cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 20 results. Next

A144257 Weight array of A086270.

Original entry on oeis.org

1, 2, 0, 3, 1, 0, 4, 2, 1, 0, 5, 3, 2, 1, 0, 6, 4, 3, 2, 1, 0, 7, 5, 4, 3, 2, 1, 0, 8, 6, 5, 4, 3, 2, 1, 0, 9, 7, 6, 5, 4, 3, 2, 1, 0, 10, 8, 7, 6, 5, 4, 3, 2, 1, 0, 11, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0, 12, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0, 13, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0, 14, 12, 11, 10, 9, 8, 7, 6, 5
Offset: 1

Views

Author

Clark Kimberling, Sep 16 2008

Keywords

Comments

For the definition of weight array, see A144112.
From Gary W. Adamson, Feb 18 2010: (Start)
Identical to an infinite lower triangular matrix with (1,2,3,...) in every column but the leftmost column shifted one row upwards, giving:
1;
2, 0;
3, 1, 0;
4, 2, 1, 0;
5, 3, 2, 1, 0;
...
Let the triangle = M. Row sums = A000124; M * [1,2,3,...] = A050407 starting with offset 3: (1, 2, 5, 11, 21, 36, ...); and lim_{n->inf} M^n = the odd-indexed Fibonacci numbers, A001519: (1, 2, 5, 13, ...). (End)

Examples

			Northwest corner:
  1 2 3 4 5 6 7 8 9
  0 1 2 3 4 5 6 7 8
  0 1 2 3 4 5 6 7 8
  0 1 2 3 4 5 6 7 8
  0 1 2 3 4 5 6 7 8
		

Crossrefs

Cf. A086270.
Cf. A000124, A050407, A001519. - Gary W. Adamson, Feb 18 2010

Formula

Row 1 = A000027. All subsequent rows are 0 followed by A000027.

A185732 Accumulation array of the polygonal number array (A086270), by antidiagonals.

Original entry on oeis.org

1, 4, 2, 10, 9, 3, 20, 24, 15, 4, 35, 50, 42, 22, 5, 56, 90, 90, 64, 30, 6, 84, 147, 165, 140, 90, 39, 7, 120, 224, 273, 260, 200, 120, 49, 8, 165, 324, 420, 434, 375, 270, 154, 60, 9, 220, 450, 612, 672, 630, 510, 350, 192, 72, 10, 286, 605, 855, 984, 980, 861, 665, 440, 234, 85, 11, 364, 792, 1155, 1380, 1440, 1344, 1127, 840, 540, 280, 99, 12, 455, 1014, 1518, 1870, 2025, 1980, 1764, 1428, 1035, 650, 330, 114, 13, 560, 1274, 1950, 2464, 2750, 2790, 2604, 2240
Offset: 1

Views

Author

Clark Kimberling, Feb 01 2011

Keywords

Comments

This is the (first) accumulation array of A086270; the second is A185733. See A144112 for the definition of accumulation array.

Examples

			Northwest corner:
1....4....10...20...35
2....9....24...50...90
3....15...42...90...165
4....22...64...140..260
5....30...90...200..375
		

Crossrefs

Rows 1 to 5: A000292, A006002, A059270, A177814, 5*A002411.
Columns 1 to 4: A000027, A055999, A067728, 10*A000096.

Programs

  • Mathematica
    f[n_,k_]:=k+n*k(k-1)/2;
    TableForm[Table[f[n,k],{n,1,10},{k,1,15}]]  (* Array A086270 *)
    Table[f[n-k+1,k],{n,14},{k,n,1,-1}]//Flatten  (* A086270 *)
    s[n_,k_]:=Sum[f[i,j],{i,1,n},{j,1,k}]; (* acc. arr. of {f(n,k)} *)
    Factor[s[n,k]]  (* formula for A185732 *)
    TableForm[Table[s[n,k],{n,1,10},{k,1,15}]] (* acc. arr. A185732 *)
    Table[s[n-k+1,k],{n,14},{k,n,1,-1}]//Flatten (* A185732 *)

Formula

T(n,k) = k*(k+1)*n*(n+1)*(k*n-n+k+5)/12.

