cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A118411 Numerator of sum of reciprocals of first n pentatope numbers A000332.

Original entry on oeis.org

1, 6, 19, 136, 83, 119, 656, 73, 190, 121, 1816, 559, 679, 815, 3872, 1139, 886, 513, 2360, 2023, 2299, 2599, 11696, 3275, 7306, 1353, 5992, 1653, 5455, 5983, 26176, 7139, 15538, 8435, 12184, 3293, 3553, 11479, 49360
Offset: 1

Views

Author

Jonathan Vos Post, Apr 27 2006

Keywords

Comments

Denominators are A118412. Fractions are: 1/1, 6/5, 19/15, 136/105, 83/63, 119/90, 656/495, 73/55, 190/143, 121/91, 1816/1365, 559/420, 679/510, 815/612, 3872/2907, 1139/855, 886/665, 513/385, 2360/1771, 2023/1518, 2299/1725, 2599/1950, 11696/8775, 3275/2457, 7306/5481, 1353/1015, 5992/4495, 1653/1240, 5455/4092, 5983/4488, 26176/19635, 7139/5355, 15538/11655, 8435/6327, 12184/9139, 3293/2470, 3553/2665, 11479/8610, 49360/37023. The denominator of sum of reciprocals of first n triangular numbers is A026741. The denominator of sum of reciprocals of first n tetrahedral numbers is A118392.

Examples

			a(1) = 1 = numerator of 1/1.
a(2) = 6 = numerator of 6/5 = 1/1 + 1/5.
a(3) = 19 = numerator of 19/15 = 1/1 + 1/5 + 1/15.
a(4) = 136 = numerator of 136/105 = 1/1 + 1/5 + 1/15 + 1/35.
a(5) = 55 = numerator of 55/42 = 1/1 + 1/5 + 1/15 + 1/35 + 1/70.
a(10) = 190 = numerator of 190/143 = 1/1 + 1/5 + 1/15 + 1/35 + 1/70 + 1/126 + 1/210 + 1/330 + 1/495 + 1/715.
a(20) = 2360 = numerator of 2360/1771 = 1/1 + 1/5 + 1/15 + 1/35 + 1/70 + 1/126 + 1/210 + 1/330 + 1/495 + 1/715 + 1/1001 + 1/1365 + 1/1820 + 1/2380 + 1/3060 + 1/3876 + 1/4845 + 1/5985 + 1/7315 + 1/8855.
		

Crossrefs

Programs

  • PARI
    s=0;for(i=4,50,s+=1/binomial(i,4);print(numerator(s))) /* Phil Carmody, Mar 27 2012 */

Formula

A118411(n)/A118412(n) = SUM[i=1..n] (1/A000332(n)). A118411(n)/A118412(n) = SUM[i=1..n] (1/C(n+2,4)). A118411(n)/A118412(n) = SUM[i=1..n] (1/(n*(n+1)*(n+2)*(n+3)/24)).

A118431 Numerator of sum of reciprocals of first n 5-simplex numbers A000389.

Original entry on oeis.org

1, 7, 17, 69, 625, 209, 329, 247, 357, 1250, 341, 1819, 2379, 3059, 19375, 1211, 1496, 3657, 4427, 53125, 12649, 14949, 17549, 10237, 59375, 6851, 7866, 35959, 40919, 231875, 52359, 14726, 16511, 36907, 205625, 91389, 101269
Offset: 1

Views

Author

Jonathan Vos Post, Apr 28 2006

Keywords

Comments

Denominators are A118432. Fractions are: 1/1, 7/6, 17/14, 69/56, 625/504, 209/168, 329/264, 247/198, 357/286, 1250/1001, 341/273, 1819/1456, 2379/1904, 3059/2448, 19375/15504, 1211/969, 1496/1197, 3657/2926, 4427/3542, 53125/42504, 12649/10120, 14949/11960, 17549/14040, 10237/8190, 59375/47502, 6851/5481, 7866/6293, 35959/28768, 40919/32736, 231875/185504, 52359/41888, 14726/11781, 16511/13209, 36907/29526, 205625/164502, 91389/73112, 101269/81016. The numerator of sum of reciprocals of first n triangular numbers is A026741. The numerator of sum of reciprocals of first n tetrahedral numbers is A118391. The numerator of sum of reciprocals of first n pentatope numbers is A118411.

