cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A118432 Denominator of sum of reciprocals of first n 5-simplex numbers A000389.

Original entry on oeis.org

1, 6, 14, 56, 504, 168, 264, 198, 286, 1001, 273, 1456, 1904, 2448, 15504, 969, 1197, 2926, 3542, 42504, 10120, 11960, 14040, 8190, 47502, 5481, 6293, 28768, 32736, 185504, 41888, 11781, 13209, 29526, 164502, 73112, 81016
Offset: 1

Views

Author

Jonathan Vos Post, Apr 28 2006

Keywords

Comments

Numerators are A118431. Fractions are: 1/1, 7/6, 17/14, 69/56, 625/504, 209/168, 329/264, 247/198, 357/286, 1250/1001, 341/273, 1819/1456, 2379/1904, 3059/2448, 19375/15504, 1211/969, 1496/1197, 3657/2926, 4427/3542, 53125/42504, 12649/10120, 14949/11960, 17549/14040, 10237/8190, 59375/47502, 6851/5481, 7866/6293, 35959/28768, 40919/32736, 231875/185504, 52359/41888, 14726/11781, 16511/13209, 36907/29526, 205625/164502, 91389/73112, 101269/81016. The denominator of sum of reciprocals of first n triangular numbers is A026741. The denominator of sum of reciprocals of first n tetrahedral numbers is A118392. The denominator of sum of reciprocals of first n pentatope numbers is A118412.

Examples

			a(1) = 1 = denominator of 1/1.
a(2) = 6 = denominator of 7/6 = 1/1 + 1/6.
a(3) = 14 = denominator of 17/14 = 1/1 + 1/6 + 1/21.
a(4) = 56 = denominator of 69/56 = 1/1 + 1/6 + 1/21 + 1/56.
a(5) = 42 = denominator of 55/42 = 1/1 + 1/6 + 1/21 + 1/56 + 1/126.
a(10) = 1001 = denominator of 1250/1001 = 1/1+ 1/6 + 1/21 + 1/56 + 1/126 + 1/252 + 1/462 + 1/792 + 1/1287 + 1/2002.
a(20) = 42504 = denominator of 53125/42504 = 1/1 + 1/6 + 1/21 + 1/56 + 1/126 + 1/252 + 1/462 + 1/792 + 1/1287 + 1/2002 + 1/3003 + 1/4368 + 1/6188 + 1/8568 + 1/11628 + 1/15504 + 1/20349 + 1/26334 + 1/33649 + 1/42504.
		

Crossrefs

Programs

  • Mathematica
    Denominator[Accumulate[1/Binomial[Range[5,50],5]]] (* Harvey P. Dale, Jul 17 2016 *)

Formula

A118411(n)/A118412(n) = Sum_{i=1..n} (1/A000389(n)).
A118411(n)/A118412(n) = Sum_{i=1..n} (1/C(n,5)).
A118411(n)/A118412(n) = Sum_{i=1..n} (1/(n*(n+1)*(n+2)*(n+3)*(n+4)/120)).

A118583 Numerator of sum of first p reciprocals of p-simplex numbers divided by p^4, where p = prime(n) for n > 2.

Original entry on oeis.org

1, 5, 53, 789, 237493, 2576561, 338350897, 616410400171, 2603853251291, 5745400286707685, 3081677433937346539, 41741941495866750557, 7829195555633964779233, 21066131970056662377432067
Offset: 3

Views

Author

Alexander Adamchuk, May 09 2007

Keywords

Examples

			Prime(3) = 5.
a(3) = 1 because A118431(5)/5^4 = 1, where A118431(5) = Numerator[ 1/C(4+1,5) + 1/C(4+2,5) + 1/C(4+3,5) + 1/C(4+4,5) +1/C(4+5,5) ] = Numerator[ 1/1 + 1/6 + 1/21 + 1/56 + 1/126 ] = 625.
		

Crossrefs

Cf. A022998 = Numerator of sum of reciprocals of first n triangular numbers
Cf. A118391 = Numerator of sum of reciprocals of first n tetrahedral numbers A000292.
Cf. A118431 = Numerator of sum of reciprocals of first n 5-simplex numbers A000389.

Programs

  • Mathematica
    Table[Numerator[Sum[1 /Binomial[ n+Prime[k]-1, Prime[k]], {n,1,Prime[k]} ]]/ Prime[k]^4, {k,3,25}]
  • PARI
    for(n=3,10, print1(numerator(sum(k=1,prime(n), 1/(binomial(k+ prime(n)-1, prime(n)))))/prime(n)^4, ", ")) \\ G. C. Greubel, Nov 25 2017

Formula

a(n) = numerator( Sum_{k=1..prime(n)} ( 1/binomial( k + prime(n) - 1, prime(n) ) ))/prime(n)^4 for n > 2.
Showing 1-2 of 2 results.