A185733 Second accumulation array of the polygonal number array (A086270), by antidiagonals.

Original entry on oeis.org

1, 5, 3, 15, 16, 6, 35, 50, 34, 10, 70, 120, 110, 60, 15, 126, 245, 270, 200, 95, 21, 210, 448, 560, 500, 325, 140, 28, 330, 756, 1036, 1050, 825, 490, 196, 36, 495, 1200, 1764, 1960, 1750, 1260, 700, 264, 45, 715, 1815, 2820, 3360, 3290, 2695, 1820, 960, 345, 55, 1001, 2640, 4290, 5400, 5670, 5096, 3920, 2520, 1275, 440, 66, 1365, 3718, 6270, 8250, 9150, 8820, 7448, 5460, 3375, 1650, 550, 78
Offset: 1

Views

Author

Clark Kimberling, Feb 02 2011

Keywords

Comments

This is the accumulation array of the accumulation array of A086270. The accumulation array of A185733 is A185734, so that A184733 is the weight array of A185734. Thus, the arrays are members of a two-way infinite chain; see A144112 for definitions.

Examples

			Northwest corner:
1....5....15....35....70
3....16...50....120...245
6....34...110...270...560
10...60...200...500..1050
		

Crossrefs

Rows 1 to 2: A000332, A004320.
Columns 1 to 3: A000219, A096941, 5*A007603.

Programs

  • Mathematica
    f[n_,k_]:=k*(1+k)*(2+k)*n*(1+n)*(10+2*k-n+k*n)/144;
    TableForm[Table[f[n,k],{n,1,10},{k,1,15}]]
    Table[f[n-k+1,k],{n,14},{k,n,1,-1}]//Flatten

Formula

T(n,k) = k*(k+1)*(k+2)*n*(n+1)*(k*n-n+2*k+10)/144.

A185734 Third accumulation array of the polygonal number array (A086270), by antidiagonals.

Original entry on oeis.org

1, 6, 4, 21, 25, 10, 56, 90, 65, 20, 126, 245, 240, 135, 35, 252, 560, 665, 510, 245, 56, 462, 1134, 1540, 1435, 945, 406, 84, 792, 2100, 3150, 3360, 2695, 1596, 630, 120, 1287, 3630, 5880, 6930, 6370, 4606, 2520, 930, 165, 2002, 5940, 10230
Offset: 1

Views

Author

Clark Kimberling, Feb 02 2011

Keywords

Comments

The chain of accumulation arrays is A144257->A086270->A185732->A185733->A184734.

Examples

			Northwest corner:
1....6......21.....56....126
4....25.....90....245....560
10...65....240....665...1540
20...135...510...1435...3360
		

Crossrefs

Programs

  • Mathematica
    f[n_,k_]:= k*(1+k)*(2+k)*n*(1+n)*(10+2*k-n+k*n)/144;
    TableForm[Table[f[n,k],{n,1,10},{k,1,15}]]  (* array A185733 *)
    Table[f[n-k+1,k],{n,14},{k,n,1,-1}]//Flatten  (* A185733 *)
    s[n_,k_]:=Sum[f[i,j],{i,1,n},{j,1,k}]; (* accumulation array of {f(n,k)} *)
    FullSimplify[s[n,k]]  (* the formula for A185734 *)
    TableForm[Table[s[n,k],{n,1,10},{k,1,15}]]  (* array A185734 *)
    Table[s[n-k+1,k],{n,14},{k,n,1,-1}]//Flatten  (* A185734 *)

Formula

T(n,k) = C(k+3,4)*C(n+2,3)*(k*n-n+3*k+17)/20, k>=1, n>=1.
T(n,k) = Sum_{j=1..n} Sum_{l=1..k} A185733(j,l), by definition.

A376276 Table T(n, k) n > 0, k > 2 read by upward antidiagonals. The sequences in each column k is a triangle read by rows (blocks), where each row is a permutation of the numbers of its constituents. The length of the row number n in column k is equal to the n-th k-gonal number A086270.

