A000975
a(2n) = 2*a(2n-1), a(2n+1) = 2*a(2n)+1 (also a(n) is the n-th number without consecutive equal binary digits).
Original entry on oeis.org
0, 1, 2, 5, 10, 21, 42, 85, 170, 341, 682, 1365, 2730, 5461, 10922, 21845, 43690, 87381, 174762, 349525, 699050, 1398101, 2796202, 5592405, 11184810, 22369621, 44739242, 89478485, 178956970, 357913941, 715827882, 1431655765, 2863311530, 5726623061, 11453246122
Offset: 0
a(4)=10 since 0001, 0011, 0010, 0110, 0111, 0101, 0100, 1100, 1101, 1111 are the 10 binary strings switching 0000 to 1111.
a(3) = 1 because "lrc" is the only way to tie a tie with 3 half turns, namely, pass the business end of the tie behind the standing part to the left, bring across the front to the right, then behind to the center. The final motion of tucking the loose end down the front behind the "lr" piece is not considered a "step".
a(4) = 2 because "lrlc" is the only way to tie a tie with 4 half turns. Note that since the number of moves is even, the first step is to go to the left in front of the tie, not behind it. This knot is the standard "four in hand", the most commonly known men's tie knot. By contrast, the second most well known tie knot, the Windsor, is represented by "lcrlcrlc".
a(n) = (2^0 - 1) XOR (2^1 - 1) XOR (2^2 - 1) XOR (2^3 - 1) XOR ... XOR (2^n - 1). - _Paul D. Hanna_, Nov 05 2011
G.f. = x + 2*x^2 + 5*x^3 + 10*x^4 + 21*x^5 + 42*x^6 + 85*x^7 + 170*x^8 + ...
a(9) = 341 = 2^8 + 2^6 + 2^4 + 2^2 + 2^0 = 4^4 + 4^3 + 4^2 + 4^1 + 4^0 = A002450(5). a(10) = 682 = 2*a(9) = 2*A002450(5). - _Gregory L. Simay_, Sep 27 2017
- Thomas Fink and Yong Mao, The 85 Ways to Tie a Tie, Broadway Books, New York (1999), p. 138.
- Clifford A. Pickover, The Math Book, From Pythagoras to the 57th Dimension, 250 Milestones in the History of Mathematics, Sterling Publ., NY, 2009.
- G. C. Greubel, Table of n, a(n) for n = 0..3300 (terms 0..300 from T. D. Noe)
- Paul Barry, Centered polygon numbers, heptagons and nonagons, and the Robbins numbers, arXiv:2104.01644 [math.CO], 2021.
- Thomas Baruchel, Properties of the cumulated deficient binary digit sum, arXiv:1908.02250 [math.NT], 2019.
- Sergei L. Bezrukov et al., The congestion of n-cube layout on a rectangular grid, Discrete Mathematics 213.1-3 (2000): 13-19. See Theorem 1.
- F. Chapoton and S. Giraudo, Enveloping operads and bicoloured noncrossing configurations, arXiv:1310.4521 [math.CO], 2013. Is the sequence in Table 2 this sequence? - _N. J. A. Sloane_, Jan 04 2014. (Yes, it is. See Stockmeyer's arXiv:1608.08245 2016 paper for the proof.)
- Ji Young Choi, Ternary Modified Collatz Sequences And Jacobsthal Numbers, Journal of Integer Sequences, Vol. 19 (2016), #16.7.5.
- Ji Young Choi, A Generalization of Collatz Functions and Jacobsthal Numbers, J. Int. Seq., Vol. 21 (2018), Article 18.5.4.
- Madeleine Goertz and Aaron Williams, The Quaternary Gray Code and How It Can Be Used to Solve Ziggurat and Other Ziggu Puzzles, arXiv:2411.19291 [math.CO], 2024. See pp. 1, 17, 42.
- David Hayes, Kaveh Khodjasteh, Lorenza Viola and Michael J. Biercuk, Reducing sequencing complexity in dynamical quantum error suppression by Walsh modulation, arXiv:1109.6002 [quant-ph], 2011.
- Clemens Heuberger and Daniel Krenn, Esthetic Numbers and Lifting Restrictions on the Analysis of Summatory Functions of Regular Sequences, arXiv:1808.00842 [math.CO], 2018. See p. 10.
- Clemens Heuberger and Daniel Krenn, Asymptotic Analysis of Regular Sequences, arXiv:1810.13178 [math.CO], 2018. See p. 29.
- Andreas M. Hinz, The Lichtenberg sequence, Fib. Quart., 55 (2017), 2-12.
