cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A125764 Array of partial sums of rows of array in A086271, read by antidiagonals.

Original entry on oeis.org

1, 3, 2, 6, 7, 3, 10, 15, 12, 4, 15, 26, 27, 18, 5, 21, 40, 48, 42, 25, 6, 28, 57, 75, 76, 60, 33, 7, 36, 77, 108, 120, 110, 81, 42, 8, 45, 100, 147, 174, 175, 150, 105, 52, 9, 55, 126, 192, 238, 255, 240, 196, 132, 63, 10, 66, 155, 243, 312, 350, 351, 315, 248, 162, 75, 11
Offset: 1

Views

Author

Jonathan Vos Post and Joshua Zucker, Feb 03 2007

Keywords

Comments

Row 3 is = 3rd triangular number + 3rd square + 3rd pentagonal number + 3rd hexagonal number + ... + 3rd k-gonal number. First column is triangular numbers. A086271 Rectangular array T(n,k) of polygonal numbers, by diagonals.

Examples

			Partial row sum array begins:
1 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, ... n.
2 | 3, 7, 12, 18, 25, 33, 42, 52, (n(n+1)/2)-3.
3 | 6, 15, 27, 42, 60, 81, 105, ... (3/2)n^2 + (9/2) n.
4 | 10, 26, 48, 76, 110, 150, ... 3n^2 + 7n.
5 | 15, 40, 75, ... 5n^2 + 10n.
6 | 21, 57, 108, ... (15/2)n^2 + (27/2)n.
		

Crossrefs

Programs

  • Maple
    A086271 := proc(n,k) k*binomial(n,2)+n ; end: A125764 := proc(n,k) add(A086271(n,i),i=1..k) ; end: for d from 1 to 15 do for k from 1 to d do printf("%d, ",A125764(d-k+1,k)) ; od: od: # R. J. Mathar, Nov 02 2007

Formula

a(k,n) = (k*(k-1)/2)n^2 + (k*(k+3)/4)n. a(k,n) = row k of array of partial sums = k-th triangular number + k-th square + k-th pentagonal number + k-th hexagonal number + ... = A000217(k) + A000290(k) + A000326(k) + A000384(k) + ... a(1,n) = n. a(2,n) = (n(n+1)/2)-3 = A000217(n) - 3. a(3,n) = 3*n(n+3)/2 = A000096 with offset 3.

Extensions

More terms from R. J. Mathar, Nov 02 2007
Keyword tabl added by Michel Marcus, Apr 08 2013

A006000 a(n) = (n+1)*(n^2+n+2)/2; g.f.: (1 + 2*x^2) / (1 - x)^4.

Original entry on oeis.org

1, 4, 12, 28, 55, 96, 154, 232, 333, 460, 616, 804, 1027, 1288, 1590, 1936, 2329, 2772, 3268, 3820, 4431, 5104, 5842, 6648, 7525, 8476, 9504, 10612, 11803, 13080, 14446, 15904, 17457, 19108, 20860, 22716, 24679, 26752, 28938, 31240, 33661, 36204, 38872, 41668, 44595, 47656, 50854, 54192
Offset: 0

