cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A081436 Fifth subdiagonal in array of n-gonal numbers A081422.

Original entry on oeis.org

1, 7, 24, 58, 115, 201, 322, 484, 693, 955, 1276, 1662, 2119, 2653, 3270, 3976, 4777, 5679, 6688, 7810, 9051, 10417, 11914, 13548, 15325, 17251, 19332, 21574, 23983, 26565, 29326, 32272, 35409, 38743, 42280, 46026, 49987, 54169, 58578, 63220
Offset: 0

Views

Author

Paul Barry, Mar 21 2003

Keywords

Comments

One of a family of sequences with palindromic generators.
Also as A(n) = (1/6)*(6*n^3 - 3*n^2 + 3*n), n>0: structured pentagonal diamond numbers (vertex structure 5). (Cf. A004068 = alternate vertex; A000447 = structured diamonds; A100145 for more on structured numbers.) - James A. Record (james.record(AT)gmail.com), Nov 07 2004
Sequence of the absolute values of the z^1 coefficients of the polynomials in the GF4 denominators of A156933. See A157705 for background information. - Johannes W. Meijer, Mar 07 2009
Row 1 of the convolution arrays A213831 and A213833. - Clark Kimberling, Jul 04 2012
Partial sums of A056109. - J. M. Bergot, Jun 22 2013
Number of ordered pairs of intersecting multisets of size 2, each chosen with repetition from {1,...,n}. - Robin Whitty, Feb 12 2014
Row sums of A244418. - L. Edson Jeffery, Jan 10 2015

Crossrefs

Programs

Formula

a(n) = (n+1)*(2*n^2 + 3*n + 2)/2.
G.f.: (1+x)*(1+2*x)/(1-x)^4. (Convolution of A005408 and A016777.)
a(n) = A110449(n, n-1), for n>1.
a(n) = (n+1)*T(n+1) + n*T(n), where T( ) are triangular numbers. Binomial transform of [1, 6, 11, 6, 0, 0, 0, ...]. - Gary W. Adamson, Dec 28 2007
E.g.f.: exp(x)*(2 + 12*x + 11*x^2 + 2*x^3)/2. - Stefano Spezia, Apr 13 2021
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4). - Wesley Ivan Hurt, Apr 14 2021

Extensions

G.f. simplified and crossrefs added by Johannes W. Meijer, Mar 07 2009

A081437 Diagonal in array of n-gonal numbers A081422.

Original entry on oeis.org

1, 10, 33, 76, 145, 246, 385, 568, 801, 1090, 1441, 1860, 2353, 2926, 3585, 4336, 5185, 6138, 7201, 8380, 9681, 11110, 12673, 14376, 16225, 18226, 20385, 22708, 25201, 27870, 30721, 33760, 36993, 40426, 44065, 47916, 51985, 56278, 60801, 65560
Offset: 0

Views

Author

Paul Barry, Mar 21 2003

Keywords

Comments

One of a family of sequences with palindromic generators.
For q a prime power, a(q-1) = q^3 + q^2 - q is the number of pairs of commuting nilpotent 2*2 matrices with coefficients in GF(q). (Proof: the zero matrix commutes with all q^2 nilpotent matrices, there are q^2-1 nonzero nilpotent matrices, all conjugate, each commuting with q nilpotent matrices.) - Mark Wildon, Jun 20 2017
Also the cyclomatic number (= circuit rank) of the n+1 X n+1 rook graph. - Eric W. Weisstein, Jun 20 2017

Crossrefs

Equals A027620(n-1) + 1.