- Andreas M. Hinz, Sandi Klavžar, Uroš Milutinović, and Ciril Petr, The Tower of Hanoi - Myths and Maths, Birkhäuser 2013. See page 56. Book's website
- Andreas M. Hinz and Paul K. Stockmeyer, Precious Metal Sequences and Sierpinski-Type Graphs, J. Integer Seq., Vol 25 (2022), Article 22.4.8.
- Jia Huang, Nonassociativity of the Norton Algebras of some distance regular graphs, arXiv:2001.05547 [math.CO], 2020.
- Jia Huang, Norton algebras of the Hamming Graphs via linear characters, arXiv:2101.05711 [math.CO], 2021.
- Jia Huang and Erkko Lehtonen, Associative-commutative spectra for some varieties of groupoids, arXiv:2401.15786 [math.CO], 2024. See p. 17.
- Jia Huang, Madison Mickey, and Jianbai Xu, The Nonassociativity of the Double Minus Operation, Journal of Integer Sequences, Vol. 20 (2017), #17.10.3.
- Ryota Inagaki, Tanya Khovanova, and Austin Luo, On Chip-Firing on Undirected Binary Trees, Ann. Comb. (2025). See p. 10.
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 394
- Hans Isdahl, "Knitwear" puzzle
- D. E. Knuth and O. P. Lossers, Partitions of a circular set, Problem 11151 in Amer. Math. Monthly 114 (3) (2007) p 265, E_3.
- S. Lafortune, A. Ramani, B. Grammaticos, Y. Ohta and K.M. Tamizhmani, Blending two discrete integrability criteria: singularity confinement and algebraic entropy, arXiv:nlin/0104020 [nlin.SI], 2001.
- Robert L. Lamphere, A Recurrence Relation in the Spinout Puzzle, The College Mathematics Journal, Vol. 27, Nbr. 4, Page 289, Sep. 96.
- Wolfdieter Lang, Notes on certain inhomogeneous three term recurrences.
- Georg Christoph Lichtenberg, Vermischte Schriften, Band 6 (1805). See chapter 6, p. 257.
- Saad Mneimneh, Simple Variations on the Tower of Hanoi to Guide the Study of Recurrences and Proofs by Induction, Department of Computer Science, Hunter College, CUNY, 2019.
- Richard Moot, Partial Orders, Residuation, and First-Order Linear Logic, arXiv:2008.06351 [cs.LO], 2020.
- Gregg Musiker and Son Nguyen, Labeled Chip-firing on Binary Trees, arXiv:2206.02007 [math.CO], 2022.
- Kival Ngaokrajang, Illustration of initial terms
- Ahmet Öteleş, On the sum of Pell and Jacobsthal numbers by the determinants of Hessenberg matrices, AIP Conference Proceedings 1863, 310003 (2017).
- Vladimir Shevelev, On the Basis Polynomials in the Theory of Permutations with Prescribed Up-Down Structure, arXiv:0801.0072 [math.CO], 2007-2010. See Example 3.
- Chloe E. Shiff and Noah A. Rosenberg, Enumeration of rooted binary perfect phylogenies, arXiv:2410.14915 [q-bio.PE], 2024. See pp. 15, 17.
- A. V. Sills and H. Wang, On the maximal Wiener index and related questions, Discrete Applied Mathematics, Volume 160, Issues 10-11, July 2012, Pages 1615-1623 - _N. J. A. Sloane_, Sep 21 2012
- N. J. A. Sloane, Transforms
- Elen Viviani Pereira Spreafico, Francisco Regis Vieira Alves, Paula Maria Machado Cruz Catarino, and Eudes Antonio Costa, A brief study of the one parameter Lichtenberg numbers, VI Int'l Conf. Math. Appl. Sci. Eng. (ICMASE 2025).
- Paul K. Stockmeyer, An Exploration of Sequence A000975, arXiv:1608.08245 [math.CO], 2016; Fib. Quart. 55 (2017) 174.
- Eric Weisstein's World of Mathematics, Baguenaudier
- A. K. Whitford, Binet's Formula Generalized, Fibonacci Quarterly, Vol. 15, No. 1, 1979, pp. 21, 24, 29.
- Index entries for sequences related to binary expansion of n
- Index entries for linear recurrences with constant coefficients, signature (2,1,-2).
Cf.
A000295,
A005578,
A015441,
A043291,
A053404,
A059260,
A077854,
A119440,
A127824,
A130125,
A135228,
A155051,
A179970,
A264784.
