A133252 Partial sums of A006000.
1, 5, 17, 45, 100, 196, 350, 582, 915, 1375, 1991, 2795, 3822, 5110, 6700, 8636, 10965, 13737, 17005, 20825, 25256, 30360, 36202, 42850, 50375, 58851, 68355, 78967, 90770, 103850, 118296, 134200, 151657, 170765, 191625, 214341, 239020, 265772
Offset: 0
Links
- Index entries for linear recurrences with constant coefficients, signature (5,-10,10,-5,1).
Crossrefs
Cf. A006000.
Programs
-
Mathematica
LinearRecurrence[{5,-10,10,-5,1},{1,5,17,45,100},40] (* Harvey P. Dale, Sep 15 2022 *)
Formula
a(n) = Sum_{i=0..n} A006000(i).
a(n) = Sum_{i=0..n} (i+1)*(i^2+i+2)/2.
a(n) = ((n^4+2*n^3+n^2)/4+(2*n^3+3*n^2+n)/3+(3*n^2+3*n)/2+2*n)/2+1.
G.f.: -(2*x^2 + 1) / (x-1)^5. - Colin Barker, Apr 28 2013
a(n) = (n+1)*(n+2)*(3*n^2+5*n+12)/24. - Alois P. Heinz, Apr 28 2013
a(n) = 5*a(n-1)-10*a(n-2)+10*a(n-3)-5*a(n-4)+a(n-5). - Wesley Ivan Hurt, Apr 21 2024
Comments