cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A185732 Accumulation array of the polygonal number array (A086270), by antidiagonals.

Original entry on oeis.org

1, 4, 2, 10, 9, 3, 20, 24, 15, 4, 35, 50, 42, 22, 5, 56, 90, 90, 64, 30, 6, 84, 147, 165, 140, 90, 39, 7, 120, 224, 273, 260, 200, 120, 49, 8, 165, 324, 420, 434, 375, 270, 154, 60, 9, 220, 450, 612, 672, 630, 510, 350, 192, 72, 10, 286, 605, 855, 984, 980, 861, 665, 440, 234, 85, 11, 364, 792, 1155, 1380, 1440, 1344, 1127, 840, 540, 280, 99, 12, 455, 1014, 1518, 1870, 2025, 1980, 1764, 1428, 1035, 650, 330, 114, 13, 560, 1274, 1950, 2464, 2750, 2790, 2604, 2240
Offset: 1

Views

Author

Clark Kimberling, Feb 01 2011

Keywords

Comments

This is the (first) accumulation array of A086270; the second is A185733. See A144112 for the definition of accumulation array.

Examples

			Northwest corner:
1....4....10...20...35
2....9....24...50...90
3....15...42...90...165
4....22...64...140..260
5....30...90...200..375
		

Crossrefs

Rows 1 to 5: A000292, A006002, A059270, A177814, 5*A002411.
Columns 1 to 4: A000027, A055999, A067728, 10*A000096.

Programs

  • Mathematica
    f[n_,k_]:=k+n*k(k-1)/2;
    TableForm[Table[f[n,k],{n,1,10},{k,1,15}]]  (* Array A086270 *)
    Table[f[n-k+1,k],{n,14},{k,n,1,-1}]//Flatten  (* A086270 *)
    s[n_,k_]:=Sum[f[i,j],{i,1,n},{j,1,k}]; (* acc. arr. of {f(n,k)} *)
    Factor[s[n,k]]  (* formula for A185732 *)
    TableForm[Table[s[n,k],{n,1,10},{k,1,15}]] (* acc. arr. A185732 *)
    Table[s[n-k+1,k],{n,14},{k,n,1,-1}]//Flatten (* A185732 *)

Formula

T(n,k) = k*(k+1)*n*(n+1)*(k*n-n+k+5)/12.

A185734 Third accumulation array of the polygonal number array (A086270), by antidiagonals.

Original entry on oeis.org

1, 6, 4, 21, 25, 10, 56, 90, 65, 20, 126, 245, 240, 135, 35, 252, 560, 665, 510, 245, 56, 462, 1134, 1540, 1435, 945, 406, 84, 792, 2100, 3150, 3360, 2695, 1596, 630, 120, 1287, 3630, 5880, 6930, 6370, 4606, 2520, 930, 165, 2002, 5940, 10230
Offset: 1

Views

Author

Clark Kimberling, Feb 02 2011

Keywords

Comments

The chain of accumulation arrays is A144257->A086270->A185732->A185733->A184734.

Examples

			Northwest corner:
1....6......21.....56....126
4....25.....90....245....560
10...65....240....665...1540
20...135...510...1435...3360
		

Crossrefs

Programs

  • Mathematica
    f[n_,k_]:= k*(1+k)*(2+k)*n*(1+n)*(10+2*k-n+k*n)/144;
    TableForm[Table[f[n,k],{n,1,10},{k,1,15}]]  (* array A185733 *)
    Table[f[n-k+1,k],{n,14},{k,n,1,-1}]//Flatten  (* A185733 *)
    s[n_,k_]:=Sum[f[i,j],{i,1,n},{j,1,k}]; (* accumulation array of {f(n,k)} *)
    FullSimplify[s[n,k]]  (* the formula for A185734 *)
    TableForm[Table[s[n,k],{n,1,10},{k,1,15}]]  (* array A185734 *)
    Table[s[n-k+1,k],{n,14},{k,n,1,-1}]//Flatten  (* A185734 *)

Formula

T(n,k) = C(k+3,4)*C(n+2,3)*(k*n-n+3*k+17)/20, k>=1, n>=1.
T(n,k) = Sum_{j=1..n} Sum_{l=1..k} A185733(j,l), by definition.
Showing 1-2 of 2 results.