-
List([0..35],n->(2^(n+1)-2+(n mod 2))/3); # Muniru A Asiru, Nov 01 2018
-
a000975 n = a000975_list !! n
a000975_list = 0 : 1 : map (+ 1)
(zipWith (+) (tail a000975_list) (map (* 2) a000975_list))
-- Reinhard Zumkeller, Mar 07 2012
-
[(2^(n+1) - 2 + (n mod 2))/3: n in [0..40]]; // Vincenzo Librandi, Mar 18 2015
-
A000975 := proc(n) option remember; if n <= 1 then n else if n mod 2 = 0 then 2*A000975(n-1) else 2*A000975(n-1)+1 fi; fi; end;
seq(iquo(2^n,3),n=1..33); # Zerinvary Lajos, Apr 20 2008
f:=n-> if n mod 2 = 0 then (2^n-1)/3 else (2^n-2)/3; fi; [seq(f(n),n=0..40)]; # N. J. A. Sloane, Mar 21 2017
-
Array[Ceiling[2(2^# - 1)/3] &, 41, 0]
RecurrenceTable[{a[0] == 0, a[1] == 1, a[n] == a[n - 1] + 2a[n - 2] + 1}, a, {n, 40}] (* or *)
LinearRecurrence[{2, 1, -2}, {0, 1, 2}, 40] (* Harvey P. Dale, Aug 10 2013 *)
f[n_] := Block[{exp = n - 2}, Sum[2^i, {i, exp, 0, -2}]]; Array[f, 33] (* Robert G. Wilson v, Oct 30 2015 *)
f[s_List] := Block[{a = s[[-1]]}, Append[s, If[OddQ@ Length@ s, 2a + 1, 2a]]]; Nest[f, {0}, 32] (* Robert G. Wilson v, Jul 20 2017 *)
NestList[2# + Boole[EvenQ[#]] &, 0, 39] (* Alonso del Arte, Sep 21 2018 *)
-
{a(n) = if( n<0, 0, 2 * 2^n \ 3)}; /* Michael Somos, Sep 04 2006 */
-
a(n)=if(n<=0,0,bitxor(a(n-1),2^n-1)) \\ Paul D. Hanna, Nov 05 2011
-
concat(0, Vec(x/(1-2*x-x^2+2*x^3) + O(x^100))) \\ Altug Alkan, Oct 30 2015
-
{a(n) = (4*2^n - 3 - (-1)^n) / 6}; /* Michael Somos, Jul 23 2017 */
-
def a(n): return (2**(n+1) - 2 + (n%2))//3
print([a(n) for n in range(35)]) # Michael S. Branicky, Dec 19 2021
A000296
Set partitions without singletons: number of partitions of an n-set into blocks of size > 1. Also number of cyclically spaced (or feasible) partitions.
Original entry on oeis.org
1, 0, 1, 1, 4, 11, 41, 162, 715, 3425, 17722, 98253, 580317, 3633280, 24011157, 166888165, 1216070380, 9264071767, 73600798037, 608476008122, 5224266196935, 46499892038437, 428369924118314, 4078345814329009, 40073660040755337, 405885209254049952, 4232705122975949401
Offset: 0
a(4) = card({{{1, 2}, {3, 4}}, {{1, 4}, {2, 3}}, {{1, 3}, {2, 4}}, {{1, 2, 3, 4}}}) = 4.
- Martin Gardner in Sci. Amer. May 1977.
- D. E. Knuth, The Art of Computer Programming, vol. 4A, Combinatorial Algorithms, Section 7.2.1.5 (p. 436).
- G. Pólya and G. Szegő, Problems and Theorems in Analysis, Springer-Verlag, NY, 2 vols., 1972, Vol. 1, p. 228.
- J. Riordan, A budget of rhyme scheme counts, pp. 455-465 of Second International Conference on Combinatorial Mathematics, New York, April 4-7, 1978. Edited by Allan Gewirtz and Louis V. Quintas. Annals New York Academy of Sciences, 319, 1979.
- J. Shallit, A Triangle for the Bell numbers, in V. E. Hoggatt, Jr. and M. Bicknell-Johnson, A Collection of Manuscripts Related to the Fibonacci Sequence, 1980, pp. 69-71.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Alois P. Heinz, Table of n, a(n) for n = 0..575 (first 101 terms from T. D. Noe)
- Yasemin Alp and E. Gokcen Kocer, Exponential Almost-Riordan Arrays, Results Math. (2024) Vol. 79, 173.
- Joerg Arndt and N. J. A. Sloane, Counting Words that are in "Standard Order".
