A226748
Number of partitions of n into Platonic numbers, cf. A053012.
Original entry on oeis.org
1, 1, 1, 1, 2, 2, 3, 3, 5, 5, 7, 7, 11, 11, 14, 14, 20, 20, 26, 27, 37, 37, 46, 47, 62, 63, 77, 80, 101, 103, 125, 130, 160, 164, 194, 203, 245, 253, 296, 311, 368, 381, 440, 463, 540, 562, 642, 677, 780, 814, 922, 973, 1107, 1157, 1302, 1375, 1552, 1626
Offset: 0
First Platonic numbers: 1, 4, 6, 8, 10, 12, 19, 20, ...
a(10) = #{10, 8+1+1, 6+4, 6+1+1+1+1, 4+4+1+1, 4+6x1, 10x1} = 7;
a(11) = #{10+1, 8+1+1+1, 6+4+1, 6+5x1, 4+4+1+1+1, 4+7x1, 11x1} = 7;
a(12) = #{12, 10+1+1, 8+4, 8+1+1+1+1, 6+6, 6+4+1+1, 6+6x1, 4+4+4, 4+4+1+1+1+1, 4+8x1, 12x1} = 11;
a(13) = #{12+1, 10+1+1+1, 8+4+1, 8+5x1, 6+6+1, 6+4+1+1+1, 6+7x1, 4+4+4+1, 4+4+5x1, 4+9x1, 13x1} = 11;
a(14) = #{12+1+1, 10+4, 10+1+1+1+1, 8+6, 8+4+1+1, 8+6x1, 6+6+1+1, 6+4+4, 6+4+1+1+1+1, 6+8x1, 4+4+4+1+1, 4+4+6x1, 4+10x1, 14x1} = 14;
a(15) = #{12+1+1+1, 10+4+1, 10+5x1, 8+6+1, 8+4+1+1+1, 8+7x1, 6+6+1+1+1, 6+4+4+1, 6+4+5x1, 6+9x1, 4+4+4+1+1+1, 4+4+7x1, 4+11x1, 15x1} = 14;
a(16) = #{12+4, 12+1+1+1+1, 10+6, 10+4+1+1, 10+6x1, 8+8, 8+6+1+1, 8+4+4, 8+4+1+1+1+1, 8+8x1, 6+6+4, 6+6+1+1+1+1, 6+4+4+1+1, 6+4+6x1, 6+10x1, 4+4+4+4, 4+4+4+1+1+1+1, 4+4+8x1, 4+12x1, 16x1} = 20.
A226749
Number of partitions of n into distinct Platonic numbers, cf. A053012.
Original entry on oeis.org
1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 3, 4, 4, 3, 3, 4, 4, 4, 4, 5, 5, 5, 6, 7, 6, 6, 6, 7, 7, 8, 8, 9, 9, 9, 9, 9, 9, 11, 11, 11, 12, 13, 13, 12, 12, 13, 15, 15, 16, 17, 17, 16, 18, 18, 19, 19, 21, 21, 23, 24, 25, 24, 24, 24, 26, 26, 29, 32
Offset: 0
First Platonic numbers: 1, 4, 6, 8, 10, 12, 19, 20, 27, ...
a(10) = #{10, 6+4} = 2;
a(11) = #{10+1, 6+4+1} = 2;
a(12) = #{12, 8+4} = 2;
a(13) = #{12+1, 8+4+1} = 2;
a(14) = #{10+4, 8+6} = 2;
a(15) = #{10+4+1, 8+6+1} = 2;
a(16) = #{12+4, 10+6} = 2;
a(17) = #{12+4+1, 10+6+1} = 2;
a(18) = #{12+6, 10+8, 8+6+4} = 3;
a(19) = #{19, 12+6+1, 10+8+1, 8+6+4+1} = 4;
a(20) = #{20, 19+1, 12+8, 10+6+4} = 4.
A000578
The cubes: a(n) = n^3.
Original entry on oeis.org
0, 1, 8, 27, 64, 125, 216, 343, 512, 729, 1000, 1331, 1728, 2197, 2744, 3375, 4096, 4913, 5832, 6859, 8000, 9261, 10648, 12167, 13824, 15625, 17576, 19683, 21952, 24389, 27000, 29791, 32768, 35937, 39304, 42875, 46656, 50653, 54872, 59319, 64000, 68921, 74088, 79507
Offset: 0
For k=3, b(3) = 2 b(2) - b(1) = 4-1 = 3, so det(S(4,3,(1,1,-1))) = 3*3^2 = 27.
