cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A003108 Number of partitions of n into cubes.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 5, 5, 5, 5, 5, 6, 6, 6, 7, 7, 7, 7, 7, 8, 8, 8, 9, 9, 9, 9, 9, 10, 10, 10, 11, 11, 11, 12, 12, 13, 13, 13, 14, 14, 14, 15, 15, 17, 17, 17, 18, 18, 18, 19, 19, 21, 21, 21, 22, 22, 22, 23, 23, 25, 26, 26, 27, 27, 27, 28
Offset: 0

Views

Author

Keywords

Comments

The g.f. 1/(z+1)/(z**2+1)/(z**4+1)/(z-1)**2 conjectured by Simon Plouffe in his 1992 dissertation is wrong.

Examples

			a(16) = 3 because we have [8,8], [8,1,1,1,1,1,1,1,1] and [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1].
G.f.: A(x) = 1 + x + x^2 + x^3 + x^4 + x^5 + x^6 + x^7 + 2*x^8 +...
such that the g.f. A(x) satisfies the identity [Paul D. Hanna]:
A(x) = 1/((1-x)*(1-x^8)*(1-x^27)*(1-x^64)*(1-x^125)*...)
A(x) = 1 + x/(1-x) + x^8/((1-x)*(1-x^8)) + x^27/((1-x)*(1-x^8)*(1-x^27)) + x^64/((1-x)*(1-x^8)*(1-x^27)*(1-x^64)) +...
		

References

  • H. P. Robinson, Letter to N. J. A. Sloane, Jan 04 1974.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • F. Smarandache, Sequences of Numbers Involved in Unsolved Problems, Hexis, Phoenix, 2006.

Crossrefs

Programs

  • Haskell
    a003108 = p $ tail a000578_list where
       p _          0 = 1
       p ks'@(k:ks) m = if m < k then 0 else p ks' (m - k) + p ks m
    -- Reinhard Zumkeller, Oct 31 2012
    
  • Magma
    [#RestrictedPartitions(n,{d^3:d in [1..n]}): n in [0..150]]; // Marius A. Burtea, Jan 02 2019
    
  • Maple
    g:=1/product(1-x^(j^3),j=1..30): gser:=series(g,x=0,70): seq(coeff(gser,x,n),n=0..65); # Emeric Deutsch, Mar 30 2006
  • Mathematica
    nmax = 100; CoefficientList[Series[Product[1/(1 - x^(k^3)), {k, 1, nmax^(1/3)}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Aug 19 2015 *)
    nmax = 60; cmax = nmax^(1/3);
    s = Table[n^3, {n, cmax}];
    Table[Count[IntegerPartitions@n, x_ /; SubsetQ[s, x]], {n, 0, nmax}] (* Robert Price, Jul 31 2020 *)
  • PARI
    {a(n)=polcoeff(1/prod(k=1, ceil(n^(1/3)), 1-x^(k^3)+x*O(x^n)), n)} /* Paul D. Hanna, Mar 09 2012 */
    
  • PARI
    {a(n)=polcoeff(1+sum(m=1, ceil(n^(1/3)), x^(m^3)/prod(k=1, m, 1-x^(k^3)+x*O(x^n))), n)} /* Paul D. Hanna, Mar 09 2012 */
    
  • Python
    from functools import lru_cache
    from sympy import integer_nthroot, divisors
    @lru_cache(maxsize=None)
    def A003108(n):
        @lru_cache(maxsize=None)
        def a(n): return integer_nthroot(n,3)[1]
        @lru_cache(maxsize=None)
        def c(n): return sum(d for d in divisors(n,generator=True) if a(d))
        return (c(n)+sum(c(k)*A003108(n-k) for k in range(1,n)))//n if n else 1 # Chai Wah Wu, Jul 15 2024

Formula

G.f.: 1/Product_{j>=1} (1-x^(j^3)). - Emeric Deutsch, Mar 30 2006
G.f.: Sum_{n>=0} x^(n^3) / Product_{k=1..n} (1 - x^(k^3)). - Paul D. Hanna, Mar 09 2012
a(n) ~ exp(4 * (Gamma(1/3)*Zeta(4/3))^(3/4) * n^(1/4) / 3^(3/2)) * (Gamma(1/3)*Zeta(4/3))^(3/4) / (24*Pi^2*n^(5/4)) [Hardy & Ramanujan, 1917]. - Vaclav Kotesovec, Dec 29 2016

A068980 Number of partitions of n into nonzero tetrahedral numbers.

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, 11, 11, 12, 12, 15, 15, 16, 16, 19, 19, 22, 22, 25, 25, 28, 29, 32, 32, 35, 36, 42, 42, 45, 46, 52, 53, 56, 57, 63, 64, 70, 71, 77, 78, 84, 87, 94, 95, 101, 104, 115, 116, 122, 125, 136, 139, 146, 149, 160, 163, 175
Offset: 0

Views

Author

Keywords

Examples

			a(10) = 4 because we can write 10 = 10 = 4 + 4 + 1 + 1 = 4 + 1 + 1 + 1 + 1 + 1 = 1 + ... + 1.
		