- E. Bach, Random bisection and evolutionary walks, J. Applied Probability, v. 38, pp. 582-596, 2001.
- M. Bauer and O. Golinelli, Random incidence matrices: Moments of the spectral density, arXiv:cond-mat/0007127 [cond-mat.stat-mech], 2000-2001. See Sect. 3.2; J. Stat. Phys. 103, 301-307 (2001).
- H. D. Becker, Solution to problem E 461, American Math Monthly 48 (1941), 701-702.
- F. R. Bernhart, Catalan, Motzkin and Riordan numbers, Discr. Math., 204 (1999) 73-112.
- F. R. Bernhart, Fundamental chromatic numbers, Unpublished. (Annotated scanned copy)
- F. R. Bernhart & N. J. A. Sloane, Correspondence, 1977.
- J. R. Britnell and M. Wildon, Bell numbers, partition moves and the eigenvalues of the random-to-top shuffle in types A, B and D, arXiv 1507.04803 [math.CO], 2015.
- David Callan, On conjugates for set partitions and integer compositions [math.CO].
- Pascal Caron, Jean-Gabriel Luque, Ludovic Mignot, and Bruno Patrou, State complexity of catenation combined with a boolean operation: a unified approach, arXiv preprint arXiv:1505.03474 [cs.FL], 2015.
- Robert Coquereaux and Jean-Bernard Zuber, Counting partitions by genus. II. A compendium of results, arXiv:2305.01100 [math.CO], 2023. See p. 3.
- Éva Czabarka, Péter L. Erdős, Virginia Johnson, Anne Kupczok and László A. Székely, Asymptotically normal distribution of some tree families relevant for phylogenetics, and of partitions without singletons, arXiv preprint arXiv:1108.6015 [math.CO], 2011.
- Gesualdo Delfino and Jacopo Viti, Potts q-color field theory and scaling random cluster model, arXiv preprint arXiv:1104.4323 [hep-th], 2011.
- E. A. Enneking and J. C. Ahuja, Generalized Bell numbers, Fib. Quart., 14 (1976), 67-73.
- Steven R. Finch, Moments of sums, April 23, 2004. [Cached copy, with permission of the author]
- Robert C. Griffiths, P. A. Jenkins, and S. Lessard, A coalescent dual process for a Wright-Fisher diffusion with recombination and its application to haplotype partitioning, arXiv preprint arXiv:1604.04145 [q-bio.PE], 2016.
- Aoife Hennessy, A Study of Riordan Arrays with Applications to Continued Fractions, Orthogonal Polynomials and Lattice Paths, Ph. D. Thesis, Waterford Institute of Technology, Oct. 2011.
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 16.
- V. P. Johnson, Enumeration Results on Leaf Labeled Trees, Ph. D. Dissertation, Univ. Southern Calif., 2012.
- J. W. Layman, The Hankel Transform and Some of its Properties, J. Integer Sequences, 4 (2001), #01.1.5.
- Peter Luschny, Set partitions.
- Gregorio Malajovich, Complexity of sparse polynomial solving: homotopy on toric varieties and the condition metric, arXiv preprint arXiv:1606.03410 [math.NA], 2016.
- Toufik Mansour and Mark Shattuck, A recurrence related to the Bell numbers, INTEGERS 11 (2011), #A67.
- T. Mansour and A. O. Munagi, Set partitions with circular successions, European Journal of Combinatorics, 42 (2014), 207-216.
- I. Mezo, Periodicity of the last digits of some combinatorial sequences, J. Integer Seq. 17, Article 14.1.1, 2014.
- Scott Morrison, Noah Snyder, and Dylan P. Thurston, Towards the quantum exceptional series, arXiv:2402.03637 [math.QA], 2024. See p. 39.
- E. Norton, Symplectic Reflection Algebras in Positive Characteristic as Ore Extensions, arXiv preprint arXiv:1302.5411 [math.RA], 2013.
- Rosa Orellana, Nancy Wallace, and Mike Zabrocki, Quasipartition and planar quasipartition algebras, Sém. Lotharingien Comb., Proc. 36th Conf. Formal Power Series Alg. Comb. (2024) Vol. 91B, Art. No. 50. See p. 7.
- Aleksandar Petojević, Marjana Gorjanac Ranitović, and Milinko Mandić, New equivalents for Kurepa's hypothesis for left factorial, Univ. Novi Sad (2023).
- Tilman Piesk, Table showing non-singleton partitions for n = 1..6.
- R. A. Proctor, Let's Expand Rota's Twelvefold Way for Counting Partitions!, arXiv:math/0606404 [math.CO], 2006-2007.