Views

Author

Keywords

Comments

Enumerates certain paraffins.
a(n) is the (n+1)st (n+3)-gonal number. - Floor van Lamoen, Oct 20 2001
Sum of n terms of an arithmetic progression with the first term 1 and the common difference n: a(1)=1, a(2) = 1+3, a(3) = 1+4+7, a(4) = 1+5+9+13, etc. - Amarnath Murthy, Mar 25 2004
This is identical to: first triangular number A000217, 2nd square number A000290, 3rd pentagonal number A000326, 4th hexagonal number A000384, 5th heptagonal number A000566, 6th octagonal number A000567, ..., (n+1)-th (n+3)-gonal number = main diagonal of rectangular array T(n,k) of polygonal numbers, by diagonals, referred to in A086271. - Jonathan Vos Post, Dec 19 2007
Also (n + 1)! times the determinant of the n X n matrix given by m(i,j) = (i+1)/i if i=j and otherwise 1. For example, (6 + 1)!*Det[{{2,1,1,1,1,1}, {1,3/2,1,1,1,1},{1,1,4/3,1,1,1}, {1,1,1,5/4,1,1}, {1,1,1,1,6/5,1}, {1,1,1,1,1,7/6}}] = 154 = a(6). - John M. Campbell, May 20 2011
a(n-1) = N_2(n), n>=1, is the number of 2-faces of n planes in generic position in three-dimensional space. See comment under A000125 for general arrangement. Comment to Arnold's problem 1990-11, see the Arnold reference, p. 506. - Wolfdieter Lang, May 27 2011
For n>2, a(n) is 2 * (average cycle weight of primitive Hamiltonian cycles on a simply weighted K_n) (see link). - Jon Perry, Nov 23 2014
a(n) is the partial sums of A104249. - J. M. Bergot, Dec 28 2014
Sum of the numbers in the 1st column of an n X n square array whose elements are the numbers from 1..n^2, listed in increasing order by rows. - Wesley Ivan Hurt, May 17 2021
From Enrique Navarrete, Mar 27 2023: (Start)
a(n) is the number of ordered set partitions of an (n+1)-set into 2 sets such that the first set has 0, 1, or 2 elements, the second set has no restrictions, and we choose an element from the second set. For n=4, the a(4) = 55 set partitions of [5] are the following (where the element selected from the second set is in parentheses):
{ }, {(1), 2, 3, 4, 5} (5 of these);
{1}, {(2), 3, 4, 5} (20 of these);
{1, 2}, {(3), 4, 5} (30 of these). (End)

References

  • V. I. Arnold (ed.), Arnold's Problems, Springer, 2004, comments on Problem 1990-11 (p. 75), pp. 503-510. Numbers N_2.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A000124.

Programs

Formula

a(n) = Sum_{j=1..n+1} (binomial(0,0*j) + binomial(n+1,2)). - Zerinvary Lajos, Jul 25 2006
a(n-1) = n + (n^3 - n^2)/2 = n + n*T(n-1) where T(n-1) is a triangular number, n >= 1. - William A. Tedeschi, Aug 22 2010
a(n) = A002817(n)*4/n for n > 0. - Jon Perry, Nov 21 2014
E.g.f.: (1 + x)*(2 + 4*x + x^2)*exp(x)/2. - Robert Israel, Nov 24 2014
a(n) = A057145(n+3,n+1). - R. J. Mathar, Jul 28 2016
a(n) = A000124(n) * (n+1). - Alois P. Heinz, Aug 31 2023

A086270 Rectangular array T(k,n) of polygonal numbers, by antidiagonals.

Original entry on oeis.org

1, 3, 1, 6, 4, 1, 10, 9, 5, 1, 15, 16, 12, 6, 1, 21, 25, 22, 15, 7, 1, 28, 36, 35, 28, 18, 8, 1, 36, 49, 51, 45, 34, 21, 9, 1, 45, 64, 70, 66, 55, 40, 24, 10, 1, 55, 81, 92, 91, 81, 65, 46, 27, 11, 1, 66, 100, 117, 120, 112, 96, 75, 52, 30, 12, 1, 78, 121, 145, 153, 148, 133, 111
Offset: 1

Views

Author

Clark Kimberling, Jul 14 2003

Keywords

Comments

The antidiagonal sums 1, 4, 11, 25, 50, ... are the numbers A006522(n) for n >= 3.
This is the accumulation array (cf. A144112) of A144257 (which is the weight array of this sequence). - Clark Kimberling, Sep 16 2008
By rows, the sequence beginning (1, N, ...) is the binomial transform of (1, (N-1), (N-2), 0, 0, 0, ...); and is the second partial sum of (1, (N-2), (N-2), (N-2), ...). Example: The sequence (1, 4, 9, 16, 25, ...) is the binomial transform of (1, 3, 2, 0, 0, 0, ...) and the second partial sum of (1, 2, 2, 2, ...). - Gary W. Adamson, Aug 23 2015

Examples

			First 6 rows:
=========================================
n\k|  1   2    3    4    5    6     7
---|-------------------------------------
1  |  1   3    6   10   15   21    28 ... (A000217, triangular numbers)
2  |  1   4    9   16   25   36    49 ... (A000290, squares)
3  |  1   5   12   22   35   51    70 ... (A000326, pentagonal numbers)
4  |  1   6   15   28   45   66    91 ... (A000384, hexagonal numbers)
5  |  1   7   18   34   55   81   112 ... (A000566, heptagonal numbers)
6  |  1   8   21   40   65   96   133 ... (A000567, octagonal numbers)
...
The array formed by the complements: A183225.
		