For n=3, a(3) = 3 + (3*0^2 + 3*0 + 3*1^2 + 3*1 + 3*2^2 + 3*2) = 27. - _Patrick J. McNab_, Mar 28 2016
- Albert H. Beiler, Recreations in the theory of numbers, New York, Dover, (2nd ed.) 1966. See p. 191.
- John H. Conway and Richard K. Guy, The Book of Numbers, New York: Springer-Verlag, 1996. See pp. 43, 64, 81.
- R. L. Graham, D. E. Knuth, and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 1990, p. 255; 2nd. ed., p. 269. Worpitzky's identity (6.37).
- Jan Gullberg, Mathematics from the Birth of Numbers, W. W. Norton & Co., NY & London, 1997, §8.6 Figurate Numbers, p. 292.
- T. Aaron Gulliver, "Sequences from cubes of integers", International Mathematical Journal, 4 (2003), no. 5, 439 - 445. See http://www.m-hikari.com/z2003.html for information about this journal. [I expanded the reference to make this easier to find. - N. J. A. Sloane, Feb 18 2019]
- J. Propp and A. Propp-Gubin, "Counting Triangles in Triangles", Pi Mu Epsilon Journal (to appear).
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, pages 6-7.
- D. Wells, You Are A Mathematician, pp. 238-241, Penguin Books 1995.
- N. J. A. Sloane, Table of n, a(n) for n = 0..10000
- H. Bottomley, Illustration of initial terms
- British National Museum, Tablet 92698
- N. Brothers, S. Evans, L. Taalman, L. Van Wyk, D. Witczak, and C. Yarnall, Spiral knots, Missouri J. of Math. Sci., 22 (2010).
- M. DeLong, M. Russell, and J. Schrock, Colorability and determinants of T(m,n,r,s) twisted torus knots for n equiv. +/-1(mod m), Involve, Vol. 8 (2015), No. 3, 361-384.
- Ralph Greenberg, Math For Poets
- R. K. Guy, The strong law of small numbers. Amer. Math. Monthly 95 (1988), no. 8, 697-712. [Annotated scanned copy]
- Milan Janjic, Enumerative Formulas for Some Functions on Finite Sets [Cached version at the Wayback Machine]
- Hyun Kwang Kim, On Regular Polytope Numbers, Proc. Amer. Math. Soc., 131 (2002), 65-75. - fixed by _Felix Fröhlich_, Jun 16 2014
- T. P. Martin, Shells of atoms, Phys. Reports, 273 (1996), 199-241, eq. (8).
- Ed Pegg, Jr., Sequence Pictures, Math Games column, Dec 08 2003.
- Ed Pegg, Jr., Sequence Pictures, Math Games column, Dec 08 2003 [Cached copy, with permission (pdf only)]
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
- James Propp and Adam Propp-Gubin, Counting Triangles in Triangles, arXiv:2409.17117 [math.CO], 25 September 2024.
- Kenneth A. Ross, First Digits of Squares and Cubes, Math. Mag. 85 (2012) 36-42. doi:10.4169/math.mag.85.1.36.
- Eric Weisstein's World of Mathematics, Cubic Number, and Hex Pyramidal Number
- Ronald Yannone, Hilbert Matrix Analyses
- Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
- Index entries for "core" sequences
- Index entries for sequences related to Benford's law
(1/12)*t*(n^3-n)+n for t = 2, 4, 6, ... gives
A004006,
A006527,
A006003,
A005900,
A004068,
A000578,
A004126,
A000447,
A004188,
A004466,
A004467,
A007588,
A062025,
A063521,
A063522,
A063523.