- Jocelyn Quaintance and Harris Kwong, A combinatorial interpretation of the Catalan and Bell number difference tables, Integers, 13 (2013), #A29.
- D. Reidenbach and J. C. Schneider, Morphically Primitive Words. In Pierre Arnoux, Nicolas Bedaride and Julien Cassaigne, editors, Proc. 6th International Conference on Words, WORDS 2007, pages 262-272. 2007. [Different from the paper with the same name, referenced below.]
- Daniel Reidenbach and Johannes C. Schneider, Morphically primitive words, (2009). See Table 1.
- Daniel Reidenbach and Johannes C. Schneider, Morphically primitive words, Theoretical Computer Science, (2009), 140 (21-23), pp. 2148-2161.
- J. Riordan, Cached copy of paper.
- Jeffrey Shallit, A Triangle for the Bell numbers, in V. E. Hoggatt, Jr. and M. Bicknell-Johnson, A Collection of Manuscripts Related to the Fibonacci Sequence, 1980, pp. 69-71.
- Index entries for related partition-counting sequences
-
[1,0] cat [ n le 1 select 1 else Bell(n)-Self(n-1) : n in [1..40]]; // Vincenzo Librandi, Jun 22 2015
-
spec := [ B, {B=Set(Set(Z,card>1))}, labeled ]; [seq(combstruct[count](spec, size=n), n=0..30)];
with(combinat): A000296 :=n->(-1)^n + add((-1)^(j-1)*bell(n-j),j=1..n): seq(A000295(n),n=0..30); # Emeric Deutsch, Oct 29 2006
f:=exp(exp(x)-1-x): fser:=series(f, x=0, 31): 1, seq(n!*coeff(fser, x^n), n=1..23); # Zerinvary Lajos, Nov 22 2006
G:={P=Set(Set(Atom,card>=2))}: combstruct[gfsolve](G,unlabeled,x): seq(combstruct[count]([P,G,labeled], size=i), i=0..23); # Zerinvary Lajos, Dec 16 2007
# [a(0),a(1),..,a(n)]
A000296_list := proc(n)
local A, R, i, k;
if n = 0 then return 1 fi;
A := array(0..n-1);
A[0] := 1; R := 1;
for i from 0 to n-2 do
A[i+1] := A[0] - A[i];
A[i] := A[0];
for k from i by -1 to 1 do
A[k-1] := A[k-1] + A[k] od;
R := R,A[i+1];
od;
R,A[0]-A[i] end:
A000296_list(100); # Peter Luschny, Apr 09 2011
-
nn = 25; Range[0, nn]! CoefficientList[Series[Exp[Exp[x] - 1 - x], {x, 0, nn}], x]
(* Second program: *)
a[n_] := a[n] = If[n==0, 1, Sum[Binomial[n-1, i]*a[n-i-1], {i, 1, n-1}]]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Feb 06 2016, after Vladimir Kruchinin *)
spsu[,{}]:={{}};spsu[foo,set:{i_,_}]:= Join@@Function[s,Prepend[#,s]&/@spsu[ Select[foo,Complement[#, Complement[set,s]]=={}&], Complement[set,s]]]/@Cases[foo,{i,_}];
Table[Length[spsu[Select[Subsets[Range[n]],Select[Partition[Range[n],2,1,1], Function[ed,Complement[ed,#]=={}]]=={}&],Range[n]]],{n,8}] (* Gus Wiseman, Feb 10 2019 *)
s = 1; Join[{1}, Table[s = BellB[n] - s, {n, 0, 25}]] (* Vaclav Kotesovec, Jun 20 2022 *)
-
a(n):=if n=0 then 1 else sum(binomial(n-1,i)*a(n-i-1),i,1,n-1); /* Vladimir Kruchinin, Feb 22 2015 */
-
a(n) = if(n<2, n==0, subst( polinterpolate( Vec( serlaplace( exp( exp( x+O(x^n)/x )-1 ) ) ) ), x, n) )
-
from itertools import accumulate, islice
def A000296_gen():
yield from (1,0)
blist, a, b = (1,), 0, 1
while True:
blist = list(accumulate(blist, initial = (b:=blist[-1])))
yield (a := b-a)
A000296_list = list(islice(A000296_gen(),20)) # Chai Wah Wu, Jun 22 2022
A324011
Number of set partitions of {1, ..., n} with no singletons or cyclical adjacencies (successive elements in the same block, where 1 is a successor of n).