Original entry on oeis.org

1, 3, 1, 4, 4, 1, 2, 3, 4, 1, 8, 5, 5, 5, 1, 7, 2, 3, 4, 5, 1, 9, 10, 6, 6, 6, 6, 1, 6, 11, 2, 3, 4, 5, 6, 1, 10, 9, 13, 7, 7, 7, 7, 7, 1, 5, 12, 12, 2, 3, 4, 5, 6, 7, 1, 16, 8, 14, 15, 8, 8, 8, 8, 8, 8, 1, 15, 13, 11, 16, 2, 3, 4, 5, 6, 7, 8, 1, 17, 7, 15, 14, 18, 9, 9, 9, 9, 9, 9, 9, 1, 14, 14, 10, 17, 17, 2, 3, 4, 5, 6, 7, 8, 9, 1, 18, 6, 16, 13, 19, 20, 10, 10, 10
Offset: 1

Views

Author

Boris Putievskiy, Sep 18 2024

Keywords

Comments

A209278 presents an algorithm for generating permutations.
The sequence is an intra-block permutation of integer positive numbers.

Examples

			Table begins:
  k =      3   4   5   6   7   8
--------------------------------------
  n = 1:   1,  1,  1,  1,  1,  1, ...
  n = 2:   3,  4,  4,  5,  5,  6, ...
  n = 3:   4,  3,  5,  4,  6,  5, ...
  n = 4:   2,  5,  3,  6,  4,  7, ...
  n = 5:   8,  2,  6,  3,  7,  4, ...
  n = 6:   7, 10,  2,  7,  3,  8, ...
  n = 7:   9, 11, 13,  2,  8,  3, ...
  n = 8:   6,  9, 12, 15,  2,  9, ...
  n = 9:  10, 12, 14, 16, 18,  2, ...
  n =10:   5,  8, 11, 14, 17, 20, ...
  n =11:  16, 13, 15, 17, 19, 21, ...
  n =12:  15, 7,  10, 13, 16, 19, ...
  n =13:  17, 14, 16, 18, 20, 22, ...
  n =14:  14,  6,  9, 12, 15, 18, ...
  n =15:  18, 23, 17, 19, 21, 23, ...
  n =16:  13, 22,  8, 11, 14, 17, ...
  n =17:  19, 24, 18, 20, 22, 24, ...
  n =18:  12, 21,  7, 10, 13, 16, ...
  n =19:  20, 25, 30, 21, 23, 25, ...
  n =20:  11, 20, 29,  9, 12, 15, ...
          ... .
For k = 3 the first 4 blocks have lengths 1,3,6 and 10.
For k = 4 the first 3 blocks have lengths 1,4, and 9.
For k = 5 the first 3 blocks have lengths 1,5, and 12.
Each block is a permutation of the numbers of its constituents.
The first 6 antidiagonals are:
  1;
  3, 1;
  4, 4, 1;
  2, 3, 4, 1;
  8, 5, 5, 5, 1;
  7, 2, 3, 4, 5, 1;
		

References

  • E. Deza and M. M. Deza, Figurate numbers, World Scientific Publishing (2012), page 45.

Crossrefs

Programs

  • Mathematica
    T[n_,k_]:=Module[{L,R,P,Res,result},L=Ceiling[Max[x/.NSolve[x^3*(k-2)+3*x^2-x*(k-5)-6*n==0,x,Reals]]];
    R=n-(((L-1)^3)*(k-2)+3*(L-1)^2-(L-1)*(k-5))/6;P=Which[OddQ[R]&&OddQ[k*L*(L-1)/2-L^2+2*L],((k*L*(L-1)/2-L^2+2*L+1-R)+1)/2,OddQ[R]&&EvenQ[k*L*(L-1)/2-L^2+2*L],(R+k*L*(L-1)/2-L^2+2*L+1)/2,EvenQ[R]&&OddQ[k*L*(L-1)/2-L^2+2*L],Ceiling[(k*L*(L-1)/2-L^2+2*L+1)/2]+R/2,EvenQ[R]&&EvenQ[k*L*(L-1)/2-L^2+2*L],Ceiling[(k*L*(L-1)/2-L^2+2*L+1)/2]-R/2];
    Res=P+((L-1)^3*(k-2)+3*(L-1)^2-(L-1)*(k-5))/6;result=Res;result]
    Nmax=6;Table[T[n,k],{n,1,Nmax},{k,3,Nmax+2}]