-
a000578 = (^ 3)
a000578_list = 0 : 1 : 8 : zipWith (+)
(map (+ 6) a000578_list)
(map (* 3) $ tail $ zipWith (-) (tail a000578_list) a000578_list)
-- Reinhard Zumkeller, Sep 05 2015, May 24 2012, Oct 22 2011
-
[ n^3 : n in [0..50] ]; // Wesley Ivan Hurt, Jun 14 2014
-
I:=[0,1,8,27]; [n le 4 select I[n] else 4*Self(n-1)-6*Self(n-2)+4*Self(n-3)-Self(n-4): n in [1..45]]; // Vincenzo Librandi, Jul 05 2014
-
A000578 := n->n^3;
seq(A000578(n), n=0..50);
isA000578 := proc(r)
local p;
if r = 0 or r =1 then
true;
else
for p in ifactors(r)[2] do
if op(2, p) mod 3 <> 0 then
return false;
end if;
end do:
true ;
end if;
end proc: # R. J. Mathar, Oct 08 2013
-
Table[n^3, {n, 0, 30}] (* Stefan Steinerberger, Apr 01 2006 *)
CoefficientList[Series[x (1 + 4 x + x^2)/(1 - x)^4, {x, 0, 45}], x] (* Vincenzo Librandi, Jul 05 2014 *)
Accumulate[Table[3n^2+3n+1,{n,0,20}]] (* or *) LinearRecurrence[{4,-6,4,-1},{1,8,27,64},20](* Harvey P. Dale, Aug 18 2018 *)
-
A000578(n):=n^3$
makelist(A000578(n),n,0,30); /* Martin Ettl, Nov 03 2012 */
-
A000578(n)=n^3 \\ M. F. Hasler, Apr 12 2008
-
is(n)=ispower(n,3) \\ Charles R Greathouse IV, Feb 20 2012
-
A000578_list, m = [], [6, -6, 1, 0]
for _ in range(10**2):
A000578_list.append(m[-1])
for i in range(3):
m[i+1] += m[i] # Chai Wah Wu, Dec 15 2015
-
(define (A000578 n) (* n n n)) ;; Antti Karttunen, Oct 06 2017
A000292
Tetrahedral (or triangular pyramidal) numbers: a(n) = C(n+2,3) = n*(n+1)*(n+2)/6.
Original entry on oeis.org
0, 1, 4, 10, 20, 35, 56, 84, 120, 165, 220, 286, 364, 455, 560, 680, 816, 969, 1140, 1330, 1540, 1771, 2024, 2300, 2600, 2925, 3276, 3654, 4060, 4495, 4960, 5456, 5984, 6545, 7140, 7770, 8436, 9139, 9880, 10660, 11480, 12341, 13244, 14190, 15180
Offset: 0
a(2) = 3*4*5/6 = 10, the number of balls in a pyramid of 3 layers of balls, 6 in a triangle at the bottom, 3 in the middle layer and 1 on top.
Consider the square array
1 2 3 4 5 6 ...
2 4 6 8 10 12 ...
3 6 9 12 16 20 ...
4 8 12 16 20 24 ...
5 10 15 20 25 30 ...
...
then a(n) = sum of n-th antidiagonal. - _Amarnath Murthy_, Apr 06 2003
G.f. = x + 4*x^2 + 10*x^3 + 20*x^4 + 35*x^5 + 56*x^6 + 84*x^7 + 120*x^8 + 165*x^9 + ...
Example for a(3+1) = 20 nondecreasing 3-letter words over {1,2,3,4}: 111, 222, 333; 444, 112, 113, 114, 223, 224, 122, 224, 133, 233, 144, 244, 344; 123, 124, 134, 234. 4 + 4*3 + 4 = 20. - _Wolfdieter Lang_, Jul 29 2014
Example for a(4-2) = 4 independent components of a rank 3 antisymmetric tensor A of dimension 4: A(1,2,3), A(1,2,4), A(1,3,4) and A(2,3,4). - _Wolfdieter Lang_, Dec 10 2015
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 828.
- V. I. Arnold (ed.), Arnold's Problems, Springer, 2004, comments on Problem 1990-11 (p. 75), pp. 503-510. Numbers N_0.
- A. H. Beiler, Recreations in the Theory of Numbers, Dover, NY, 1964, p. 194.
- J. H. Conway and R. K. Guy, The Book of Numbers, Copernicus Press, NY, 1996, pp. 44, 70.
- H. S. M. Coxeter, Polyhedral numbers, pp. 25-35 of R. S. Cohen, J. J. Stachel and M. W. Wartofsky, eds., For Dirk Struik: Scientific, historical and political essays in honor of Dirk J. Struik, Reidel, Dordrecht, 1974.
- E. Deza and M. M. Deza, Figurate numbers, World Scientific Publishing (2012), page 93.
- L. E. Dickson, History of the Theory of Numbers. Carnegie Institute Public. 256, Washington, DC, Vol. 1, 1919; Vol. 2, 1920; Vol. 3, 1923, see vol. 2, p. 4.
- M. V. Diudea, I. Gutman, and J. Lorentz, Molecular Topology, Nova Science, 2001, Huntington, N.Y. pp. 152-156.
- Jan Gullberg, Mathematics from the Birth of Numbers, W. W. Norton & Co., NY & London, 1997, §8.6 Figurate Numbers, pp. 292-293.
- J. C. P. Miller, editor, Table of Binomial Coefficients. Royal Society Mathematical Tables, Vol. 3, Cambridge Univ. Press, 1954.
