cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A256859 a(n) = n*(n + 1)*(n + 2)*(n^2 - n + 4)/24.

Original entry on oeis.org

1, 6, 25, 80, 210, 476, 966, 1800, 3135, 5170, 8151, 12376, 18200, 26040, 36380, 49776, 66861, 88350, 115045, 147840, 187726, 235796, 293250, 361400, 441675, 535626, 644931, 771400, 916980, 1083760, 1273976, 1490016, 1734425, 2009910, 2319345, 2665776, 3052426
Offset: 1

Views

Author

Luciano Ancora, Apr 14 2015

Keywords

Comments

This is the case k = n of b(n,k) = n*(n+1)*(n+2)*(k*(n-1)+4)/24, where b(n,k) is the n-th hypersolid number in 4 dimensions generated from an arithmetical progression with the first term 1 and common difference k. Therefore, the sequence is the main diagonal of the Table 3 in Sardelis et al. paper (see Links field).

Crossrefs

Cf. similar sequences of the form binomial(n+k-2,k-1)+n*binomial(n+k-2,k): A006000 (k=2); A257055 (k=3); this sequence (k=4); A256860 (k=5); A256861 (k=6).

Programs

  • Magma
    [n*(n + 1)*(n + 2)*(n^2 - n + 4)/24: n in [1..30]]; // G. C. Greubel, Nov 23 2017
  • Mathematica
    Table[n (n + 1) (n + 2) (n^2 - n + 4)/24, {n, 40}]
    LinearRecurrence[{6,-15,20,-15,6,-1},{1,6,25,80,210,476},40] (* Harvey P. Dale, Mar 19 2022 *)
  • PARI
    vector(40, n, n*(n+1)*(n+2)*(n^2-n+4)/24) \\ Bruno Berselli, Apr 15 2015
    

Formula

G.f.: x*(1 + 4*x^2)/(1 - x)^6.
a(n) = 4*A000389(n+2) + A000389(n+4). - Bruno Berselli, Apr 15 2015
E.g.f.: (24*x + 48*x^2 + 40*x^3 + 12*x^4 + x^5)*exp(x)/24. - G. C. Greubel, Nov 23 2017
a(n) = A261721(n,n-1). - Alois P. Heinz, Apr 15 2020

A208657 Triangular array read by rows: n*binomial(n,n-k+1)-binomial(n-1,n-k) with k = 1..n, n >= 1.

Original entry on oeis.org

0, 1, 3, 2, 7, 8, 3, 13, 21, 15, 4, 21, 44, 46, 24, 5, 31, 80, 110, 85, 35, 6, 43, 132, 225, 230, 141, 48, 7, 57, 203, 413, 525, 427, 217, 63, 8, 73, 296, 700, 1064, 1078, 728, 316, 80, 9, 91, 414, 1116, 1974, 2394, 2016, 1164, 441, 99, 10, 111, 560, 1695
Offset: 1

Views

Author

Clark Kimberling, Mar 01 2012

Keywords

Comments

Mirror of A208656.

Examples

			Triangle begins:
0,
1, 3,
2, 7, 8,
3, 13, 21, 15,
4, 21, 44, 46, 24,
5, 31, 80, 110, 85, 35,
6, 43, 132, 225, 230, 141, 48,
7, 57, 203, 413, 525, 427, 217, 63,
8, 73, 296, 700, 1064, 1078, 728, 316, 80,
9, 91, 414, 1116, 1974, 2394, 2016, 1164, 441, 99;
...
		

Crossrefs

Cf. A002061 (second column), A208656, A208658 (row sums), A257055.

Programs

  • Magma
    [n*Binomial(n,n-k+1)-Binomial(n-1,n-k): k in [1..n], n in [1..11]]; // Bruno Berselli, Apr 15 2015
  • Mathematica
    z = 12;
    f[n_, k_] := n*Binomial[n, k] - Binomial[n - 1, k - 1]
    t = Table[f[n, k], {n, 1, z}, {k, 1, n}];
    TableForm[t] (* A208656 as a triangle *)
    Flatten[t]   (* A208656 as a sequence *)
    r = Table[f[n, k], {n, 1, z}, {k, n, 1, -1}];
    TableForm[r] (* A208657 as a triangle *)
    Flatten[r]   (* A208657 as a sequence *)
    Table[Sum[f[n, k], {k, 1, n}], {n, 1, 3 z}](* A208658 *)
Showing 1-2 of 2 results.