Formula

T(n,k) = P(n,k) + ((L(n,k)-1)^3*(k-2)+3*(L(n,k)-1)^2-(L(n,k)-1)*(k-5))/6, where L(n,k) = ceiling(x(n,k)), x(n,k) is largest real root of the equation x^3*(k - 2) + 3*x^2 - x*(k - 5) - 6*n = 0. R(n,k) = n - ((L(n,k) - 1)^3*(k-2)+3*(L(n,k)-1)^2-(L(n,k)-1)*(k-5))/6. P(n,k) = ((k * L(n,k) * (L(n,k) - 1) / 2) - L(n,k)^2 + 2 * L(n,k) + 2 - R(n,k)) / 2 if R is odd and (k * L(n,k) * (L(n,k) - 1) / 2) - L(n,k)^2 + 2 * L(n,k) is odd, P(n,k) = (R(n,k) + (k * L(n,k) * (L(n,k) - 1) / 2) - L(n,k)^2 + 2 * L(n,k) + 1) / 2 if R is odd and (k * L(n,k) * (L(n,k) - 1) / 2) - L(n,k)^2 + 2 * L(n,k) is even, P(n,k) = ceiling(((k * L(n,k) * (L(n,k) - 1) / 2) - L(n,k)^2 + 2 * L(n,k) + 1) / 2) + (R(n,k) / 2) if R is even and (k * L(n,k) * (L(n,k) - 1) / 2) - L(n,k)^2 + 2 * L(n,k) is odd, P(n,k) = ceiling(((k * L(n,k) * (L(n,k) - 1) / 2) - L(n,k)^2 + 2 * L(n,k) + 1) / 2) - (R(n,k) / 2) if R is even and (k * L(n,k) * (L(n,k) - 1) / 2) - L(n,k)^2 + 2 * L(n,k) is even.
T(1,n) = A000012(n). T(2,n) = A004526(n+7). T(3,n) = A028242(n+6). T(4,n) = A084964(n+5). T(n-2,n) = A000027(n) for n > 3. L(n,3) = A360010(n). L(n,4) = A074279(n).

A057145 Square array of polygonal numbers T(n,k) = ((n-2)*k^2 - (n-4)*k)/2, n >= 2, k >= 1, read by antidiagonals upwards.

Original entry on oeis.org

1, 1, 2, 1, 3, 3, 1, 4, 6, 4, 1, 5, 9, 10, 5, 1, 6, 12, 16, 15, 6, 1, 7, 15, 22, 25, 21, 7, 1, 8, 18, 28, 35, 36, 28, 8, 1, 9, 21, 34, 45, 51, 49, 36, 9, 1, 10, 24, 40, 55, 66, 70, 64, 45, 10, 1, 11, 27, 46, 65, 81, 91, 92, 81, 55, 11, 1, 12, 30, 52, 75, 96, 112
Offset: 2

Views

Author

N. J. A. Sloane, Sep 12 2000

Keywords

Comments

The set of the "nontrivial" entries T(n>=3,k>=3) is in A090466. - R. J. Mathar, Jul 28 2016
T(n,k) is the smallest number that can be expressed as the sum of k consecutive positive integers that differ by n - 2. In other words: T(n,k) is the sum of k terms of the arithmetic progression with common difference n - 2 and 1st term 1, (see the example). - Omar E. Pol, Apr 29 2020