- V. Ovsienko and S. Tabachnikov, Projective Differential Geometry Old and New, Cambridge Tracts in Mathematics (no. 165), Cambridge Univ. Press, 2005.
- Kenneth A Ross, First Digits of Squares and Cubes, Math. Mag. 85 (2012) 36-42. doi:10.4169/math.mag.85.1.36.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- A. Szenes, The combinatorics of the Verlinde formulas (N.J. Hitchin et al., ed.), in Vector bundles in algebraic geometry, Cambridge, 1995.
- James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, pages 11-13.
- D. Wells, The Penguin Dictionary of Curious and Interesting Numbers, Penguin Books, 1987, pp. 126-127.
- B. Zwiebach, A First Course in String Theory, Cambridge, 2004; see p. 226.
- N. J. A. Sloane, Table of n, a(n) for n = 0..10000
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
- O. Aichholzer and H. Krasser, The point set order type data base: a collection of applications and results, pp. 17-20 in Abstracts 13th Canadian Conference on Computational Geometry (CCCG '01), Waterloo, Aug. 13-15, 2001.
- Luciano Ancora, The Square Pyramidal Number and other figurate numbers, ch. 5.
- Nicolay Avilov, Process of emergence of a(5)
- F. Beukers and J. Top, On oranges and integral points on certain plane cubic curves, Nieuw Arch. Wiskd., IV (1988), Ser. 6, No. 3, 203-210.
- Allan Bickle and Zhongyuan Che, Wiener indices of maximal k-degenerate graphs, arXiv:1908.09202 [math.CO], 2019.
- Allan Bickle, A Survey of Maximal k-degenerate Graphs and k-Trees, Theory and Applications of Graphs 0 1 (2024) Article 5.
- Gaston A. Brouwer, Jonathan Joe, Abby A. Noble, and Matt Noble, Problems on the Triangular Lattice, arXiv:2405.12321 [math.CO], 2024. Mentions this sequence.
- P. J. Cameron, Sequences realized by oligomorphic permutation groups, J. Integ. Seqs. Vol. 3 (2000), #00.1.5.
- William Dowling and Nadia Lafreniere, Homomesy on permutations with toggling actions, arXiv:2312.02383 [math.CO], 2023. See page 8.
- W. T. Dugan, M. Hegarty, A. H. Morales, and A. Raymond, Generalized Pitman-Stanley polytope: vertices and faces, arXiv:2307.09925 [math.CO], 2023.
- Gennady Eremin, Naturalized bracket row and Motzkin triangle, arXiv:2004.09866 [math.CO], 2020.
- C. E. Frasser and G. N. Vostrov, Geodetic Graphs Homeomorphic to a Given Geodetic Graph, arXiv:1611.01873 [cs.DM], 2016. [p. 16, corollary 5]
- Michael B. Green, Stephen D. Miller, and Pierre Vanhove, Small representations, string instantons, and Fourier modes of Eisenstein series, arXiv:1111.2983 [hep-th], 2011-2013.
- N. Heninger, E. M. Rains, and N. J. A. Sloane, On the Integrality of n-th Roots of Generating Functions, J. Combinatorial Theory, Series A, 113 (2006), 1732-1745.
- N. Heninger, E. M. Rains, and N. J. A. Sloane, On the Integrality of n-th Roots of Generating Functions, arXiv:math/0509316 [math.NT], 2005-2006.
- Jacob Hicks, M. A. Ollis, and John. R. Schmitt, Distinct Partial Sums in Cyclic Groups: Polynomial Method and Constructive Approaches, arXiv:1809.02684 [math.CO], 2018.
- A. M. Hinz, S. Klavžar, U. Milutinović, and C. Petr, The Tower of Hanoi - Myths and Maths, Birkhäuser 2013. See page 46. Book's website
- Cheyne Homberger, Patterns in Permutations and Involutions: A Structural and Enumerative Approach, arXiv preprint 1410.2657 [math.CO], 2014.
- C. Homberger and V. Vatter, On the effective and automatic enumeration of polynomial permutation classes, arXiv preprint arXiv:1308.4946 [math.CO], 2013.
- Milan Janjic, Two Enumerative Functions
- Virginia Johnson and Charles K. Cook, Areas of Triangles and other Polygons with Vertices from Various Sequences, arXiv:1608.02420 [math.CO], 2016.
- R. Jovanovic, First 2500 Tetrahedral numbers
- Hyun Kwang Kim, On Regular Polytope Numbers, Proc. Amer. Math. Soc., 131 (2002), 65-75.
- M. Kobayashi, Enumeration of bigrassmannian permutations below a permutation in Bruhat order, arXiv:1005.3335 [math.CO], 2011; Order 28(1) (2011), 131-137.