References

  • Albert H. Beiler, Recreations in the theory of numbers, New York, Dover, (2nd ed.) 1966. See Table 76 at p. 189.
  • David Wells, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1986, Revised edition 1987. See p. 123.

Crossrefs

Programs

  • Magma
    T:=func; [T(k,n-k+1): k in [1..n], n in [1..12]]; // Bruno Berselli, Dec 19 2014
  • Mathematica
    t[n_, k_] := n*Binomial[k, 2] + k; Table[ t[k, n - k + 1], {n, 12}, {k, n}] // Flatten

Formula

T(n, k) = n*binomial(k, 2) + k = A057145(n+2,k).
2*T(n, k) = T(n+r, k) + T(n-r, k), where r = 0, 1, 2, 3, ..., n-1 (see table in Example field). - Bruno Berselli, Dec 19 2014
From Stefano Spezia, Sep 02 2022: (Start)
G.f.: x*y*(1 - x + x*y)/((1 - x)^2*(1 - y)^3).
G.f. of k-th column: k*(1 + k - 2*x)*x/(2*(1 - x)^2). (End)

Extensions

Extended by Clark Kimberling, Jan 01 2011

A139601 Square array of polygonal numbers read by ascending antidiagonals: T(n, k) = (n + 1)*(k - 1)*k/2 + k.

Original entry on oeis.org

0, 0, 1, 0, 1, 3, 0, 1, 4, 6, 0, 1, 5, 9, 10, 0, 1, 6, 12, 16, 15, 0, 1, 7, 15, 22, 25, 21, 0, 1, 8, 18, 28, 35, 36, 28, 0, 1, 9, 21, 34, 45, 51, 49, 36, 0, 1, 10, 24, 40, 55, 66, 70, 64, 45, 0, 1, 11, 27, 46, 65, 81, 91, 92, 81, 55, 0, 1, 12, 30, 52, 75, 96, 112, 120, 117, 100, 66
Offset: 0

Views

Author

Omar E. Pol, Apr 27 2008

Keywords

Comments

A general formula for polygonal numbers is P(n,k) = (n-2)(k-1)k/2 + k, where P(n,k) is the k-th n-gonal number. - Omar E. Pol, Dec 21 2008

Examples

			The square array of polygonal numbers begins:
========================================================
Triangulars .. A000217: 0, 1,  3,  6, 10,  15,  21,  28,
Squares ...... A000290: 0, 1,  4,  9, 16,  25,  36,  49,
Pentagonals .. A000326: 0, 1,  5, 12, 22,  35,  51,  70,
Hexagonals ... A000384: 0, 1,  6, 15, 28,  45,  66,  91,
Heptagonals .. A000566: 0, 1,  7, 18, 34,  55,  81, 112,
Octagonals ... A000567: 0, 1,  8, 21, 40,  65,  96, 133,
9-gonals ..... A001106: 0, 1,  9, 24, 46,  75, 111, 154,
10-gonals .... A001107: 0, 1, 10, 27, 52,  85, 126, 175,
11-gonals .... A051682: 0, 1, 11, 30, 58,  95, 141, 196,
12-gonals .... A051624: 0, 1, 12, 33, 64, 105, 156, 217,
And so on ..............................................
========================================================
		

Crossrefs

Sequences of m-gonal numbers: A000217 (m=3), A000290 (m=4), A000326 (m=5), A000384 (m=6), A000566 (m=7), A000567 (m=8), A001106 (m=9), A001107 (m=10), A051682 (m=11), A051624 (m=12), A051865 (m=13), A051866 (m=14), A051867 (m=15), A051868 (m=16), A051869 (m=17), A051870 (m=18), A051871 (m=19), A051872 (m=20), A051873 (m=21), A051874 (m=22), A051875 (m=23), A051876 (m=24), A255184 (m=25), A255185 (m=26), A255186 (m=27), A161935 (m=28), A255187 (m=29), A254474 (m=30).