Examples

			Array T(n k) (n >= 2, k >= 1) begins:
  1,  2,  3,  4,   5,   6,   7,   8,   9,  10,  11, ...
  1,  3,  6, 10,  15,  21,  28,  36,  45,  55,  66, ...
  1,  4,  9, 16,  25,  36,  49,  64,  81, 100, 121, ...
  1,  5, 12, 22,  35,  51,  70,  92, 117, 145, 176, ...
  1,  6, 15, 28,  45,  66,  91, 120, 153, 190, 231, ...
  1,  7, 18, 34,  55,  81, 112, 148, 189, 235, 286, ...
  1,  8, 21, 40,  65,  96, 133, 176, 225, 280, 341, ...
  1,  9, 24, 46,  75, 111, 154, 204, 261, 325, 396, ...
  1, 10, 27, 52,  85, 126, 175, 232, 297, 370, 451, ...
  1, 11, 30, 58,  95, 141, 196, 260, 333, 415, 506, ...
  1, 12, 33, 64, 105, 156, 217, 288, 369, 460, 561, ...
  1, 13, 36, 70, 115, 171, 238, 316, 405, 505, 616, ...
  1, 14, 39, 76, 125, 186, 259, 344, 441, 550, 671, ...
-------------------------------------------------------
From _Wolfdieter Lang_, Nov 04 2014: (Start)
The triangle a(k, m) begins:
  k\m 1  2  3  4  5   6   7   8   9  10  11  12 13 14 ...
  2:  1
  3:  1  2
  4:  1  3  3
  5:  1  4  6  4
  6:  1  5  9 10  5
  7:  1  6 12 16 15   6
  8:  1  7 15 22 25  21   7
  9:  1  8 18 28 35  36  28   8
  10: 1  9 21 34 45  51  49  36   9
  11: 1 10 24 40 55  66  70  64  45  10
  12: 1 11 27 46 65  81  91  92  81  55  11
  13: 1 12 30 52 75  96 112 120 117 100  66  12
  14: 1 13 33 58 85 111 133 148 153 145 121  78 13
  15: 1 14 36 64 95 126 154 176 189 190 176 144 91 14
  ...
-------------------------------------------------------
a(2,1) = T(2,1), a(6, 3) = T(4, 3). (End)
.
From _Omar E. Pol_, May 03 2020: (Start)
Illustration of the corner of the square array:
.
  1       2         3           4
  O     O O     O O O     O O O O
.
  1       3         6          10
  O     O O     O O O     O O O O
          O       O O       O O O
                    O         O O
                                O
.
  1       4         9          16
  O     O O     O O O     O O O O
          O       O O       O O O
          O       O O       O O O
                    O         O O
                    O         O O
                                O
                                O
.
  1       5        12          22
  O     O O     O O O     O O O O
          O       O O       O O O
          O       O O       O O O
          O       O O       O O O
                    O         O O
                    O         O O
                    O         O O
                                O
                                O
                                O
(End)
		

References

  • A. H. Beiler, Recreations in the Theory of Numbers. New York: Dover, p. 189, 1966.
  • J. H. Conway and R. K. Guy, The Book of Numbers, Springer-Verlag (Copernicus), p. 38, 1996.

Crossrefs

Many rows and columns of this array are in the database.
Cf. A055795 (antidiagonal sums), A064808 (main diagonal).

Programs

  • Magma
    /* As square array: */ t:=func; [[t(s,n): s in [1..11]]: n in [2..14]]; // Bruno Berselli, Jun 24 2013
  • Maple
    A057145 := proc(n,k)
        ((n-2)*k^2-(n-4)*k)/2 ;
    end proc:
    seq(seq(A057145(d-k,k),k=1..d-2),d=3..12); # R. J. Mathar, Jul 28 2016
  • Mathematica
    nn = 12; Flatten[Table[k (3 - k^2 - n + k*n)/2, {n, 2, nn}, {k, n - 1}]] (* T. D. Noe, Oct 10 2012 *)