- C. Koutschan, M. Kauers, and D. Zeilberger, A Proof Of George Andrews' and David Robbins' q-TSPP Conjecture, Proc. Nat. Acad. Sc., vol. 108 no. 6 (2011), pp. 2196-2199. See also Zeilberger's comments on this article; Local copy of comments (pdf file).
- T. Langley, J. Liese, and J. Remmel, Generating Functions for Wilf Equivalence Under Generalized Factor Order, J. Int. Seq. 14 (2011) # 11.4.2.
- Feihu Liu, Guoce Xin, and Chen Zhang, Ehrhart Polynomials of Order Polytopes: Interpreting Combinatorial Sequences on the OEIS, arXiv:2412.18744 [math.CO], 2024. See pp. 13, 15.
- P. A. MacMahon, Memoir on the Theory of the Compositions of Numbers, Phil. Trans. Royal Soc. London A, 184 (1893), 835-901. - _Juergen Will_, Jan 02 2016
- Toufik Mansour, Howard Skogman, and Rebecca Smith, Sorting inversion sequences, arXiv:2401.06662 [math.CO], 2024. See page 6.
- T. P. Martin, Shells of atoms, Phys. Reports, 273 (1996), 199-241, eq. (1).
- Ângela Mestre and José Agapito, Square Matrices Generated by Sequences of Riordan Arrays, J. Int. Seq., Vol. 22 (2019), Article 19.8.4.
- Valentin Ovsienko, Shadow sequences of integers, from Fibonacci to Markov and back, arXiv:2111.02553 [math.CO], 2021.
- Alexsandar Petojevic, The Function vM_m(s; a; z) and Some Well-Known Sequences, Journal of Integer Sequences, Vol. 5 (2002), Article 02.1.7.
- Luis Manuel Rivera, Integer sequences and k-commuting permutations, arXiv preprint arXiv:1406.3081 [math.CO], 2014.
- Claude-Alexandre Simonetti, A new mathematical symbol : the termirial, arXiv:2005.00348 [math.GM], 2020.
- N. J. A. Sloane, Illustration of initial terms
- N. J. A. Sloane, Pyramid of 20 balls corresponding to a(3)=20.
- S. E. Sommars and T. Sommars, Number of Triangles Formed by Intersecting Diagonals of a Regular Polygon, J. Integer Sequences, 1 (1998), #98.1.5.
- H. Stamm-Wilbrandt, Sum of Pascal's triangle reciprocals
- G. Villemin's Almanach of Numbers, Nombres Tétraédriques (in French).
- Eric Weisstein's World of Mathematics, Composition
- Eric Weisstein's World of Mathematics, Graph Cycle
- Eric Weisstein's World of Mathematics, Path Complement Graph
- Eric Weisstein's World of Mathematics, Path Graph
- Eric Weisstein's World of Mathematics, Tetrahedral Number
- Eric Weisstein's World of Mathematics, Wiener Index
- Yue Zhang, Chunfang Zheng, and David Sankoff, Distinguishing successive ancient polyploidy levels based on genome-internal syntenic alignment, BMC Bioinformatics (2019) Vol. 20, 635.
- A. F. Y. Zhao, Pattern Popularity in Multiply Restricted Permutations, Journal of Integer Sequences, 17 (2014), #14.10.3.
- Index entries for "core" sequences
- Index to sequences related to pyramidal numbers
- Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
- Index entries for two-way infinite sequences
- Index entries for sequences related to Benford's law
Sums of 2 consecutive terms give
A000330.
Cf.
A000217 (first differences),
A001044, (see above example),
A061552,
A040977,
A133111,
A133112,
A152205,
A158823,
A156925,
A157703,
A173964,
A058187,
A190717,
A190718,
A100440,
A181118,
A222716.
Cf.
A216499 (the analogous sequence for level-1 phylogenetic networks).
Cf. similar sequences listed in
A237616.
Cf.
A104712 (second column, if offset is 2).
Cf.
A002817 (4-cycle count of \bar P_{n+4}),
A060446 (5-cycle count of \bar P_{n+3}),
A302695 (6-cycle count of \bar P_{n+5})
Row 2 of
A325000 (simplex facets and vertices) and
A327084 (simplex edges and ridges).
Cf. (triangle colorings)
A006527 (oriented),
A000290 (achiral),
A327085 (chiral simplex edges and ridges).
Row 3 of
A321791 (cycles of n colors using k or fewer colors).