Crossrefs

See also A007294 (partitions into triangular numbers), A000292 (tetrahedral numbers).

Programs

  • Mathematica
    nmax = 100; CoefficientList[Series[Product[1/(1-x^(k*(k+1)*(k+2)/6)), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Jun 09 2017 *)

Formula

G.f.: 1 / Product_{k>=3} (1 - z^binomial(k, 3)).
G.f.: Sum_{i>=0} x^(i*(i+1)*(i+2)/6) / Product_{j=1..i} (1 - x^(j*(j+1)*(j+2)/6)). - Ilya Gutkovskiy, Jun 08 2017

A053012 Platonic numbers: a(n) is a tetrahedral (A000292), cube (A000578), octahedral (A005900), dodecahedral (A006566) or icosahedral (A006564) number.

Original entry on oeis.org

1, 4, 6, 8, 10, 12, 19, 20, 27, 35, 44, 48, 56, 64, 84, 85, 120, 124, 125, 146, 165, 216, 220, 231, 255, 286, 343, 344, 364, 455, 456, 489, 512, 560, 670, 680, 729, 742, 816, 891, 969, 1000, 1128, 1140, 1156, 1330, 1331, 1469, 1540, 1629, 1728, 1771, 1834
Offset: 1

Views

Author

Klaus Strassburger (strass(AT)ddfi.uni-duesseldorf.de), Feb 22 2000

Keywords

Comments

19, the 3rd octahedral number, is the only prime platonic number. - Jean-François Alcover, Oct 11 2012

Crossrefs

Numbers of partitions into Platonic numbers: A226748, A226749.

Programs

  • Haskell
    a053012 n = a053012_list !! (n-1)
    a053012_list = tail $ f
       [a000292_list, a000578_list, a005900_list, a006566_list, a006564_list]
       where f pss = m : f (map (dropWhile (<= m)) pss)
                     where m = minimum (map head pss)
    -- Reinhard Zumkeller, Jun 17 2013
    
  • Mathematica
    nn = 25; t1 = Table[n (n + 1) (n + 2)/6, {n, nn}]; t2 = Table[n^3, {n, nn}]; t3 = Table[(2*n^3 + n)/3, {n, nn}]; t4 = Table[n (3*n - 1) (3*n - 2)/2, {n, nn}]; t5 = Table[n (5*n^2 - 5*n + 2)/2, {n, nn}]; Select[Union[t1, t2, t3, t4, t5], # <= t1[[-1]] &] (* T. D. Noe, Oct 13 2012 *)
  • PARI
    listpoly(lim, poly[..])=my(v=List()); for(i=1,#poly, my(P=poly[i], x=variable(P), f=k->subst(P,x,k),n,t); while((t=f(n++))<=lim, listput(v, t))); Set(v)
    list(lim)=my(n='n); listpoly(lim, n*(n+1)*(n+2)/6, n^3, (2*n^3+n)/3, n*(3*n-1)*(3*n-2)/2, n*(5*n^2-5*n+2)/2) \\ Charles R Greathouse IV, Oct 11 2016

A226749 Number of partitions of n into distinct Platonic numbers, cf. A053012.

Original entry on oeis.org

1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 3, 4, 4, 3, 3, 4, 4, 4, 4, 5, 5, 5, 6, 7, 6, 6, 6, 7, 7, 8, 8, 9, 9, 9, 9, 9, 9, 11, 11, 11, 12, 13, 13, 12, 12, 13, 15, 15, 16, 17, 17, 16, 18, 18, 19, 19, 21, 21, 23, 24, 25, 24, 24, 24, 26, 26, 29, 32
Offset: 0

Views

Author

Reinhard Zumkeller, Jun 17 2013

Keywords

Examples

			First Platonic numbers: 1, 4, 6, 8, 10, 12, 19, 20, 27, ...
a(10) = #{10, 6+4} = 2;
a(11) = #{10+1, 6+4+1} = 2;
a(12) = #{12, 8+4} = 2;
a(13) = #{12+1, 8+4+1} = 2;
a(14) = #{10+4, 8+6} = 2;
a(15) = #{10+4+1, 8+6+1} = 2;
a(16) = #{12+4, 10+6} = 2;
a(17) = #{12+4+1, 10+6+1} = 2;
a(18) = #{12+6, 10+8, 8+6+4} = 3;
a(19) = #{19, 12+6+1, 10+8+1, 8+6+4+1} = 4;
a(20) = #{20, 19+1, 12+8, 10+6+4} = 4.
		

Crossrefs

Programs

  • Haskell
    a226749 = p a053012_list where
       p _      0 = 1
       p (k:ks) m = if m < k then 0 else p ks (m - k) + p ks m
Showing 1-4 of 4 results.