Programs

  • Magma
    T:= func< n,k | k*((n+1)*(k-1) +2)/2 >;
    A139601:= func< n,k | T(n-k, k) >;
    [A139601(n,k): k in  [0..n], n in [0..12]]; // G. C. Greubel, Jul 12 2024
    
  • Mathematica
    T[n_, k_] := (n + 1)*(k - 1)*k/2 + k; Table[ T[n - k, k], {n, 0, 11}, {k, 0, n}] // Flatten (* Robert G. Wilson v, Jul 12 2009 *)
  • SageMath
    def T(n,k): return k*((n+1)*(k-1)+2)/2
    def A139601(n,k): return T(n-k, k)
    flatten([[A139601(n,k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Jul 12 2024

Formula

T(n,k) = A086270(n,k), k>0. - R. J. Mathar, Aug 06 2008
T(n,k) = (n+1)*(k-1)*k/2 +k, n>=0, k>=0. - Omar E. Pol, Jan 07 2009
From G. C. Greubel, Jul 12 2024: (Start)
t(n, k) = (k/2)*( (k-1)*(n-k+1) + 2), where t(n,k) is this array read by rising antidiagonals.
t(2*n, n) = A006003(n).
t(2*n+1, n) = A002411(n).
t(2*n-1, n) = A006000(n-1).
Sum_{k=0..n} t(n, k) = A006522(n+2).
Sum_{k=0..n} (-1)^k*t(n, k) = (-1)^n * A117142(n).
Sum_{k=0..n} t(n-k, k) = (2*n^4 + 34*n^2 + 48*n - 15 + 3*(-1)^n*(2*n^2 + 16*n + 5))/384. (End)

A086272 Rectangular array T(n,k) of central polygonal numbers, by antidiagonals.

Original entry on oeis.org

1, 3, 1, 7, 4, 1, 13, 10, 5, 1, 21, 19, 13, 6, 1, 31, 31, 25, 16, 7, 1, 43, 46, 41, 31, 19, 8, 1, 57, 64, 61, 51, 37, 22, 9, 1, 73, 85, 85, 76, 61, 43, 25, 10, 1, 91, 109, 113, 106, 91, 71, 49, 28, 11, 1, 111, 136, 145, 141, 127, 106, 81, 55, 31, 12, 1, 133, 166, 181, 181, 169
Offset: 1

Views

Author

Clark Kimberling, Jul 14 2003

Keywords

Comments

In the standard notation, the offset is different: the first row are the 2-gonal, the second row the 3-gonal numbers, etc. - R. J. Mathar, Oct 07 2011

Examples

			First rows:
1,3,7,13,21,31,43,57,73,91,111,..   A002061
1,4,10,19,31,46,64,85,109,136,166,...  A005448
1,5,13,25,41,61,85,113,145,181,221,..   A001844
1,6,16,31,51,76,106,141,181,226,276,...  A005891
1,7,19,37,61,91,127,169,217,271,331,...   A003215
1,8,22,43,71,106,148,197,253,316,386,...    A069099
1,9,25,49,81,121,169,225,289,361,441,...    A016754
1,10,28,55,91,136,190,253,325,406,496,...    A060544
		

Crossrefs

Formula

T(k, n)=(k+1)*binomial(n, 2)+1.

A086273 Rectangular array T(n,k) of central polygonal numbers, by antidiagonals.