-
a:=n->Binomial(n+2,3);; A000292:=List([0..50],n->a(n)); # Muniru A Asiru, Feb 28 2018
-
a000292 n = n * (n + 1) * (n + 2) `div` 6
a000292_list = scanl1 (+) a000217_list
-- Reinhard Zumkeller, Jun 16 2013, Feb 09 2012, Nov 21 2011
-
[n*(n+1)*(n+2)/6: n in [0..50]]; // Wesley Ivan Hurt, Jun 03 2014
-
a:=n->n*(n+1)*(n+2)/6; seq(a(n), n=0..50);
A000292 := n->binomial(n+2,3); seq(A000292(n), n=0..50);
isA000292 := proc(n)
option remember;
local a,i ;
for i from iroot(6*n,3)-1 do
a := A000292(i) ;
if a > n then
return false;
elif a = n then
return true;
end if;
end do:
end proc: # R. J. Mathar, Aug 14 2024
-
Table[Binomial[n + 2, 3], {n, 0, 20}] (* Zerinvary Lajos, Jan 31 2010 *)
Accumulate[Accumulate[Range[0, 50]]] (* Harvey P. Dale, Dec 10 2011 *)
Table[n (n + 1)(n + 2)/6, {n,0,100}] (* Wesley Ivan Hurt, Sep 25 2013 *)
Nest[Accumulate, Range[0, 50], 2] (* Harvey P. Dale, May 24 2017 *)
Binomial[Range[20] + 1, 3] (* Eric W. Weisstein, Sep 08 2017 *)
LinearRecurrence[{4, -6, 4, -1}, {0, 1, 4, 10}, 20] (* Eric W. Weisstein, Sep 08 2017 *)
CoefficientList[Series[x/(-1 + x)^4, {x, 0, 20}], x] (* Eric W. Weisstein, Sep 08 2017 *)
Table[Range[n].Range[n,1,-1],{n,0,50}] (* Harvey P. Dale, Mar 02 2024 *)
-
A000292(n):=n*(n+1)*(n+2)/6$ makelist(A000292(n),n,0,60); /* Martin Ettl, Oct 24 2012 */
-
a(n) = (n) * (n+1) * (n+2) / 6 \\ corrected by Harry J. Smith, Dec 22 2008
-
a=vector(10000);a[2]=1;for(i=3,#a,a[i]=a[i-2]+i*i); \\ Stanislav Sykora, Nov 07 2013
-
is(n)=my(k=sqrtnint(6*n,3)); k*(k+1)*(k+2)==6*n \\ Charles R Greathouse IV, Dec 13 2016
-
# Compare A000217.
def A000292():
x, y, z = 1, 1, 1
yield 0
while True:
yield x
x, y, z = x + y + z + 1, y + z + 1, z + 1
a = A000292(); print([next(a) for i in range(45)]) # Peter Luschny, Aug 03 2019
A005900
Octahedral numbers: a(n) = n*(2*n^2 + 1)/3.
Original entry on oeis.org
0, 1, 6, 19, 44, 85, 146, 231, 344, 489, 670, 891, 1156, 1469, 1834, 2255, 2736, 3281, 3894, 4579, 5340, 6181, 7106, 8119, 9224, 10425, 11726, 13131, 14644, 16269, 18010, 19871, 21856, 23969, 26214, 28595, 31116, 33781, 36594, 39559, 42680
Offset: 0
G.f. = x + 6*x^2 + 19*x^3 + 44*x^4 + 85*x^5 + 146*x^6 + 231*x^7 + ...
- John H. Conway and Richard K. Guy, The Book of Numbers, New York: Springer-Verlag, 1996. See p. 50.
- H. S. M. Coxeter, Polyhedral numbers, pp. 25-35 of R. S. Cohen, J. J. Stachel and M. W. Wartofsky, eds., For Dirk Struik: Scientific, historical and political essays in honor of Dirk J. Struik, Reidel, Dordrecht, 1974.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- T. D. Noe, Table of n, a(n) for n = 0..1000
- X. Acloque, Polynexus Numbers and other mathematical wonders [broken link]
- Karoly Bezdek, Contact numbers for congruent sphere packings, arXiv:1102.1198 [math.MG], 2011.
- Matteo Cavaleri and Alfredo Donno, Some degree and distance-based invariants of wreath products of graphs, arXiv:1805.08989 [math.CO], 2018.
- Y-h. Guo, Some n-Color Compositions, J. Int. Seq. 15 (2012) 12.1.2, eq (5), m=2.
- Milan Janjic, Two Enumerative Functions
- Milan Janjić, On Restricted Ternary Words and Insets, arXiv:1905.04465 [math.CO], 2019.
