cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Mark Wildon

Mark Wildon's wiki page.

Mark Wildon has authored 6 sequences.

A261318 Number of set partitions T'_t(n) of {1,2,...,t} into exactly n parts, with an even number of elements in each part distinguished by marks, and such that no part contains both 1 and t with 1 unmarked or both i and i+1 with i+1 unmarked for some i with 1 <= i < t; triangle T'_t(n), t>=0, 0<=n<=t, read by rows.

Original entry on oeis.org

1, 0, 0, 0, 1, 1, 0, 0, 3, 1, 0, 1, 10, 8, 1, 0, 0, 30, 50, 15, 1, 0, 1, 91, 280, 155, 24, 1, 0, 0, 273, 1491, 1365, 371, 35, 1, 0, 1, 820, 7728, 11046, 4704, 756, 48, 1, 0, 0, 2460, 39460, 85050, 53382, 13020, 1380, 63, 1
Offset: 0

Author

Mark Wildon, Aug 14 2015

Keywords

Comments

T'_t(n) is the number of sequences of t non-identity top-to-random shuffles that leave a deck of n cards invariant, if each shuffle is permitted to flip the orientation of the card it moves and every card must be moved at least once.

Examples

			Triangle starts:
1;
0,  0;
0,  1,   1;
0,  0,   3,    1;
0,  1,  10,    8,     1;
0,  0,  30,   50,    15,    1;
0,  1,  91,  280,   155,   24,   1;
0,  0, 273, 1491,  1365,  371,  35,  1;
0,  1, 820, 7728, 11046, 4704, 756, 48,  1;
		

Crossrefs

Programs

  • Mathematica
    TGF[1, x_] := x^2/(1 - x^2); TGF[n_, x_] := x^n/(1 + x)*Product[1/(1 - (2*j - 1)*x), {j, 1, n}];
    T[0, 0] := 1; T[, 0] := 0; T[0,]:=0; T[t_, n_] := Coefficient[Series[TGF[n, x], {x, 0, t}], x^t]
  • PARI
    T(t, n) = {if ((t==0) && (n==0), return(1)); if (n==0, return(0)); if (n==1, return(1 - t%2)); 1/(2^n*n!)*(sum(k=0,n-1,binomial(n,k)*(-1)^k*(2*(n-k)-1)^t)+(-1)^(n+t));}
    tabl(nn) = {for (t=0, nn, for (n=0, t, print1(T(t, n), ", ");); print(););} \\ Michel Marcus, Aug 17 2015

Formula

T'_t(n) = 1/2^n n! sum(k=0..n-1,binomial(n,k)*(-1)^k*(2(n-k)-1)^t)+(-1)^(n+t)/2^n! for n > 1.
G.f. for column n>1: x^n/((1+x)*Product_{j=1..n-1} 1/(1-(2*j-1)*x)).
Asymptotically for n > 1: T'_t(n) equals (2n-1)^t/2^n n!

Extensions

One more row by Michel Marcus, Aug 17 2015
Corrected description in name to agree with section 4.1 in linked paper Mark Wildon, Mar 11 2019

A261319 Number of set partitions C'_t(n) of {1,2,...,t} into at most n parts, with an even number of elements in each part distinguished by marks and such that no part contains both 1 and t (each unmarked) or both i and i+1 (each unmarked) for some i with 1 <= i < t; triangle C'_t(n), t>=0, 0<=n<=t, read by rows.

Original entry on oeis.org

1, 0, 0, 0, 1, 2, 0, 0, 3, 4, 0, 1, 11, 19, 20, 0, 0, 30, 80, 95, 96, 0, 1, 92, 372, 527, 551, 552, 0, 0, 273, 1764, 3129, 3500, 3535, 3536, 0, 1, 821, 8549, 19595, 24299, 25055, 25103, 25104
Offset: 0

Author

Mark Wildon, Aug 14 2015

Keywords

Comments

C'_t(n) is the number of sequences of t non-identity top-to-random shuffles that leave a deck of n cards invariant, if each shuffle is permitted to flip the orientation of the card it moves.
C't(n) = <(pi-1{BSym_n})^t, 1_{BSym_n}> where pi is the permutation character of the hyperoctahedral group BSym_n = C_2 wreath Sym_n given by its imprimitive action on a set of size 2n. This gives a combinatorial interpretation of C'_t(n) using sequences of box moves on pairs of Young diagrams.
C'_t(t) is the number of set partitions of a set of size t with an even number of elements in each part distinguished by marks and such that no part contains both 1 and t (each unmarked) or both i and i+1 (each unmarked) for some i with 1 <= i < t.
C'_t(n) = C'_t(t) if n > t.