Formula

T(2n+4,n) = n^3. - Stuart M. Ellerstein (ellerstein(AT)aol.com), Aug 28 2000
T(n, k) = T(n-1, k) + k*(k-1)/2 [with T(2, k)=k] = T(n, k-1) + 1 + (n-2)*(k-1) [with T(n, 0)=0] = k + (n-2)k(k-1)/2 = k + A063212(n-2, k-1). - Henry Bottomley, Jul 11 2001
G.f. for row n: x*(1+(n-3)*x)/(1-x)^3, n>=2. - Paul Barry, Feb 21 2003
From Wolfdieter Lang, Nov 05 2014: (Start)
The triangle is a(n, m) = T(n-m+1, m) = (1/2)*m*(n*(m-1) + 3 - m^2) for n >= 2, m = 1, 2, ..., n-1 and zero elsewhere.
O.g.f. for column m (without leading zeros): (x*binomial(m,2) + (1+2*m-m^2)*(m/2)*(1-x))/(x^(m-1)*(1-x)^2). (End)
T(n,k) = A139600(n-2,k) = A086270(n-2,k). - R. J. Mathar, Jul 28 2016
Row sums of A077028: T(n+2,k+1) = Sum_{j=0..k} A077028(n,j), where A077028(n,k) = 1+n*k is the square array interpretation of A077028 (the 1D polygonal numbers). - R. J. Mathar, Jul 30 2016
G.f.: x^2*y*(1 - x - y + 2*x*y)/((1 - x)^2*(1 - y)^3). - Stefano Spezia, Apr 12 2024

Extensions

a(50)=49 corrected to a(50)=40 by Jean-François Alcover, Jul 22 2011
Edited: Name shortened, offset in Paul Barry's g.f. corrected and Conway-Guy reference added. - Wolfdieter Lang, Nov 04 2014

A139601 Square array of polygonal numbers read by ascending antidiagonals: T(n, k) = (n + 1)*(k - 1)*k/2 + k.

Original entry on oeis.org

0, 0, 1, 0, 1, 3, 0, 1, 4, 6, 0, 1, 5, 9, 10, 0, 1, 6, 12, 16, 15, 0, 1, 7, 15, 22, 25, 21, 0, 1, 8, 18, 28, 35, 36, 28, 0, 1, 9, 21, 34, 45, 51, 49, 36, 0, 1, 10, 24, 40, 55, 66, 70, 64, 45, 0, 1, 11, 27, 46, 65, 81, 91, 92, 81, 55, 0, 1, 12, 30, 52, 75, 96, 112, 120, 117, 100, 66
Offset: 0

Views

Author

Omar E. Pol, Apr 27 2008

Keywords

Comments

A general formula for polygonal numbers is P(n,k) = (n-2)(k-1)k/2 + k, where P(n,k) is the k-th n-gonal number. - Omar E. Pol, Dec 21 2008

Examples

			The square array of polygonal numbers begins:
========================================================
Triangulars .. A000217: 0, 1,  3,  6, 10,  15,  21,  28,
Squares ...... A000290: 0, 1,  4,  9, 16,  25,  36,  49,
Pentagonals .. A000326: 0, 1,  5, 12, 22,  35,  51,  70,
Hexagonals ... A000384: 0, 1,  6, 15, 28,  45,  66,  91,
Heptagonals .. A000566: 0, 1,  7, 18, 34,  55,  81, 112,
Octagonals ... A000567: 0, 1,  8, 21, 40,  65,  96, 133,
9-gonals ..... A001106: 0, 1,  9, 24, 46,  75, 111, 154,
10-gonals .... A001107: 0, 1, 10, 27, 52,  85, 126, 175,
11-gonals .... A051682: 0, 1, 11, 30, 58,  95, 141, 196,
12-gonals .... A051624: 0, 1, 12, 33, 64, 105, 156, 217,
And so on ..............................................
========================================================
		

Crossrefs

Sequences of m-gonal numbers: A000217 (m=3), A000290 (m=4), A000326 (m=5), A000384 (m=6), A000566 (m=7), A000567 (m=8), A001106 (m=9), A001107 (m=10), A051682 (m=11), A051624 (m=12), A051865 (m=13), A051866 (m=14), A051867 (m=15), A051868 (m=16), A051869 (m=17), A051870 (m=18), A051871 (m=19), A051872 (m=20), A051873 (m=21), A051874 (m=22), A051875 (m=23), A051876 (m=24), A255184 (m=25), A255185 (m=26), A255186 (m=27), A161935 (m=28), A255187 (m=29), A254474 (m=30).