Programs

  • GAP
    List([0..40], n-> (n+1)^3+n*(n+1)); # G. C. Greubel, Aug 14 2019
  • Magma
    [n^3+4*n^2+4*n+1: n in [0..50]]; // Vincenzo Librandi, Aug 08 2013
    
  • Maple
    a:=n->sum(n*k, k=0..n):seq(a(n)+sum(n*k, k=2..n), n=1..40); # Zerinvary Lajos, Jun 10 2008
    a:=n->sum(-2+sum(2+sum(2, j=1..n),j=1..n),j=1..n):seq(a(n)/2,n=1..40); # Zerinvary Lajos, Dec 06 2008
  • Mathematica
    Table[n^3 + 4 n^2 + 4n + 1, {n, 0, 40}] (* or *) LinearRecurrence[{4, -6, 4, -1}, {1, 10, 33, 76}, 40] (* Harvey P. Dale, Jan 24 2012 *)
    CoefficientList[Series[(1 + 5 x - 7 x^2 + x^3)/(1 - x)^5, {x, 0, 60}], x] (* Vincenzo Librandi, Aug 08 2013 *)
  • PARI
    vector(40, n, n--; (n+1)^3+n*(n+1)) \\ G. C. Greubel, Aug 14 2019
    
  • Sage
    [(n+1)^3+n*(n+1) for n in (0..40)] # G. C. Greubel, Aug 14 2019
    

Formula

a(n) = n^3 + 4*n^2 + 4*n + 1.
G.f.: (1 +5*x -7*x^2 +x^3)/(1-x)^5.
a(0)=1, a(1)=10, a(2)=33, a(3)=76; for n>3, a(n) = 4*a(n-1) -6*a(n-2) +4*a(n-3) -a(n-4). - Harvey P. Dale, Jan 24 2012
E.g.f.: (1 +9*x +7*x^2 +x^3)*exp(x). - G. C. Greubel, Aug 14 2019

A081435 Diagonal in array of n-gonal numbers A081422.

Original entry on oeis.org

1, 5, 18, 46, 95, 171, 280, 428, 621, 865, 1166, 1530, 1963, 2471, 3060, 3736, 4505, 5373, 6346, 7430, 8631, 9955, 11408, 12996, 14725, 16601, 18630, 20818, 23171, 25695, 28396, 31280, 34353, 37621, 41090, 44766, 48655, 52763, 57096, 61660
Offset: 0

Views

Author

Paul Barry, Mar 21 2003

Keywords

Comments

One of a family of sequences with palindromic generators.

Crossrefs

Programs

  • GAP
    List([0..40], n-> (n+1)*(2*(n+1)^2-3*n)/2); # G. C. Greubel, Aug 14 2019
  • Magma
    [(2*n^3+3*n^2+3*n+2)/2: n in [0..40]]; // Vincenzo Librandi, Aug 08 2013
    
  • Maple
    a := n-> (n+1)*(2*(n+1)^2-3*n)/2; seq(a(n), n = 0..40); # G. C. Greubel, Aug 14 2019
  • Mathematica
    Table[(n^3 +(n+1)^3 -1)/2 +1, {n,0,40}] (* Vladimir Joseph Stephan Orlovsky, May 04 2011 *)
    CoefficientList[Series[(1 +3x^2 -4x^3)/(1-x)^5, {x,0,40}], x] (* Vincenzo Librandi, Aug 08 2013 *)
    LinearRecurrence[{4,-6,4,-1},{1,5,18,46},40] (* Harvey P. Dale, Dec 28 2024 *)
  • PARI
    vector(40, n, n--; (n+1)*(2*(n+1)^2-3*n)/2) \\ G. C. Greubel, Aug 14 2019
    
  • Sage
    [(n+1)*(2*(n+1)^2-3*n)/2 for n in (0..40)] # G. C. Greubel, Aug 14 2019
    

Formula

a(n) = (2*n^3 +3*n^2 +3*n +2)/2.
G.f.: (1 +3*x^2 -4*x^3)/(1-x)^5.
E.g.f.: (2 +8*x +9*x^2 +2*x^3)*exp(x)/2. - G. C. Greubel, Aug 14 2019

A081438 Diagonal in array of n-gonal numbers A081422.

