A118392
Denominator of sum of reciprocals of first n tetrahedral numbers A000292.
Original entry on oeis.org
1, 4, 20, 5, 7, 56, 24, 15, 55, 44, 52, 91, 35, 80, 272, 51, 57, 380, 140, 77, 253, 184, 200, 325, 117, 252, 812, 145, 155, 992, 352, 187, 595, 420, 444, 703, 247, 520, 1640, 287, 301, 1892, 660, 345, 1081, 752, 784, 1225, 425, 884, 2756, 477, 495, 3080
Offset: 1
a(1) = 1 = denominator of 1/1.
a(2) = 4 = denominator of 5/4 = 1/1 + 1/4.
a(3) = 20 = denominator of 27/20 = 1/1 + 1/4 + 1/10.
a(4) = 5 = denominator of 7/5 = 1/1 + 1/4 + 1/10 + 1/20.
a(5) = 7 = denominator of 10/7 = 1/1 + 1/4 + 1/10 + 1/20 + 1/35.
a(20) = 77 = denominator of 115/77 = 1/1 + 1/4 + 1/10 + 1/20 + 1/35 + 1/56 + 1/84 + 1/120 + 1/165 + 1/220 + 1/286 + 1/364 + 1/455 + 1/560 + 1/680 + 1/816 + 1/969 + 1/1140 + 1/1330 + 1/1540.
Fractions are: 1/1, 5/4, 27/20, 7/5, 10/7, 81/56, 35/24, 22/15, 81/55, 65/44, 77/52, 135/91, 52/35, 119/80, 405/272, 76/51, 85/57, 567/380, 209/140, 115/77, 378/253, 275/184, 299/200, 486/325, 175/117, 377/252, 1215/812, 217/145, 232/155, 1485/992.
-
[Denominator(3*n*(n+3)/(2*(n+1)*(n+2))): n in [1..60]]; // G. C. Greubel, Feb 18 2021
-
A118392:= n -> denom(3*n*(n+3)/(2*(n+1)*(n+2)));
seq(A118392(n), n = 1..60); # G. C. Greubel, Feb 18 2021
-
Accumulate[1/Binomial[Range[70]+2,3]]//Denominator (* Harvey P. Dale, Jun 07 2018 *)
-
s=0;for(i=3,50,s+=1/binomial(i,3);print(denominator(s))) /* Phil Carmody, Mar 27 2012 */
-
[denominator(3*n*(n+3)/(2*(n+1)*(n+2))) for n in (1..60)] # G. C. Greubel, Feb 18 2021
A118411
Numerator of sum of reciprocals of first n pentatope numbers A000332.
Original entry on oeis.org
1, 6, 19, 136, 83, 119, 656, 73, 190, 121, 1816, 559, 679, 815, 3872, 1139, 886, 513, 2360, 2023, 2299, 2599, 11696, 3275, 7306, 1353, 5992, 1653, 5455, 5983, 26176, 7139, 15538, 8435, 12184, 3293, 3553, 11479, 49360
Offset: 1
a(1) = 1 = numerator of 1/1.
a(2) = 6 = numerator of 6/5 = 1/1 + 1/5.
a(3) = 19 = numerator of 19/15 = 1/1 + 1/5 + 1/15.
a(4) = 136 = numerator of 136/105 = 1/1 + 1/5 + 1/15 + 1/35.
a(5) = 55 = numerator of 55/42 = 1/1 + 1/5 + 1/15 + 1/35 + 1/70.
a(10) = 190 = numerator of 190/143 = 1/1 + 1/5 + 1/15 + 1/35 + 1/70 + 1/126 + 1/210 + 1/330 + 1/495 + 1/715.
a(20) = 2360 = numerator of 2360/1771 = 1/1 + 1/5 + 1/15 + 1/35 + 1/70 + 1/126 + 1/210 + 1/330 + 1/495 + 1/715 + 1/1001 + 1/1365 + 1/1820 + 1/2380 + 1/3060 + 1/3876 + 1/4845 + 1/5985 + 1/7315 + 1/8855.
-
s=0;for(i=4,50,s+=1/binomial(i,4);print(numerator(s))) /* Phil Carmody, Mar 27 2012 */
A118412
Denominator of sum of reciprocals of first n pentatope numbers A000332.
Original entry on oeis.org
1, 5, 15, 105, 42, 63, 90, 495, 55, 143, 91, 1365, 420, 510, 612, 2907, 855, 665, 385, 1771, 1518, 1725, 1950, 8775, 2457, 5481, 1015, 4495, 1240, 4092, 4488, 19635, 5355, 11655, 6327, 9139, 2470, 2665, 8610, 37023
Offset: 1
a(1) = 1 = denominator of 1/1.
a(2) = 5 = denominator of 6/5 = 1/1 + 1/5.
a(3) = 15 = denominator of 19/15 = 1/1 + 1/5 + 1/15.
a(4) = 105 = denominator of 136/105 = 1/1 + 1/5 + 1/15 + 1/35.
a(5) = 42 = denominator of 55/42 = 1/1 + 1/5 + 1/15 + 1/35 + 1/70.
a(10) = 143 = denominator of 190/143 = 1/1 + 1/5 + 1/15 + 1/35 + 1/70 + 1/126 + 1/210 + 1/330 + 1/495 + 1/715.
a(20) = 1771 = denominator of 2360/1771 = 1/1 + 1/5 + 1/15 + 1/35 + 1/70 + 1/126 + 1/210 + 1/330 + 1/495 + 1/715 + 1/1001 + 1/1365 + 1/1820 + 1/2380 + 1/3060 + 1/3876 + 1/4845 + 1/5985 + 1/7315 + 1/8855.