Original entry on oeis.org

1, 1, 3, 1, 4, 7, 1, 5, 10, 13, 1, 6, 13, 19, 21, 1, 7, 16, 25, 31, 31, 1, 8, 19, 31, 41, 46, 43, 1, 9, 22, 37, 51, 61, 64, 57, 1, 10, 25, 43, 61, 76, 85, 85, 73, 1, 11, 28, 49, 71, 91, 106, 113, 109, 91, 1, 12, 31, 55, 81, 106, 127, 141, 145, 136, 111, 1, 13, 34, 61, 91, 121, 148
Offset: 1

Views

Author

Clark Kimberling, Jul 14 2003

Keywords

Comments

Transpose of the array at A086272.

Examples

			Northwest corner:
  1    1    1    1    1    1    1    1    1    1
  3    4    5    6    7    8    9   10   11   12 A000027
  7   10   13   16   19   22   25   28   31   34 A112414, A016777
  13   19   25   31   37   43   49   55   61   67 A016921
  21   31   41   51   61   71   81   91  101  111 A017281
  31   46   61   76   91  106  121  136  151  166
  43   64   85  106  127  148  169  190  211  232
  57   85  113  141  169  197  225  253  281  309
  73  109  145  181  217  253  289  325  361  397
  91  136  181  226  271  316  361  406  451  496
111  166  221  276  331  386  441  496  551  606
133  199  265  331  397  463  529  595  661  727
157  235  313  391  469  547  625  703  781  859
183  274  365  456  547  638  729  820  911 1002
211  316  421  526  631  736  841  946 1051 1156
241  361  481  601  721  841  961 1081 1201 1321
		

Crossrefs

Programs

Formula

T(n, k)=(k+1)*binomial(n, 2)+1.

A180266 a(0) = 0; a(n) = C(2*n-2,n-1)*(n^2-2*n+2)/n for n >= 1.

Original entry on oeis.org

0, 1, 2, 10, 50, 238, 1092, 4884, 21450, 92950, 398684, 1696396, 7171892, 30161740, 126293000, 526864680, 2191034970, 9086921190, 37596989100, 155232577500, 639749274780, 2632212288420, 10814090022840, 44369043365400
Offset: 0

Views

Author

Robert G. Wilson v, Aug 22 2010

Keywords

Comments

We may define Figurate Numbers F(r,n,d) with rank r, index n in dimension d as F(r,n,d) = binomial(r+d-2,d-1) *((r-1)*(n-2)+d) /d. These are polygonal numbers A057145 or A086271 in d=2, pyramidal numbers A080851 in d=3, and 4D pyramidal numbers A080852 in d=4, for example.
This sequence here is a(n) = F(n,n,n), the n-th n-gonal figurate number in n dimensions.
Limit_{n -> infinity} a(n+1)/a(n) = 4. - Robert G. Wilson v, Oct 30 2013

References

  • Albert H. Beiler, Recreations in the Theory of Numbers, The Queen of Mathematics Entertains, Second Edition, Dover, New York, 1966, Chptr. XVIII Ball Games, p. 196.

Crossrefs

Programs

  • Mathematica
    Figurate[ngon_, rank_, dim_] := Binomial[rank + dim - 2, dim - 1] ((rank - 1)*(ngon - 2) + dim)/dim; Table[ Figurate[n, n, n], {n, 50}]
    Join[{0},Table[Binomial[2n-2,n-1] (n^2-2n+2)/n,{n,30}]] (* Harvey P. Dale, Sep 22 2019 *)

Formula

a(n) = A000984(n-1) + (n-1)*A024483(n). [R. J. Mathar, Nov 18 2010]
From Ilya Gutkovskiy, Mar 29 2018: (Start)
O.g.f.: 1 - (1 - 7*x + 10*x^2)/(1 - 4*x)^(3/2).
E.g.f.: 1 - exp(2*x)*((1 - 3*x)*BesselI(0,2*x) + 2*x*BesselI(1,2*x)).
a(n) = [x^n] x*(1 - 3*x + n*x)/(1 - x)^(n+1). (End)

A303273 Array T(n,k) = binomial(n, 2) + k*n + 1 read by antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 1, 3, 4, 4, 1, 4, 6, 7, 7, 1, 5, 8, 10, 11, 11, 1, 6, 10, 13, 15, 16, 16, 1, 7, 12, 16, 19, 21, 22, 22, 1, 8, 14, 19, 23, 26, 28, 29, 29, 1, 9, 16, 22, 27, 31, 34, 36, 37, 37, 1, 10, 18, 25, 31, 36, 40, 43, 45, 46, 46, 1, 11, 20, 28, 35, 41
Offset: 0

Views

Author

Keywords

Comments

Columns are linear recurrence sequences with signature (3,-3,1).
8*T(n,k) + A166147(k-1) are squares.
Columns k are binomial transforms of [1, k, 1, 0, 0, 0, ...].
Antidiagonals sums yield A116731.