Original entry on oeis.org

1, 11, 36, 82, 155, 261, 406, 596, 837, 1135, 1496, 1926, 2431, 3017, 3690, 4456, 5321, 6291, 7372, 8570, 9891, 11341, 12926, 14652, 16525, 18551, 20736, 23086, 25607, 28305, 31186, 34256, 37521, 40987, 44660, 48546, 52651, 56981, 61542, 66340
Offset: 0

Views

Author

Paul Barry, Mar 21 2003

Keywords

Comments

One of a family of sequences with palindromic generators.

Crossrefs

Programs

  • GAP
    List([0..45], n-> (2*n^3+9*n^2+9*n+2)/2); # G. C. Greubel, Aug 14 2019
  • Magma
    [(2*n^3+9*n^2+9*n+2)/2: n in [0..45]]; // Vincenzo Librandi, Aug 08 2013
    
  • Maple
    seq((2*n^3+9*n^2+9*n+2)/2, n=0..45); # G. C. Greubel, Aug 14 2019
  • Mathematica
    CoefficientList[Series[(1 +6x -9x^2 +2x^3)/(1-x)^5, {x, 0, 45}], x] (* Vincenzo Librandi, Aug 08 2013 *)
    LinearRecurrence[{4,-6,4,-1},{1,11,36,82},50] (* Harvey P. Dale, Jan 20 2022 *)
  • PARI
    vector(45, n, n--; (2*n^3+9*n^2+9*n+2)/2) \\ G. C. Greubel, Aug 14 2019
    
  • Sage
    [(2*n^3+9*n^2+9*n+2)/2 for n in (0..45)] # G. C. Greubel, Aug 14 2019
    

Formula

a(n) = (2*n^3+9*n^2+9*n+2)/2.
G.f.: (1+6*x-9*x^2+2*x^3)/(1-x)^5.
From Bruno Berselli, Jun 04 2010: (Start)
G.f.: (1+7*x-2*x^2)/(1-x)^4 (simplified).
a(n) = (n+1)*(2*n^2+7*n+2)/2.
a(n) -4*a(n-1) +6*a(n-2) -4*a(n-3) +a(n-4) = 0, with n>3.
a(n) = (A177058(n+3) + A177058(n+2))/2. (End)
E.g.f.: (1/2)*exp(x)*(2 +20*x + 15*x^2 + 2*x^3). - Stefano Spezia, Aug 15 2019

A081423 Subdiagonal of array of n-gonal numbers A081422.

Original entry on oeis.org

1, 3, 12, 34, 75, 141, 238, 372, 549, 775, 1056, 1398, 1807, 2289, 2850, 3496, 4233, 5067, 6004, 7050, 8211, 9493, 10902, 12444, 14125, 15951, 17928, 20062, 22359, 24825, 27466, 30288, 33297, 36499, 39900, 43506, 47323, 51357, 55614, 60100
Offset: 0

Views

Author

Paul Barry, Mar 21 2003

Keywords

Comments

One of a family of sequences with palindromic generators.

Crossrefs

Programs

  • GAP
    List([0..40], n-> (2*n^3+n^2+n+2)/2); # G. C. Greubel, Aug 14 2019
  • Magma
    [(2*n^3+n^2+n+2)/2: n in [0..40]]; // Vincenzo Librandi, Aug 08 2013
    
  • Maple
    a := n-> (2*n^3+n^2+n+2)/2; seq(a(n), n = 0..40); # G. C. Greubel, Aug 14 2019
  • Mathematica
    CoefficientList[Series[(1 -2x +7x^2 -6x^3)/(1-x)^5, {x,0,40}], x] (* Vincenzo Librandi, Aug 08 2013 *)
  • PARI
    vector(40, n, n--; (2*n^3+n^2+n+2)/2) \\ G. C. Greubel, Aug 14 2019
    
  • Sage
    [(2*n^3+n^2+n+2)/2 for n in (0..40)] # G. C. Greubel, Aug 14 2019
    

Formula

a(n) = (2*n^3 + n^2 + n + 2)/2.
G.f.: (1 -2*x +7*x^2 -6*x^3)/(1-x)^5.
E.g.f.: (2 +4*x +7*x^2 +2*x^3)*exp(x)/2. - G. C. Greubel, Aug 14 2019

A081441 a(n) = (2*n^3 - n^2 - n + 2)/2.