Original entry on oeis.org
1, 0, 0, 0, 1, 0, 5, 14, 66, 307, 1554, 8415, 48530, 296582, 1913561, 12988776, 92467629, 688528288, 5349409512, 43270425827, 363680219762, 3170394634443, 28619600156344, 267129951788160, 2574517930001445, 25587989366964056, 261961602231869825
Offset: 0
The a(4) = 1, a(6) = 5, and a(7) = 14 set partitions:
{{13}{24}} {{135}{246}} {{13}{246}{57}}
{{13}{25}{46}} {{13}{257}{46}}
{{14}{25}{36}} {{135}{26}{47}}
{{14}{26}{35}} {{135}{27}{46}}
{{15}{24}{36}} {{136}{24}{57}}
{{136}{25}{47}}
{{14}{257}{36}}
{{14}{26}{357}}
{{146}{25}{37}}
{{146}{27}{35}}
{{15}{246}{37}}
{{15}{247}{36}}
{{16}{24}{357}}
{{16}{247}{35}}
Cf.
A000110,
A000126,
A000296 (singletons allowed, or adjacencies allowed),
A001610,
A124323,
A169985,
A261139,
A324012,
A324014,
A324015.
-
Table[Select[sps[Range[n]],And[Count[#,{_}]==0,Total[If[First[#]==1&&Last[#]==n,1,0]+Count[Subtract@@@Partition[#,2,1],-1]&/@#]==0]&]//Length,{n,0,10}]
A324012
Number of self-complementary set partitions of {1, ..., n} with no singletons or cyclical adjacencies (successive elements in the same block, where 1 is a successor of n).
Original entry on oeis.org
1, 0, 0, 0, 1, 0, 3, 2, 14, 11, 80, 85, 510
Offset: 0
The a(6) = 3 through a(9) = 11 self-complementary set partitions with no singletons or cyclical adjacencies:
{{135}{246}} {{13}{246}{57}} {{1357}{2468}} {{136}{258}{479}}
{{13}{25}{46}} {{15}{246}{37}} {{135}{27}{468}} {{147}{258}{369}}
{{14}{25}{36}} {{146}{27}{358}} {{148}{269}{357}}
{{147}{258}{36}} {{168}{249}{357}}
{{157}{248}{36}} {{13}{258}{46}{79}}
{{13}{24}{57}{68}} {{14}{258}{37}{69}}
{{13}{25}{47}{68}} {{14}{28}{357}{69}}
{{14}{26}{37}{58}} {{16}{258}{37}{49}}
{{14}{27}{36}{58}} {{16}{28}{357}{49}}
{{15}{26}{37}{48}} {{17}{258}{39}{46}}
{{15}{27}{36}{48}} {{18}{29}{357}{46}}
{{16}{24}{38}{57}}
{{16}{25}{38}{47}}
{{17}{28}{35}{46}}
Cf.
A000110,
A000126,
A000296,
A001610,
A080107,
A169985,
A261139,
A306417 (all self-conjugate set partitions),
A324011 (self-complementarity not required),
A324013 (adjacencies allowed),
A324014 (singletons allowed),
A324015.
-
sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
cmp[stn_]:=Union[Sort[Max@@Join@@stn+1-#]&/@stn];
Table[Select[sps[Range[n]],And[cmp[#]==Sort[#],Count[#,{_}]==0,Total[If[First[#]==1&&Last[#]==n,1,0]+Count[Subtract@@@Partition[#,2,1],-1]&/@#]==0]&]//Length,{n,0,10}]
A327396
Triangle read by rows: T(n,k) is the number of n-bead necklace structures with beads of exactly k colors and no adjacent beads having the same color.
Original entry on oeis.org
0, 0, 1, 0, 0, 1, 0, 1, 1, 1, 0, 0, 1, 1, 1, 0, 1, 3, 5, 2, 1, 0, 0, 3, 10, 8, 2, 1, 0, 1, 7, 33, 40, 18, 3, 1, 0, 0, 11, 83, 157, 104, 28, 3, 1, 0, 1, 19, 237, 650, 615, 246, 46, 4, 1, 0, 0, 31, 640, 2522, 3318, 1857, 495, 65, 4, 1, 0, 1, 63, 1817, 9888, 17594, 13311, 4911, 944, 97, 5, 1
Offset: 1
Triangle begins:
0;
0, 1;
0, 0, 1;
0, 1, 1, 1;
0, 0, 1, 1, 1;
0, 1, 3, 5, 2, 1;
0, 0, 3, 10, 8, 2, 1;
0, 1, 7, 33, 40, 18, 3, 1;
0, 0, 11, 83, 157, 104, 28, 3, 1;
0, 1, 19, 237, 650, 615, 246, 46, 4, 1;
0, 0, 31, 640, 2522, 3318, 1857, 495, 65, 4, 1;
0, 1, 63, 1817, 9888, 17594, 13311, 4911, 944, 97, 5, 1;
...