- Muhammad Fatih Killik and Bünyamin Şahi̇n, Further Results on Level Matrix, Int'l J. Math. Combin. (2024) Vol 4, 68-74. See p. 71.
- Hyun Kwang Kim, On Regular Polytope Numbers, Proc. Amer. Math. Soc., 131 (2002), 65-75.
- Hankyung Ko, Volodymyr Mazorchuk and Rafael Mrđen, Join operation for the Bruhat order and Verma modules, arXiv:2109.01067 [math.RT], 2021. See Remark 5.10 p. 19.
- A. Lascoux and M.-P. Schützenberger, Treillis et bases des groupes de Coxeter, Electron. J. Combin. 3 (1996), #R27.
- T. P. Martin, Shells of atoms, Phys. Reports, 273 (1996), 199-241, eq. (11).
- J. K. Merikoski, R. Kumar and R. A. Rajput, Upper bounds for the largest eigenvalue of a bipartite graph, Electronic Journal of Linear Algebra ISSN 1081-3810, A publication of the International Linear Algebra Society, Volume 26, pp. 168-176, April 2013.
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
- B. K. Teo and N. J. A. Sloane, Magic numbers in polygonal and polyhedral clusters, Inorgan. Chem. 24 (1985), 4545-4558.
- Eric Weisstein's World of Mathematics, Octahedral Number.
- Index entries for two-way infinite sequences
- Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
1/12*t*(n^3-n)+n for t = 2, 4, 6, ... gives
A004006,
A006527,
A006003,
A005900,
A004068,
A000578,
A004126,
A000447,
A004188,
A004466,
A004467,
A007588,
A062025,
A063521,
A063522,
A063523.
-
a005900 n = sum $ zipWith (*) odds $ reverse odds
where odds = take n a005408_list
a005900_list = scanl (+) 0 a001844_list
-- Reinhard Zumkeller, Jun 16 2013, Apr 04 2012
-
[n*(2*n^2+1)/3: n in [0..50]]; // Wesley Ivan Hurt, Sep 11 2015
-
I:=[0,1,6,19]; [n le 4 select I[n] else 4*Self(n-1)-6*Self(n-2)+4*Self(n-3)-Self(n-4): n in [1..50]]; // Vincenzo Librandi, Sep 12 2015
-
al:=proc(s,n) binomial(n+s-1,s); end; be:=proc(d,n) local r; add( (-1)^r*binomial(d-1,r)*2^(d-1-r)*al(d-r,n), r=0..d-1); end; [seq(be(3,n), n=0..100)];
A005900:=(z+1)**2/(z-1)**4; # Simon Plouffe in his 1992 dissertation
with(combinat): seq(fibonacci(4,2*n)/12, n=0..40); # Zerinvary Lajos, Apr 21 2008
-
Table[(2n^3+n)/3, {n,0,40}] (* or *) LinearRecurrence[{4,-6,4,-1}, {0,1,6,19},50] (* Harvey P. Dale, Oct 10 2013 *)
CoefficientList[Series[x (1 + x)^2/(1 - x)^4, {x, 0, 45}], x] (* Vincenzo Librandi, Sep 12 2015 *)
-
makelist(n*(2*n^2+1)/3, n, 0, 20); /* Martin Ettl, Jan 07 2013 */
-
{a(n) = n*(2*n^2+1)/3};
-
concat([0],Vec(x*(1 + x)^2/(1 - x)^4 + O(x^50))) \\ Indranil Ghosh, Mar 16 2017
-
def a(n): return n*(2*n*n + 1)//3
print([a(n) for n in range(41)]) # Michael S. Branicky, Sep 03 2021
A006566
Dodecahedral numbers: a(n) = n*(3*n - 1)*(3*n - 2)/2.
Original entry on oeis.org
0, 1, 20, 84, 220, 455, 816, 1330, 2024, 2925, 4060, 5456, 7140, 9139, 11480, 14190, 17296, 20825, 24804, 29260, 34220, 39711, 45760, 52394, 59640, 67525, 76076, 85320, 95284, 105995, 117480, 129766, 142880, 156849, 171700, 187460, 204156
Offset: 0
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- T. D. Noe, Table of n, a(n) for n = 0..1000
- Tanya Khovanova, Recursive Sequences.
- Hyun Kwang Kim, On Regular Polytope Numbers, Proc. Amer. Math. Soc., 131 (2002), 65-75.
- Victor Meally, Letter to N. J. A. Sloane, no date.
- Ed Pegg Jr, Dodecahedral 2024.
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992.