Programs

  • Magma
    T:= func< n,k | k*((n+1)*(k-1) +2)/2 >;
    A139601:= func< n,k | T(n-k, k) >;
    [A139601(n,k): k in  [0..n], n in [0..12]]; // G. C. Greubel, Jul 12 2024
    
  • Mathematica
    T[n_, k_] := (n + 1)*(k - 1)*k/2 + k; Table[ T[n - k, k], {n, 0, 11}, {k, 0, n}] // Flatten (* Robert G. Wilson v, Jul 12 2009 *)
  • SageMath
    def T(n,k): return k*((n+1)*(k-1)+2)/2
    def A139601(n,k): return T(n-k, k)
    flatten([[A139601(n,k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Jul 12 2024

Formula

T(n,k) = A086270(n,k), k>0. - R. J. Mathar, Aug 06 2008
T(n,k) = (n+1)*(k-1)*k/2 +k, n>=0, k>=0. - Omar E. Pol, Jan 07 2009
From G. C. Greubel, Jul 12 2024: (Start)
t(n, k) = (k/2)*( (k-1)*(n-k+1) + 2), where t(n,k) is this array read by rising antidiagonals.
t(2*n, n) = A006003(n).
t(2*n+1, n) = A002411(n).
t(2*n-1, n) = A006000(n-1).
Sum_{k=0..n} t(n, k) = A006522(n+2).
Sum_{k=0..n} (-1)^k*t(n, k) = (-1)^n * A117142(n).
Sum_{k=0..n} t(n-k, k) = (2*n^4 + 34*n^2 + 48*n - 15 + 3*(-1)^n*(2*n^2 + 16*n + 5))/384. (End)

A177025 Number of ways to represent n as a polygonal number.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 2, 2, 1, 2, 1, 1, 3, 2, 1, 2, 1, 1, 3, 2, 1, 2, 2, 1, 2, 3, 1, 2, 1, 1, 2, 2, 2, 4, 1, 1, 2, 2, 1, 2, 1, 1, 4, 2, 1, 2, 2, 1, 3, 2, 1, 2, 3, 1, 2, 2, 1, 2, 1, 1, 2, 3, 2, 4, 1, 1, 2, 3, 1, 2, 1, 1, 3, 2, 1, 3, 1, 1, 4, 2, 1, 2, 2, 1, 2, 2, 1, 2, 3, 2, 2, 2, 2, 3, 1, 1, 2, 3
Offset: 3

Views

Author

Vladimir Shevelev, May 01 2010

Keywords

Comments

Frequency of n in the array A139601 or A086270 of polygonal numbers.
Since n is always n-gonal number, a(n) >= 1.
Conjecture: Every positive integer appears in the sequence.
Records of 2, 3, 4, 5, ... are reached at n = 6, 15, 36, 225, 561, 1225, ... see A063778. [R. J. Mathar, Aug 15 2010]

References

  • J. J. Tattersall, Elementary Number Theory in Nine chapters, 2nd ed (2005), Cambridge Univ. Press, page 22 Problem 26, citing Wertheim (1897)

Crossrefs

Programs

  • Maple
    A177025 := proc(p)
        local ii,a,n,s,m ;
        ii := 2*p ;
        a := 0 ;
        for n in numtheory[divisors](ii) do
            if n > 2 then
                s := ii/n ;
                if (s-2) mod (n-1) = 0 then
                    a := a+1 ;
                end if;
            end if;
        end do:
        return a;
    end proc: # R. J. Mathar, Jan 10 2013
  • Mathematica
    nn = 100; t = Table[0, {nn}]; Do[k = 2; While[p = k*((n - 2) k - (n - 4))/2; p <= nn, t[[p]]++; k++], {n, 3, nn}]; t (* T. D. Noe, Apr 13 2011 *)
    Table[Length[Intersection[Divisors[2 n - 2] + 1, Divisors[2 n]]] - 1, {n, 3, 100}] (* Jonathan Sondow, May 09 2014 *)
  • PARI
    a(n) = sum(i=3, n, ispolygonal(n, i)); \\ Michel Marcus, Jul 08 2014
    
  • Python
    from sympy import divisors
    def a(n):
        i=2*n
        x=0
        for d in divisors(i):
            if d>2:
                s=i/d
                if (s - 2)%(d - 1)==0: x+=1
        return x # Indranil Ghosh, Apr 28 2017, translated from Maple code by R. J. Mathar

Formula

a(n) = A129654(n) - 1.
G.f.: x * Sum_{k>=2} x^k / (1 - x^(k*(k + 1)/2)) (conjecture). - Ilya Gutkovskiy, Apr 09 2020

Extensions

Extended by R. J. Mathar, Aug 15 2010

A086271 Rectangular array T(n,k) of polygonal numbers, by descending antidiagonals.