-
s=0;for(i=4,50,s+=1/binomial(i,4);print(denominator(s))) /* Phil Carmody, Mar 27 2012 */
A118431
Numerator of sum of reciprocals of first n 5-simplex numbers A000389.
Original entry on oeis.org
1, 7, 17, 69, 625, 209, 329, 247, 357, 1250, 341, 1819, 2379, 3059, 19375, 1211, 1496, 3657, 4427, 53125, 12649, 14949, 17549, 10237, 59375, 6851, 7866, 35959, 40919, 231875, 52359, 14726, 16511, 36907, 205625, 91389, 101269
Offset: 1
a(1) = 1 = numerator of 1/1.
a(2) = 7 = numerator of 7/6 = 1/1 + 1/6.
a(3) = 17 = numerator of 17/14 = 1/1 + 1/6 + 1/21.
a(4) = 69 = numerator of 69/56 = 1/1 + 1/6 + 1/21 + 1/56.
a(5) = 55 = numerator of 55/42 = 1/1 + 1/6 + 1/21 + 1/56 + 1/126.
a(10) = 1250 = numerator of 1250/1001 = 1/1+ 1/6 + 1/21 + 1/56 + 1/126 + 1/252 + 1/462 + 1/792 + 1/1287 + 1/2002.
a(20) = 53125 = numerator of 53125/42504 = 1/1 + 1/6 + 1/21 + 1/56 + 1/126 + 1/252 + 1/462 + 1/792 + 1/1287 + 1/2002 + 1/3003 + 1/4368 + 1/6188 + 1/8568 + 1/11628 + 1/15504 + 1/20349 + 1/26334 + 1/33649 + 1/42504.
A118432
Denominator of sum of reciprocals of first n 5-simplex numbers A000389.
Original entry on oeis.org
1, 6, 14, 56, 504, 168, 264, 198, 286, 1001, 273, 1456, 1904, 2448, 15504, 969, 1197, 2926, 3542, 42504, 10120, 11960, 14040, 8190, 47502, 5481, 6293, 28768, 32736, 185504, 41888, 11781, 13209, 29526, 164502, 73112, 81016
Offset: 1
a(1) = 1 = denominator of 1/1.
a(2) = 6 = denominator of 7/6 = 1/1 + 1/6.
a(3) = 14 = denominator of 17/14 = 1/1 + 1/6 + 1/21.
a(4) = 56 = denominator of 69/56 = 1/1 + 1/6 + 1/21 + 1/56.
a(5) = 42 = denominator of 55/42 = 1/1 + 1/6 + 1/21 + 1/56 + 1/126.
a(10) = 1001 = denominator of 1250/1001 = 1/1+ 1/6 + 1/21 + 1/56 + 1/126 + 1/252 + 1/462 + 1/792 + 1/1287 + 1/2002.
a(20) = 42504 = denominator of 53125/42504 = 1/1 + 1/6 + 1/21 + 1/56 + 1/126 + 1/252 + 1/462 + 1/792 + 1/1287 + 1/2002 + 1/3003 + 1/4368 + 1/6188 + 1/8568 + 1/11628 + 1/15504 + 1/20349 + 1/26334 + 1/33649 + 1/42504.
A118583
Numerator of sum of first p reciprocals of p-simplex numbers divided by p^4, where p = prime(n) for n > 2.
Original entry on oeis.org
1, 5, 53, 789, 237493, 2576561, 338350897, 616410400171, 2603853251291, 5745400286707685, 3081677433937346539, 41741941495866750557, 7829195555633964779233, 21066131970056662377432067
Offset: 3
Prime(3) = 5.
a(3) = 1 because A118431(5)/5^4 = 1, where A118431(5) = Numerator[ 1/C(4+1,5) + 1/C(4+2,5) + 1/C(4+3,5) + 1/C(4+4,5) +1/C(4+5,5) ] = Numerator[ 1/1 + 1/6 + 1/21 + 1/56 + 1/126 ] = 625.
Cf.
A022998 = Numerator of sum of reciprocals of first n triangular numbers
Cf.
A118391 = Numerator of sum of reciprocals of first n tetrahedral numbers
A000292.
Cf.
A118431 = Numerator of sum of reciprocals of first n 5-simplex numbers
A000389.
-
Table[Numerator[Sum[1 /Binomial[ n+Prime[k]-1, Prime[k]], {n,1,Prime[k]} ]]/ Prime[k]^4, {k,3,25}]
-
for(n=3,10, print1(numerator(sum(k=1,prime(n), 1/(binomial(k+ prime(n)-1, prime(n)))))/prime(n)^4, ", ")) \\ G. C. Greubel, Nov 25 2017
Showing 1-6 of 6 results.
Comments