Examples

			The array T(n,k) begins
1    1    1    1    1    1    1    1    1    1    1    1    1  ...  A000012
1    2    3    4    5    6    7    8    9   10   11   12   13  ...  A000027
2    4    6    8   10   12   14   16   18   20   22   24   26  ...  A005843
4    7   10   13   16   19   22   25   28   31   34   37   40  ...  A016777
7   11   15   19   23   27   31   35   39   43   47   51   55  ...  A004767
11  16   21   26   31   36   41   46   51   56   61   66   71  ...  A016861
16  22   28   34   40   46   52   58   64   70   76   82   88  ...  A016957
22  29   36   43   50   57   64   71   78   85   92   99  106  ...  A016993
29  37   45   53   61   69   77   85   93  101  109  117  125  ...  A004770
37  46   55   64   73   82   91  100  109  118  127  136  145  ...  A017173
46  56   66   76   86   96  106  116  126  136  146  156  166  ...  A017341
56  67   78   89  100  111  122  133  144  155  166  177  188  ...  A017401
67  79   91  103  115  127  139  151  163  175  187  199  211  ...  A017605
79  92  105  118  131  144  157  170  183  196  209  222  235  ...  A190991
...
The inverse binomial transforms of the columns are
1    1    1    1    1    1    1    1    1    1    1    1    1  ...
0    1    2    3    4    5    6    7    8    9   10   11   12  ...
1    1    1    1    1    1    1    1    1    1    1    1    1  ...
0    0    0    0    0    0    0    0    0    0    0    0    0  ...
0    0    0    0    0    0    0    0    0    0    0    0    0  ...
0    0    0    0    0    0    0    0    0    0    0    0    0  ...
...
T(k,n-k) = A087401(n,k) + 1 as triangle
1
1   1
1   2   2
1   3   4   4
1   4   6   7   7
1   5   8  10  11  11
1   6  10  13  15  16  16
1   7  12  16  19  21  22  22
1   8  14  19  23  26  28  29  29
1   9  16  22  27  31  34  36  37  37
1  10  18  25  31  36  40  43  45  46  46
...
		

References

  • R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics: A Foundation for Computer Science, Addison-Wesley, 1994.

Crossrefs

Programs

  • Maple
    T := (n, k) -> binomial(n, 2) + k*n + 1;
    for n from 0 to 20 do seq(T(n, k), k = 0 .. 20) od;
  • Mathematica
    Table[With[{n = m - k}, Binomial[n, 2] + k n + 1], {m, 0, 11}, {k, m, 0, -1}] // Flatten (* Michael De Vlieger, Apr 21 2018 *)
  • Maxima
    T(n, k) := binomial(n, 2)+ k*n + 1$
    for n:0 thru 20 do
        print(makelist(T(n, k), k, 0, 20));
    
  • PARI
    T(n,k) = binomial(n, 2) + k*n + 1;
    tabl(nn) = for (n=0, nn, for (k=0, nn, print1(T(n, k), ", ")); print); \\ Michel Marcus, May 17 2018