-
R(n) = {Mat(Col([Vecrev(p/y, n) | p<-Vec(intformal(sum(m=1, n, eulerphi(m) * subst(serlaplace((y-1)*exp(-x + O(x*x^(n\m))) - y + exp(-x + sumdiv(m, d, y^d*(exp(d*x + O(x*x^(n\m)))-1)/d)) ), x, x^m))/x), -n)]))}
{ my(A=R(12)); for(n=1, #A, print(A[n, 1..n])) } \\ Andrew Howroyd, Oct 09 2019
A261137
Number of set partitions B'_t(n) of {1,2,...,t} into at most n parts, so that no part contains both 1 and t, or both i and i+1 with 1 <= i < t; triangle B'_t(n), t>=0, 0<=n<=t, read by rows.
Original entry on oeis.org
1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 3, 4, 0, 0, 0, 5, 10, 11, 0, 0, 1, 11, 31, 40, 41, 0, 0, 0, 21, 91, 147, 161, 162, 0, 0, 1, 43, 274, 568, 694, 714, 715, 0, 0, 0, 85, 820, 2227, 3151, 3397, 3424, 3425, 0, 0, 1, 171, 2461, 8824, 14851, 17251, 17686, 17721, 17722
Offset: 0
Triangle starts:
1;
0, 0;
0, 0, 1;
0, 0, 0, 1;
0, 0, 1, 3, 4;
0, 0, 0, 5, 10, 11;
0, 0, 1, 11, 31, 40, 41;
0, 0, 0, 21, 91, 147, 161, 162;
0, 0, 1, 43, 274, 568, 694, 714, 715;
0, 0, 0, 85, 820, 2227, 3151, 3397, 3424, 3425;
...
- Alois P. Heinz, Rows n = 0..140, flattened
- John R. Britnell and Mark Wildon, Bell numbers, partition moves and the eigenvalues of the random-to-top shuffle in Dynkin Types A, B and D, arXiv:1507.04803 [math.CO], 2015.
- D. E. Knuth and O. P. Lossers, Partitions of a circular set, Problem 11151 in Amer. Math. Monthly 114 (3), (2007), p 265, E_4.
-
g:= proc(t, l, h) option remember; `if`(t=0, `if`(l=1, 0, x^h),
add(`if`(j=l, 0, g(t-1, j, max(h,j))), j=1..h+1))
end:
B:= t-> (p-> seq(add(coeff(p, x, j), j=0..i), i=0..t))(g(t, 0$2)):
seq(B(t), t=0..12); # Alois P. Heinz, Aug 10 2015
-
StirPrimedGF[0, x_] := 1; StirPrimedGF[1, x_] := 0;
StirPrimedGF[n_, x_] := x^n/(1 + x)*Product[1/(1 - j*x), {j, 1, n - 1}];
StirPrimed[0, 0] := 1; StirPrimed[0, _] := 0;
StirPrimed[t_, n_] := Coefficient[Series[StirPrimedGF[n, x], {x, 0, t}], x^t];
BPrimed[t_, n_] := Sum[StirPrimed[t, m], {m, 0, n}]
(* Second program: *)
g[t_, l_, h_] := g[t, l, h] = If[t == 0, If[l == 1, 0, x^h], Sum[If[j == l, 0, g[t - 1, j, Max[h, j]]], {j, 1, h + 1}]];
B[t_] := Function[p, Table[Sum[Coefficient[p, x, j], {j, 0, i}], {i, 0, t}] ][g[t, 0, 0]];
Table[B[t], {t, 0, 12}] // Flatten (* Jean-François Alcover, May 20 2016, after Alois P. Heinz *)
A243869
Expansion of x^4/[(1+x)*Product_{k=1..3} (1-k*x)].
Original entry on oeis.org
1, 5, 20, 70, 231, 735, 2290, 7040, 21461, 65065, 196560, 592410, 1782691, 5358995, 16098830, 48340180, 145107921, 435498525, 1306845100, 3921234350, 11765101151, 35298099655, 105899891370, 317710858920, 953154946381, 2859509578385, 8578618213640
Offset: 4
- G. C. Greubel, Table of n, a(n) for n = 4..1000
- J. R. Britnell and M. Wildon, Bell numbers, partition moves and the eigenvalues of the random-to-top shuffle in types A, B and D, arXiv 1507.04803 [math.CO], 2015.