- Franck Ramaharo, Statistics on some classes of knot shadows, arXiv:1802.07701 [math.CO], 2018.
- Franck Ramaharo, A generating polynomial for the pretzel knot, arXiv:1805.10680 [math.CO], 2018.
- Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
-
a006566 n = n * (3 * n - 1) * (3 * n - 2) `div` 2
a006566_list = scanl (+) 0 a093485_list -- Reinhard Zumkeller, Jun 16 2013
-
[n*(3*n-1)*(3*n-2)/2: n in [0..40]]; // Vincenzo Librandi, Dec 11 2015
-
A006566:=(1+16*z+10*z**2)/(z-1)**4; # conjectured by Simon Plouffe in his 1992 dissertation
-
Table[n(3n-1)(3n-2)/2,{n,0,100}] (* Vladimir Joseph Stephan Orlovsky, Apr 13 2011 *)
LinearRecurrence[{4,-6,4,-1},{0,1,20,84},40] (* Harvey P. Dale, Jul 24 2013 *)
CoefficientList[Series[x (1 + 16 x + 10 x^2)/(1 - x)^4, {x, 0, 40}], x] (* Vincenzo Librandi, Dec 11 2015 *)
-
a(n)=n*(3*n-1)*(3*n-2)/2
A006564
Icosahedral numbers: a(n) = n*(5*n^2 - 5*n + 2)/2.
Original entry on oeis.org
1, 12, 48, 124, 255, 456, 742, 1128, 1629, 2260, 3036, 3972, 5083, 6384, 7890, 9616, 11577, 13788, 16264, 19020, 22071, 25432, 29118, 33144, 37525, 42276, 47412, 52948, 58899, 65280, 72106, 79392, 87153, 95404, 104160, 113436, 123247, 133608
Offset: 1
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- T. D. Noe, Table of n, a(n) for n = 1..1000
- Hyun Kwang Kim, On Regular Polytope Numbers, Proc. Amer. Math. Soc., Vol. 131, No. 1 (2002), pp. 65-75.
- Victor Meally, Letter to N. J. A. Sloane, no date.
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992.
- Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
-
a006564 n = n * (5 * n * (n - 1) + 2) `div` 2
-- Reinhard Zumkeller, Jun 16 2013
-
[(5*n^3-5*n^2+2*n)/2: n in [1..100]] // Vincenzo Librandi, Nov 21 2010
-
A006564:=(1+8*z+6*z**2)/(z-1)**4; # conjectured by Simon Plouffe in his 1992 dissertation
-
Table[n (5n^2-5n+2)/2,{n,40}] (* or *) LinearRecurrence[{4,-6,4,-1}, {1,12,48,124},40] (* Harvey P. Dale, May 26 2011 *)
-
a(n)=5*n^2*(n-1)/2+n \\ Charles R Greathouse IV, Oct 07 2015
A063723
Number of vertices in the Platonic solids (in the order tetrahedron, cube, octahedron, dodecahedron, icosahedron).
Original entry on oeis.org
4, 8, 6, 20, 12
Offset: 1
a(2) = 8 since a cube has eight vertices.
A063722
Number of edges in the Platonic solids (in the order tetrahedron, cube, octahedron, dodecahedron, icosahedron).
Original entry on oeis.org
6, 12, 12, 30, 30
Offset: 1
a(2) = 12 since a cube has twelve edges.
A284742
Centered Platonic numbers.
Original entry on oeis.org
1, 5, 7, 9, 13, 15, 25, 33, 35, 55, 63, 69, 91, 121, 129, 147, 155, 189, 195, 231, 295, 309, 341, 377, 425, 427, 559, 561, 575, 589, 791, 833, 855, 909, 923, 1035, 1159, 1241, 1325, 1415, 1561, 1661, 1665, 1729, 2047, 2057, 2059, 2331, 2511, 2625, 2743, 2869, 3025, 3059, 3303, 3605, 3871, 3925, 4089, 4215, 4255
Offset: 1
-
nn = 18; t1 = Table[(2 n + 1) (n^2 + n + 3)/3, {n, 0, nn}]; t2 = Table[(2 n + 1) (2 n^2 + 2 n + 3)/3, {n, 0, nn}]; t3 = Table[n^3 + (n + 1)^3, {n, 0, nn}]; t4 = Table[(2 n + 1) (5 n^2 + 5 n + 3)/3, {n, 0, nn}]; t5 = Table[(2 n + 1) (5 n^2 + 5 n + 1), {n, 0, nn}]; Select[Union[t1, t2, t3, t4, t5], # <= t1[[-1]] &]
Showing 1-10 of 10 results.
Comments