Examples

			a(1) = 1 = numerator of 1/1.
a(2) = 7 = numerator of 7/6 = 1/1 + 1/6.
a(3) = 17 = numerator of 17/14 = 1/1 + 1/6 + 1/21.
a(4) = 69 = numerator of 69/56 = 1/1 + 1/6 + 1/21 + 1/56.
a(5) = 55 = numerator of 55/42 = 1/1 + 1/6 + 1/21 + 1/56 + 1/126.
a(10) = 1250 = numerator of 1250/1001 = 1/1+ 1/6 + 1/21 + 1/56 + 1/126 + 1/252 + 1/462 + 1/792 + 1/1287 + 1/2002.
a(20) = 53125 = numerator of 53125/42504 = 1/1 + 1/6 + 1/21 + 1/56 + 1/126 + 1/252 + 1/462 + 1/792 + 1/1287 + 1/2002 + 1/3003 + 1/4368 + 1/6188 + 1/8568 + 1/11628 + 1/15504 + 1/20349 + 1/26334 + 1/33649 + 1/42504.
		

Crossrefs

Programs

  • Mathematica
    Numerator[Accumulate[1/Binomial[Range[5, 50], 5]]] (* G. C. Greubel, Nov 21 2017 *)

Formula

A118411(n)/A118412(n) = Sum_{i=1..n} (1/A000389(n)).
A118411(n)/A118412(n) = Sum_{i=1..n} (1/C(n,5)).
A118411(n)/A118412(n) = Sum_{i=1..n} (1/(n*(n+1)*(n+2)*(n+3)*(n+4)/120)).

A118432 Denominator of sum of reciprocals of first n 5-simplex numbers A000389.

Original entry on oeis.org

1, 6, 14, 56, 504, 168, 264, 198, 286, 1001, 273, 1456, 1904, 2448, 15504, 969, 1197, 2926, 3542, 42504, 10120, 11960, 14040, 8190, 47502, 5481, 6293, 28768, 32736, 185504, 41888, 11781, 13209, 29526, 164502, 73112, 81016
Offset: 1

Views

Author

Jonathan Vos Post, Apr 28 2006

Keywords

Comments

Numerators are A118431. Fractions are: 1/1, 7/6, 17/14, 69/56, 625/504, 209/168, 329/264, 247/198, 357/286, 1250/1001, 341/273, 1819/1456, 2379/1904, 3059/2448, 19375/15504, 1211/969, 1496/1197, 3657/2926, 4427/3542, 53125/42504, 12649/10120, 14949/11960, 17549/14040, 10237/8190, 59375/47502, 6851/5481, 7866/6293, 35959/28768, 40919/32736, 231875/185504, 52359/41888, 14726/11781, 16511/13209, 36907/29526, 205625/164502, 91389/73112, 101269/81016. The denominator of sum of reciprocals of first n triangular numbers is A026741. The denominator of sum of reciprocals of first n tetrahedral numbers is A118392. The denominator of sum of reciprocals of first n pentatope numbers is A118412.

Examples

			a(1) = 1 = denominator of 1/1.
a(2) = 6 = denominator of 7/6 = 1/1 + 1/6.
a(3) = 14 = denominator of 17/14 = 1/1 + 1/6 + 1/21.
a(4) = 56 = denominator of 69/56 = 1/1 + 1/6 + 1/21 + 1/56.
a(5) = 42 = denominator of 55/42 = 1/1 + 1/6 + 1/21 + 1/56 + 1/126.
a(10) = 1001 = denominator of 1250/1001 = 1/1+ 1/6 + 1/21 + 1/56 + 1/126 + 1/252 + 1/462 + 1/792 + 1/1287 + 1/2002.
a(20) = 42504 = denominator of 53125/42504 = 1/1 + 1/6 + 1/21 + 1/56 + 1/126 + 1/252 + 1/462 + 1/792 + 1/1287 + 1/2002 + 1/3003 + 1/4368 + 1/6188 + 1/8568 + 1/11628 + 1/15504 + 1/20349 + 1/26334 + 1/33649 + 1/42504.
		

Crossrefs

Programs

  • Mathematica
    Denominator[Accumulate[1/Binomial[Range[5,50],5]]] (* Harvey P. Dale, Jul 17 2016 *)

Formula

A118411(n)/A118412(n) = Sum_{i=1..n} (1/A000389(n)).
A118411(n)/A118412(n) = Sum_{i=1..n} (1/C(n,5)).
A118411(n)/A118412(n) = Sum_{i=1..n} (1/(n*(n+1)*(n+2)*(n+3)*(n+4)/120)).
Showing 1-3 of 3 results.