Examples

			Triangle starts:
1;
0,  0;
0,  1,   2;
0,  0,   3,    4;
0,  1,  11,   19,    20;
0,  0,  30,   80,    95,    96;
0,  1,  92,  372,   527,   551,   552;
0,  0, 273, 1764,  3129,  3500,  3535,  3536;
0,  1, 821, 8549, 19595, 24299, 25055, 25103, 25104;
		

Crossrefs

Programs

  • Mathematica
    TGF[1, x_] := x^2/(1 - x^2); TGF[n_, x_] := x^n/(1 + x)*Product[1/(1 - (2*j - 1)*x), {j, 1, n}];
    T[0, 0] := 1; T[, 0] := 0; T[0, ] := 0; T[t_, n_] := Coefficient[Series[TGF[n, x], {x, 0, t}], x^t];
    CC[t_, n_] := Sum[T[t, m], {m, 0, n}]

Formula

C't(n) + C'_t(n-1) = Sum{s=0..t-1} binomial(t-1,s)*A261275(s,n-1) for n>=1.
E.g.f.: diagonal is exp(1/2*(exp(2*x)-2*x-1)).
C't(n) = Sum{i=0..n} A261318(t,i).

A261275 Number of set partitions C_t(n) of {1,2,...,t} into at most n parts, with an even number of elements in each part distinguished by marks; triangle C_t(n), t>=0, 0<=n<=t, read by rows.

Original entry on oeis.org

1, 0, 1, 0, 2, 3, 0, 4, 10, 11, 0, 8, 36, 48, 49, 0, 16, 136, 236, 256, 257, 0, 32, 528, 1248, 1508, 1538, 1539, 0, 64, 2080, 6896, 9696, 10256, 10298, 10299, 0, 128, 8256, 39168, 66384, 74784, 75848, 75904, 75905, 0, 256, 32896, 226496, 475136, 586352, 607520, 609368, 609440, 609441
Offset: 0

Author

Mark Wildon, Aug 13 2015

Keywords

Comments

C_t(n) is the number of sequences of t top-to-random shuffles that leave a deck of n cards invariant, if each shuffle is permitted to flip the orientation of the card it moves.
C_t(n) = where pi is the permutation character of the hyperoctahedral group BSym_n = C_2 wreath Sym_n given by its imprimitive action on a set of size 2n. This gives a combinatorial interpretation of C_t(n) using sequences of box moves on pairs of Young diagrams.
C_t(t) is the number of set partitions of a set of size t with an even number of elements in each part distinguished by marks.
C_t(n) = C_t(t) if n > t.

Examples

			Triangle starts:
  1;
  0,  1;
  0,  2,    3;
  0,  4,   10,   11;
  0,  8,   36,   48,   49;
  0, 16,  136,  236,  256,   257;
  0, 32,  528, 1248, 1508,  1538,  1539;
  0, 64, 2080, 6896, 9696, 10256, 10298, 10299;
  ...
		

Crossrefs

Columns n=0,1,2,3 give A000007, A000079, A007582, A233162 (proved for n=3 in reference above).
Main diagonal gives A004211.
Cf. A075497.

Programs

  • Maple
    with(combinat):
    b:= proc(n, i) option remember; expand(`if`(n=0, 1,
           `if`(i<1, 0, add(x^j*multinomial(n, n-i*j, i$j)/j!*add(
            binomial(i, 2*k), k=0..i/2)^j*b(n-i*j, i-1), j=0..n/i))))
        end:
    T:= n-> (p-> seq(add(coeff(p, x, j), j=0..i), i=0..n))(b(n$2)):
    seq(T(n), n=0..12);  # Alois P. Heinz, Aug 13 2015
  • Mathematica
    CC[t_, n_] := Sum[2^(t - m)*StirlingS2[t, m], {m, 0, n}];
    Table[CC[t, n], {t, 0, 12}, {n, 0, t}] // Flatten
    (* Second program: *)
    multinomial[n_, k_List] := n!/Times @@ (k!);
    b[n_, i_] := b[n, i] = If[n == 0, 1, If[i < 1, 0, Sum[x^j*multinomial[n, Join[{n - i*j}, Table[i, j]]]/j!*Sum[Binomial[i, 2*k], {k, 0, i/2}]^j*b[n - i*j, i - 1], {j, 0, n/i}]]];
    T[n_] := Function[p, Table[Sum[Coefficient[p, x, j], {j, 0, i}], {i, 0, n} ] ][b[n, n]];
    Table[T[n], {n, 0, 12}] // Flatten (* Jean-François Alcover, Nov 07 2017, after Alois P. Heinz *)

Formula

G.f.: sum(t>=0, n>=0, C_t(n)x^t/t!y^n) = exp(y/2 (exp(2*x)-1))/(1-y).
C_t(n) = Sum_{i=0..n} A075497(t,i).

