A257055 a(n) = n*(n + 1)*(n^2 - n + 3)/6.
0, 1, 5, 18, 50, 115, 231, 420, 708, 1125, 1705, 2486, 3510, 4823, 6475, 8520, 11016, 14025, 17613, 21850, 26810, 32571, 39215, 46828, 55500, 65325, 76401, 88830, 102718, 118175, 135315, 154256, 175120, 198033, 223125, 250530, 280386, 312835, 348023, 386100
Offset: 0
Links
- Bruno Berselli, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (5,-10,10,-5,1).
Programs
-
Magma
[n*(n+1)*(n^2-n+3)/6: n in [0..40]];
-
Mathematica
Table[n (n + 1) (n^2 - n + 3)/6, {n, 40}]
-
PARI
vector(40, n, n--; n*(n+1)*(n^2-n+3)/6)
-
Sage
[n*(n+1)*(n^2-n+3)/6 for n in (0..40)]
Formula
G.f.: x*(1 + 3*x^2)/(1 - x)^5.
a(n) = 5*a(n-1)-10*a(n-2)+10*a(n-3)-5*a(n-4)+a(n-5). - Wesley Ivan Hurt, May 27 2021
Comments