Original entry on oeis.org

1, 1, 6, 22, 55, 111, 196, 316, 477, 685, 946, 1266, 1651, 2107, 2640, 3256, 3961, 4761, 5662, 6670, 7791, 9031, 10396, 11892, 13525, 15301, 17226, 19306, 21547, 23955, 26536, 29296, 32241, 35377, 38710, 42246, 45991, 49951, 54132, 58540, 63181
Offset: 0

Views

Author

Paul Barry, Mar 21 2003

Keywords

Comments

Diagonal in array of n-gonal numbers A081422.

Crossrefs

Programs

  • GAP
    List([0..40], n-> (2*n^3-n^2-n+2)/2); # G. C. Greubel, Aug 14 2019
  • Magma
    [(2*n^3-n^2-n+2)/2: n in [0..50]]; // Vincenzo Librandi, Aug 08 2013
    
  • Maple
    a:= n-> (2*n^3-n^2-n+2)/2: seq(a(n), n=0..50); # Zerinvary Lajos, Sep 13 2006
  • Mathematica
    Table[(2n^3-n^2-n+2)/2,{n,0,40}] (* Harvey P. Dale, May 29 2012 *)
    CoefficientList[Series[(1 - 4 x + 11 x^2 - 8 x^3) / (1 - x)^5, {x, 0, 50}],x] (* Vincenzo Librandi, Aug 08 2013 *)
  • PARI
    vector(40, n, n--; (2*n^3-n^2-n+2)/2) \\ G. C. Greubel, Aug 14 2019
    
  • Sage
    [(2*n^3-n^2-n+2)/2 for n in (0..40)] # G. C. Greubel, Aug 14 2019
    

Formula

G.f.: (1 -4*x +11*x^2 -8*x^3)/(1-x)^5.
a(n) = (n + 1)*(2*n^2 - 3*n + 2)/2 = (n-1)*A005564(n+1) - n*A005564(n), where A005564(0..2) = 0, -1, 0. - Bruno Berselli, May 19 2015
E.g.f.: (2 + 5*x^2 + 2*x^3)*exp(x)/2. - G. C. Greubel, Aug 14 2019

A095311 47-gonal numbers.

Original entry on oeis.org

1, 47, 138, 274, 455, 681, 952, 1268, 1629, 2035, 2486, 2982, 3523, 4109, 4740, 5416, 6137, 6903, 7714, 8570, 9471, 10417, 11408, 12444, 13525, 14651, 15822, 17038, 18299, 19605, 20956, 22352, 23793, 25279, 26810, 28386, 30007, 31673, 33384
Offset: 1

Views

Author

Gary W. Adamson, Jun 02 2004

Keywords

Examples

			a(6) = 681 = 3*a(5) - 3*a(4) + a(3) = 3*455 - 3*274 + 138.
a(37) = 30007 since M^37 * [1 0 0] = [1 37 30007].
		

References

  • Albert H. Beiler, "Recreations in the Theory of Numbers", Dover, 1966, pp. 185-194.

Crossrefs

Cf. A081422, A000326, A000384, A000566, A000567, ... (all polygonal sequences).