Formula

G.f.: (3*x^2*y - 3*x*y + y - 2*x^2 + 2*x - 1)/((x - 1)^3*(y - 1)^2).
E.g.f.: (1/2)*(2*x*y + x^2 + 2)*exp(y + x).
T(n,k) = 3*T(n-1,k) - 3*T(n-2,k) + T(n-3,k), with T(0,k) = 1, T(1,k) = k + 1 and T(2,k) = 2*k + 2.
T(n,k) = T(n-1,k) + n + k - 1.
T(n,k) = T(n,k-1) + n, with T(n,0) = 1.
T(n,0) = A152947(n+1).
T(n,1) = A000124(n).
T(n,2) = A000217(n).
T(n,3) = A034856(n+1).
T(n,4) = A052905(n).
T(n,5) = A051936(n+4).
T(n,6) = A246172(n+1).
T(n,7) = A302537(n).
T(n,8) = A056121(n+1) + 1.
T(n,9) = A056126(n+1) + 1.
T(n,10) = A051942(n+10) + 1, n > 0.
T(n,11) = A101859(n) + 1.
T(n,12) = A132754(n+1) + 1.
T(n,13) = A132755(n+1) + 1.
T(n,14) = A132756(n+1) + 1.
T(n,15) = A132757(n+1) + 1.
T(n,16) = A132758(n+1) + 1.
T(n,17) = A212427(n+1) + 1.
T(n,18) = A212428(n+1) + 1.
T(n,n) = A143689(n) = A300192(n,2).
T(n,n+1) = A104249(n).
T(n,n+2) = T(n+1,n) = A005448(n+1).
T(n,n+3) = A000326(n+1).
T(n,n+4) = A095794(n+1).
T(n,n+5) = A133694(n+1).
T(n+2,n) = A005449(n+1).
T(n+3,n) = A115067(n+2).
T(n+4,n) = A133694(n+2).
T(2*n,n) = A054556(n+1).
T(2*n,n+1) = A054567(n+1).
T(2*n,n+2) = A033951(n).
T(2*n,n+3) = A001107(n+1).
T(2*n,n+4) = A186353(4*n+1) (conjectured).
T(2*n,n+5) = A184103(8*n+1) (conjectured).
T(2*n,n+6) = A250657(n-1) = A250656(3,n-1), n > 1.
T(n,2*n) = A140066(n+1).
T(n+1,2*n) = A005891(n).
T(n+2,2*n) = A249013(5*n+4) (conjectured).
T(n+3,2*n) = A186384(5*n+3) = A186386(5*n+3) (conjectured).
T(2*n,2*n) = A143689(2*n).
T(2*n+1,2*n+1) = A143689(2*n+1) (= A030503(3*n+3) (conjectured)).
T(2*n,2*n+1) = A104249(2*n) = A093918(2*n+2) = A131355(4*n+1) (= A030503(3*n+5) (conjectured)).
T(2*n+1,2*n) = A085473(n).
a(n+1,5*n+1)=A051865(n+1) + 1.
a(n,2*n+1) = A116668(n).
a(2*n+1,n) = A054569(n+1).
T(3*n,n) = A025742(3*n-1), n > 1 (conjectured).
T(n,3*n) = A140063(n+1).
T(n+1,3*n) = A069099(n+1).
T(n,4*n) = A276819(n).
T(4*n,n) = A154106(n-1), n > 0.
T(2^n,2) = A028401(n+2).
T(1,n)*T(n,1) = A006000(n).
T(n*(n+1),n) = A211905(n+1), n > 0 (conjectured).
T(n*(n+1)+1,n) = A294259(n+1).
T(n,n^2+1) = A081423(n).
T(n,A000217(n)) = A158842(n), n > 0.
T(n,A152947(n+1)) = A060354(n+1).
floor(T(n,n/2)) = A267682(n) (conjectured).
floor(T(n,n/3)) = A025742(n-1), n > 0 (conjectured).
floor(T(n,n/4)) = A263807(n-1), n > 0 (conjectured).
ceiling(T(n,2^n)/n) = A134522(n), n > 0 (conjectured).
ceiling(T(n,n/2+n)/n) = A051755(n+1) (conjectured).
floor(T(n,n)/n) = A133223(n), n > 0 (conjectured).
ceiling(T(n,n)/n) = A007494(n), n > 0.
ceiling(T(n,n^2)/n) = A171769(n), n > 0.
ceiling(T(2*n,n^2)/n) = A046092(n), n > 0.
ceiling(T(2*n,2^n)/n) = A131520(n+2), n > 0.
Showing 1-8 of 8 results.