1)*(k-2)/6).

Original entry on oeis.org

1, 0, 0, 1, 4, 10, 21, 39, 76, 145, 294, 581, 1169, 2276, 4435, 8494, 16237, 30768, 58221, 109466, 205223, 382658, 710808, 1314091, 2420437, 4439753, 8115645, 14781062, 26833241, 48550863, 87575527, 157480827, 282362462, 504819198, 900058558, 1600424247
Offset: 0

Views

Author

Vaclav Kotesovec, May 27 2015

Keywords

Crossrefs

Programs

  • Mathematica
    nmax=40; CoefficientList[Series[Product[1/(1-x^k)^(k*(k-1)*(k-2)/6),{k,1,nmax}],{x,0,nmax}],x]
  • SageMath
    # uses[EulerTransform from A166861]
    b = EulerTransform(lambda n: binomial(n, 3))
    print([b(n) for n in range(37)]) # Peter Luschny, Nov 11 2020

Formula

a(n) ~ Zeta(5)^(379/3600) / (2^(521/1800) * sqrt(5*Pi) * n^(2179/3600)) * exp(Zeta'(-1)/3 + Zeta(3)/(8*Pi^2) - Pi^16 / (3110400000 * Zeta(5)^3) + Pi^8 * Zeta(3) / (216000 * Zeta(5)^2) - Zeta(3)^2/(90*Zeta(5)) + Zeta'(-3)/6 + (-Pi^12 / (10800000 * 2^(2/5) * Zeta(5)^(11/5)) + Pi^4 * Zeta(3) / (900 * 2^(2/5) * Zeta(5)^(6/5))) * n^(1/5) + (-Pi^8 / (36000 * 2^(4/5) * Zeta(5)^(7/5)) + Zeta(3) / (3 * 2^(4/5) * Zeta(5)^(2/5))) * n^(2/5) - Pi^4 / (180 * 2^(1/5) * Zeta(5)^(3/5)) * n^(3/5) + 5 * Zeta(5)^(1/5) / 2^(8/5) * n^(4/5)), where Zeta(3) = A002117, Zeta(5) = A013663, Zeta'(-1) = A084448 = 1/12 - log(A074962), Zeta'(-3) = ((gamma + log(2*Pi) - 11/6)/30 - 3*Zeta'(4)/Pi^4)/4.

A255965 Expansion of Product_{k>=1} 1/(1-x^k)^binomial(k+6,7).

Original entry on oeis.org

1, 1, 9, 45, 201, 819, 3357, 13329, 52215, 199686, 750733, 2774793, 10112184, 36357280, 129131448, 453379226, 1574884565, 5415956550, 18450934294, 62303210591, 208624947952, 693066815809, 2285129922950, 7480504628754, 24320897894515, 78557786077315
Offset: 0

Views

Author

Vaclav Kotesovec, Mar 12 2015

Keywords

Comments

In general, if g.f. = Product_{k>=1} 1/(1-x^k)^binomial(k+m-2,m-1) and m >= 1, then log(a(n)) ~ (m+1) * Zeta(m+1)^(1/(m+1)) * (n/m)^(m/(m+1)).

Crossrefs

Cf. A000041 (m=1), A000219 (m=2), A000294 (m=3), A000335 (m=4), A000391 (m=5), A000417 (m=6), A000428 (m=7).

Programs

  • Mathematica
    nmax=40; CoefficientList[Series[Product[1/(1-x^k)^(k*(k+1)*(k+2)*(k+3)*(k+4)*(k+5)*(k+6)/7!),{k,1,nmax}],{x,0,nmax}],x]

Formula

G.f.: exp(Sum_{k>=1} x^k/(k*(1 - x^k)^8)). - Ilya Gutkovskiy, May 28 2018
Showing 1-10 of 34 results. Next