Programs

  • Magma
    I:=[1,47,138]; [n le 3 select I[n]  else 3*Self(n-1)-3*Self(n-2)+Self(n-3): n in [1..40]]; // Vincenzo Librandi, Jul 25 2015
    
  • Mathematica
    a[n_] := (MatrixPower[{{1, 0, 0}, {1, 1, 0}, {1, 45, 1}}, n].{{1}, {0}, {0}})[[3, 1]]; Table[ a[n], {n, 40}] (* Robert G. Wilson v, Jun 05 2004 *)
    LinearRecurrence[{3, -3, 1}, {1, 47, 138}, 40] (* Vincenzo Librandi, Jul 25 2015 *)
    PolygonalNumber[47,Range[40]] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Dec 01 2016 *)
  • PARI
    a(n)=([0,1,0; 0,0,1; 1,-3,3]^(n-1)*[1;47;138])[1,1] \\ Charles R Greathouse IV, Jun 17 2017

Formula

a(n+3) = 3*a(n+2) - 3*a(n+1) - a(n); a(1) = 1, a(2) = 47, a(3) = 138.
Let M = the 3 X 3 matrix [1 0 0 / 1 1 0 / 1 45 1]. Then M^n * [1 0 0] = [1 n a(n)].
From Colin Barker, Jul 27 2013: (Start)
a(n) = (n*(45*n-43))/2.
G.f.: -x*(44*x+1) / (x-1)^3. (End)
E.g.f.: exp(x)*(x + 45*x^2/2). - Nikolaos Pantelidis, Feb 10 2023

Extensions

Edited by N. J. A. Sloane and Robert G. Wilson v, Jun 05 2004

A136311 Array read by antidiagonals: a(1) = 1; a(n+1) = a(n) + (largest k-gonal number <= a(n)).

Original entry on oeis.org

1, 1, 2, 1, 2, 3, 1, 2, 3, 6, 1, 2, 3, 4, 12, 1, 2, 3, 4, 8, 22, 1, 2, 3, 4, 5, 12, 43, 1, 2, 3, 4, 5, 10, 21, 79, 1, 2, 3, 4, 5, 6, 15, 37, 157, 1, 2, 3, 4, 5, 6, 12, 27, 73, 310, 1, 2, 3, 4, 5, 6, 7, 18, 49, 137, 610, 1, 2, 3, 4, 5, 6, 7, 14, 33, 84, 258, 1205, 1, 2, 3, 4, 5, 6, 7, 8, 21, 61
Offset: 1

Views

Author

Jonathan Vos Post, Mar 22 2008

Keywords

Examples

			The array begins:
==================================================================
n=..|.1.|.2.|.3.|.4.|..5.|..6.|..7.|..8.|...9.|..10.|..11.|...12.|
==================================================================
k=3.|.1.|.2.|.3.|.6.|.12.|.22.|.43.|.79.|.157.|.310.|.610.|.1205.|.A060985
k=4.|.1.|.2.|.3.|.4.|..8.|.12.|.21.|.37.|..73.|.137.|.258.|..514.|.A060984
k=5.|.1.|.2.|.3.|.4.|..5.|.10.|.15.|.27.|..49.|..84.|.154.|..299.|
k=6.|.1.|.2.|.3.|.4.|..5.|..6.|.12.|.18.|..33.|..61.|.106.|..197.|
k=7.|.1.|.2.|.3.|.4.|..5.|..6.|..7.|.14.|..21.|..39.|..73.|..128.|
k=8.|.1.|.2.|.3.|.4.|..5.|..6.|..7.|..8.|..16.|..24.|..45.|...85.|
k=9.|.1.|.2.|.3.|.4.|..5.|..6.|..7.|..8.|...9.|..18.|..27.|...51.|
==================================================================
		

Crossrefs

Programs

  • Maple
    A081422 := proc(k,n) n/2*((k-2)*n-k+4) ; end: A136311 := proc(k,n) option remember ; local aprev,n2 ; if n = 1 then RETURN(1) ; else aprev := A136311(k,n-1) ; for n2 from 0 do if A081422(k,n2) > aprev then RETURN( aprev+A081422(k,n2-1)); fi; od: fi ; end: for d from 4 to 20 do for n from 1 to d-3 do printf("%d,", A136311(d-n,n)) ; od: od: # R. J. Mathar, Jun 12 2008

Extensions

More terms from R. J. Mathar, Jun 12 2008
Showing 1-8 of 8 results.