- D. E. Knuth and O. P. Lossers, Partitions of a circular set, Problem 11151 in Amer. Math. Monthly 114 (3), (2007), p 265, E_4.
- Index entries for linear recurrences with constant coefficients, signature (5,-5,-5,6).
-
[(3^n-4*2^n+(-1)^n+6)/24: n in [4..30]]; // Bruno Berselli, Jun 13 2014
-
Table[(3^n - 4 2^n + (-1)^n + 6)/24, {n, 4, 30}] (* Bruno Berselli, Jun 13 2014 *)
-
for(n=4,50, print1(( 3^n - 4*2^n + (-1)^n + 6 )/24, ", ")) \\ G. C. Greubel, Oct 11 2017
A261318
Number of set partitions T'_t(n) of {1,2,...,t} into exactly n parts, with an even number of elements in each part distinguished by marks, and such that no part contains both 1 and t with 1 unmarked or both i and i+1 with i+1 unmarked for some i with 1 <= i < t; triangle T'_t(n), t>=0, 0<=n<=t, read by rows.
Original entry on oeis.org
1, 0, 0, 0, 1, 1, 0, 0, 3, 1, 0, 1, 10, 8, 1, 0, 0, 30, 50, 15, 1, 0, 1, 91, 280, 155, 24, 1, 0, 0, 273, 1491, 1365, 371, 35, 1, 0, 1, 820, 7728, 11046, 4704, 756, 48, 1, 0, 0, 2460, 39460, 85050, 53382, 13020, 1380, 63, 1
Offset: 0
Triangle starts:
1;
0, 0;
0, 1, 1;
0, 0, 3, 1;
0, 1, 10, 8, 1;
0, 0, 30, 50, 15, 1;
0, 1, 91, 280, 155, 24, 1;
0, 0, 273, 1491, 1365, 371, 35, 1;
0, 1, 820, 7728, 11046, 4704, 756, 48, 1;
-
TGF[1, x_] := x^2/(1 - x^2); TGF[n_, x_] := x^n/(1 + x)*Product[1/(1 - (2*j - 1)*x), {j, 1, n}];
T[0, 0] := 1; T[, 0] := 0; T[0,]:=0; T[t_, n_] := Coefficient[Series[TGF[n, x], {x, 0, t}], x^t]
-
T(t, n) = {if ((t==0) && (n==0), return(1)); if (n==0, return(0)); if (n==1, return(1 - t%2)); 1/(2^n*n!)*(sum(k=0,n-1,binomial(n,k)*(-1)^k*(2*(n-k)-1)^t)+(-1)^(n+t));}
tabl(nn) = {for (t=0, nn, for (n=0, t, print1(T(t, n), ", ");); print(););} \\ Michel Marcus, Aug 17 2015
Corrected description in name to agree with section 4.1 in linked paper
Mark Wildon, Mar 11 2019
A261319
Number of set partitions C'_t(n) of {1,2,...,t} into at most n parts, with an even number of elements in each part distinguished by marks and such that no part contains both 1 and t (each unmarked) or both i and i+1 (each unmarked) for some i with 1 <= i < t; triangle C'_t(n), t>=0, 0<=n<=t, read by rows.
Original entry on oeis.org
1, 0, 0, 0, 1, 2, 0, 0, 3, 4, 0, 1, 11, 19, 20, 0, 0, 30, 80, 95, 96, 0, 1, 92, 372, 527, 551, 552, 0, 0, 273, 1764, 3129, 3500, 3535, 3536, 0, 1, 821, 8549, 19595, 24299, 25055, 25103, 25104
Offset: 0
Triangle starts:
1;
0, 0;
0, 1, 2;
0, 0, 3, 4;
0, 1, 11, 19, 20;
0, 0, 30, 80, 95, 96;
0, 1, 92, 372, 527, 551, 552;
0, 0, 273, 1764, 3129, 3500, 3535, 3536;
0, 1, 821, 8549, 19595, 24299, 25055, 25103, 25104;
-
TGF[1, x_] := x^2/(1 - x^2); TGF[n_, x_] := x^n/(1 + x)*Product[1/(1 - (2*j - 1)*x), {j, 1, n}];
T[0, 0] := 1; T[, 0] := 0; T[0, ] := 0; T[t_, n_] := Coefficient[Series[TGF[n, x], {x, 0, t}], x^t];
CC[t_, n_] := Sum[T[t, m], {m, 0, n}]
Showing 1-9 of 9 results.
Comments