A256859 a(n) = n*(n + 1)*(n + 2)*(n^2 - n + 4)/24.
1, 6, 25, 80, 210, 476, 966, 1800, 3135, 5170, 8151, 12376, 18200, 26040, 36380, 49776, 66861, 88350, 115045, 147840, 187726, 235796, 293250, 361400, 441675, 535626, 644931, 771400, 916980, 1083760, 1273976, 1490016, 1734425, 2009910, 2319345, 2665776, 3052426
Offset: 1
Links
- G. C. Greubel, Table of n, a(n) for n = 1..1000
- D. A. Sardelis and T. M. Valahas, On Multidimensional Pythagorean Numbers, arXiv:0805.4070v1 [math.GM], 2008.
- Index entries for linear recurrences with constant coefficients, signature (6,-15,20,-15,6,-1).
Crossrefs
Programs
-
Magma
[n*(n + 1)*(n + 2)*(n^2 - n + 4)/24: n in [1..30]]; // G. C. Greubel, Nov 23 2017
-
Mathematica
Table[n (n + 1) (n + 2) (n^2 - n + 4)/24, {n, 40}] LinearRecurrence[{6,-15,20,-15,6,-1},{1,6,25,80,210,476},40] (* Harvey P. Dale, Mar 19 2022 *)
-
PARI
vector(40, n, n*(n+1)*(n+2)*(n^2-n+4)/24) \\ Bruno Berselli, Apr 15 2015
Formula
G.f.: x*(1 + 4*x^2)/(1 - x)^6.
E.g.f.: (24*x + 48*x^2 + 40*x^3 + 12*x^4 + x^5)*exp(x)/24. - G. C. Greubel, Nov 23 2017
a(n) = A261721(n,n-1). - Alois P. Heinz, Apr 15 2020
Comments