Original entry on oeis.org

1, 1, 3, 1, 4, 6, 1, 5, 9, 10, 1, 6, 12, 16, 15, 1, 7, 15, 22, 25, 21, 1, 8, 18, 28, 35, 36, 28, 1, 9, 21, 34, 45, 51, 49, 36, 1, 10, 24, 40, 55, 66, 70, 64, 45, 1, 11, 27, 46, 65, 81, 91, 92, 81, 55, 1, 12, 30, 52, 75, 96, 112, 120, 117, 100, 66, 1, 13, 33, 58, 85, 111, 133, 148, 153, 145, 121, 78
Offset: 1

Views

Author

Clark Kimberling, Jul 14 2003

Keywords

Comments

The transpose of the array in A086270; diagonal sums 1, 4, 11, 25, 50, ... are the numbers A006522(n) for n >= 3.

Examples

			Columns 1,2,3 are the triangular, square and pentagonal numbers.
Northwest corner:
       k=1 k=2 k=3 k=4 k=5
  n=1:   1   1   1   1   1 ...
  n=2:   3   4   5   6   7 ...
  n=3:   6   9  12  15  18 ...
  n=4:  10  16  22  28  34 ...
  n=5:  15  25  35  45  55 ...
  ...
		

Crossrefs

Main diagonal gives A006000(n-1).

Programs

  • Mathematica
    T[n_, k_] := PolygonalNumber[k+2, n]; Table[T[n-k+1, k], {n, 1, 12}, {k, n, 1, -1}] // Flatten (* Jean-François Alcover, Sep 04 2016 *)

Formula

T(n, k) = k*C(n,2) + n.
From Stefano Spezia, Sep 02 2022: (Start)
G.f.: x*y*(1 - y + x*y)/((1 - x)^3*(1 - y)^2).
G.f. of n-th row: n*(1 + n - 2*y)*y/(2*(1 - y)^2). (End)

A086272 Rectangular array T(n,k) of central polygonal numbers, by antidiagonals.

Original entry on oeis.org

1, 3, 1, 7, 4, 1, 13, 10, 5, 1, 21, 19, 13, 6, 1, 31, 31, 25, 16, 7, 1, 43, 46, 41, 31, 19, 8, 1, 57, 64, 61, 51, 37, 22, 9, 1, 73, 85, 85, 76, 61, 43, 25, 10, 1, 91, 109, 113, 106, 91, 71, 49, 28, 11, 1, 111, 136, 145, 141, 127, 106, 81, 55, 31, 12, 1, 133, 166, 181, 181, 169
Offset: 1

Views

Author

Clark Kimberling, Jul 14 2003

Keywords

Comments

In the standard notation, the offset is different: the first row are the 2-gonal, the second row the 3-gonal numbers, etc. - R. J. Mathar, Oct 07 2011

Examples

			First rows:
1,3,7,13,21,31,43,57,73,91,111,..   A002061
1,4,10,19,31,46,64,85,109,136,166,...  A005448
1,5,13,25,41,61,85,113,145,181,221,..   A001844
1,6,16,31,51,76,106,141,181,226,276,...  A005891
1,7,19,37,61,91,127,169,217,271,331,...   A003215
1,8,22,43,71,106,148,197,253,316,386,...    A069099
1,9,25,49,81,121,169,225,289,361,441,...    A016754
1,10,28,55,91,136,190,253,325,406,496,...    A060544
		

Crossrefs

Formula

T(k, n)=(k+1)*binomial(n, 2)+1.
Showing 1-10 of 20 results. Next