A261137 Number of set partitions B'_t(n) of {1,2,...,t} into at most n parts, so that no part contains both 1 and t, or both i and i+1 with 1 <= i < t; triangle B'_t(n), t>=0, 0<=n<=t, read by rows.

Original entry on oeis.org

1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 3, 4, 0, 0, 0, 5, 10, 11, 0, 0, 1, 11, 31, 40, 41, 0, 0, 0, 21, 91, 147, 161, 162, 0, 0, 1, 43, 274, 568, 694, 714, 715, 0, 0, 0, 85, 820, 2227, 3151, 3397, 3424, 3425, 0, 0, 1, 171, 2461, 8824, 14851, 17251, 17686, 17721, 17722
Offset: 0

Author

Mark Wildon, Aug 10 2015

Keywords

Comments

B'_t(n) is the number of sequences of t non-identity top-to-random shuffles that leave a deck of n cards invariant.
B't(n) = <chi^t, 1{Sym_n}> where chi is the degree n-1 constituent of the natural permutation character of the symmetric group Sym_n. This gives a combinatorial interpretation of B'_t(n) using sequences of box moves on Young diagrams.
B'_t(t) is the number of set partitions of a set of size t into parts of size at least 2 (A000296); this is also the number of cyclically spaced partitions of a set of size t.
B'_t(n) = B'_t(t) if n > t.

Examples

			Triangle starts:
  1;
  0, 0;
  0, 0, 1;
  0, 0, 0,  1;
  0, 0, 1,  3,   4;
  0, 0, 0,  5,  10,   11;
  0, 0, 1, 11,  31,   40,   41;
  0, 0, 0, 21,  91,  147,  161,  162;
  0, 0, 1, 43, 274,  568,  694,  714,  715;
  0, 0, 0, 85, 820, 2227, 3151, 3397, 3424, 3425;
  ...
		

Crossrefs

For columns n=3-8 see: A001045, A006342, A214142, A214167, A214188, A214239.

Programs

  • Maple
    g:= proc(t, l, h) option remember; `if`(t=0, `if`(l=1, 0, x^h),
           add(`if`(j=l, 0, g(t-1, j, max(h,j))), j=1..h+1))
        end:
    B:= t-> (p-> seq(add(coeff(p, x, j), j=0..i), i=0..t))(g(t, 0$2)):
    seq(B(t), t=0..12);  # Alois P. Heinz, Aug 10 2015
  • Mathematica
    StirPrimedGF[0, x_] := 1; StirPrimedGF[1, x_] := 0;
    StirPrimedGF[n_, x_] := x^n/(1 + x)*Product[1/(1 - j*x), {j, 1, n - 1}];
    StirPrimed[0, 0] := 1; StirPrimed[0, _] := 0;
    StirPrimed[t_, n_] := Coefficient[Series[StirPrimedGF[n, x], {x, 0, t}], x^t];
    BPrimed[t_, n_] := Sum[StirPrimed[t, m], {m, 0, n}]
    (* Second program: *)
    g[t_, l_, h_] := g[t, l, h] = If[t == 0, If[l == 1, 0, x^h], Sum[If[j == l, 0, g[t - 1, j, Max[h, j]]], {j, 1, h + 1}]];
    B[t_] := Function[p, Table[Sum[Coefficient[p, x, j], {j, 0, i}], {i, 0, t}] ][g[t, 0, 0]];
    Table[B[t], {t, 0, 12}] // Flatten (* Jean-François Alcover, May 20 2016, after Alois P. Heinz *)

Formula

B't(n) = Sum{i=0..n} A261139(t,i).

A261139 S'_t(n) is the number of set partitions of {1,2,...,t} into exactly n parts such that no part contains both 1 and t or both i and i+1 for some i with 1 <= i < t; triangle S'_t(n), t >= 0, 0 <= n <= t, read by rows.

Original entry on oeis.org

1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 2, 1, 0, 0, 0, 5, 5, 1, 0, 0, 1, 10, 20, 9, 1, 0, 0, 0, 21, 70, 56, 14, 1, 0, 0, 1, 42, 231, 294, 126, 20, 1, 0, 0, 0, 85, 735, 1407, 924, 246, 27, 1, 0, 0, 1, 170, 2290, 6363, 6027, 2400, 435, 35, 1
Offset: 0

Author

Mark Wildon, Aug 10 2015

Keywords

Comments

S'A261137%20may%20be%20defined%20by%20B'_t(n)%20=%20Sum">t(n) is the number of sequences of t non-identity top-to-random shuffles of a deck of n cards that move each card at some time, and overall leave the deck invariant. (See link below.) A261137 may be defined by B'_t(n) = Sum{m=0..n} S'_t(m).

Examples

			Triangle starts:
  1;
  0, 0;
  0, 0, 1;
  0, 0, 0,  1;
  0, 0, 1,  2,   1;
  0, 0, 0,  5,   5,    1;
  0, 0, 1, 10,  20,    9,   1;
  0, 0, 0, 21,  70,   56,  14,   1;
  0, 0, 1, 42, 231,  294, 126,  20,  1;
  0, 0, 0, 85, 735, 1407, 924, 246, 27,  1;
  ...
		

Crossrefs

Columns n=3,4 give: A000975, A243869.
Row sums give A000296.
Cf. A261137.
The same as A105794, except for the first two columns.

Programs

  • Maple
    g:= proc(t, l, h) option remember; `if`(t=0, `if`(l=1, 0, x^h),
           add(`if`(j=l, 0, g(t-1, j, max(h,j))), j=1..h+1))
        end:
    S:= t-> (p-> seq(coeff(p, x, i), i=0..t))(g(t, 0$2)):
    seq(S(t), t=0..12);  # Alois P. Heinz, Aug 10 2015
  • Mathematica
    StirPrimedGF[n_, x_] := x^n/(1 + x)*Product[1/(1 - j*x), {j, 1, n - 1}]; T[0, 0] = 1; T[, 0] = T[, 1] = 0; T[n_, k_] := SeriesCoefficient[ StirPrimedGF[k, x], {x, 0, n}]; Table[T[n, k], {n, 0, 12}, {k, 0, n}] // Flatten (* script completed by Jean-François Alcover, Jan 31 2016 *)
  • PARI
    a(n,k)=if(k==0, n==0, sum(j=0, k, binomial(k, j) * (-1)^(k-j) * ((j-1)^n + (-1)^n * (j-1))) / k!);
    for(n=0, 10, for(k=0, n, print1( a(n, k), ", "); ); print(); ); \\ Andrew Howroyd, Apr 08 2017

Formula

G.f. for column n > 1: x^n/((1+x)*Product_{j=1..n-1} (1-j*x)).
S'_t(n) ~ (n-1)^t/n! as t tends to infinity.
Recurrence: S't(n) = S'{t-1}(n-1) + (n-1)*S'_{t-1}(n) for n >= 3.
S't(n) = (1/n!) * Sum{j=0..n} (-1)^(n-j) * binomial(n, j) * ((j-1)^t + (-1)^t * (j-1)) for t>0. - Andrew Howroyd, Apr 08 2017
Sum_{n=0..t} (n-1)*S'{t-1}(n) + n*S'{t-2}(n) = A000296(t) for t >= 3. - Yuchun Ji, Feb 23 2021
T(m, k) = Sum_{i=k..m} Stirling2(i-1, k-1)*(-1)^(i+m), for k >= 2. (See Peter Bala's original formula at A105794 dated Jul 10 2013.) - Igor Victorovich Statsenko, May 31 2024
T(m, k) = (Sum_{i=0..m} Stirling2(i, k)*binomial(m,i)*(-1)^(m-i))*I(m,k), where I(m,k) = (1-Sum_{i=0..m} Stirling1(k, i))^(m+k) for k >= 0. (See Peter Bala's original formula at A105794 dated Jul 10 2013.) - Igor Victorovich Statsenko, Jun 01 2024

A192983 a(n) is the number of pairs (g, h) of elements of the symmetric group S_n such that g and h have conjugates that commute.

Original entry on oeis.org

1, 4, 24, 264, 5640, 151200, 5722920, 282868992, 18371308032, 1504791561600, 148978034686800, 18007146260231040, 2528615024682544512, 426310052282058252672, 81830910530970671616000, 18305445786667543107072000, 4570435510076312321728158720
Offset: 1

Author

Mark Wildon, Aug 03 2011

Keywords

Comments

a(n) / n!^2 is the probability that two permutation in S_n, chosen independently and uniformly at random, have conjugates that commute.
Apparently n | a(n), and, for n>1, n*(n-1) | a(n). - Alexander R. Povolotsky, Sep 30 2011

Examples

			For n = 3 the probability that two elements of S_3 have conjugates that commute is a(3)/3!^2 = 2/3. Proof: only the transpositions and three cycles fail to have conjugates that commute; the probability of choosing one permutation from each of these classes is 2*1/2*1/3 = 1/3.
		

Crossrefs

Cf. A087132 (the sum of squares of the sizes of the conjugacy classes of S_n).

Programs

  • Haskell
    -- See links for code.