cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A000975 a(2n) = 2*a(2n-1), a(2n+1) = 2*a(2n)+1 (also a(n) is the n-th number without consecutive equal binary digits).

Original entry on oeis.org

0, 1, 2, 5, 10, 21, 42, 85, 170, 341, 682, 1365, 2730, 5461, 10922, 21845, 43690, 87381, 174762, 349525, 699050, 1398101, 2796202, 5592405, 11184810, 22369621, 44739242, 89478485, 178956970, 357913941, 715827882, 1431655765, 2863311530, 5726623061, 11453246122
Offset: 0

Views

Author

Keywords

Comments

Might be called the "Lichtenberg sequence" after Georg Christoph Lichtenberg, who discussed it in 1769 in connection with the Chinese Rings puzzle (baguenaudier). - Andreas M. Hinz, Feb 15 2017
Number of steps to change from a binary string of n 0's to n 1's using a Gray code. - Jon Stadler (jstadler(AT)coastal.edu)
Popular puzzles such as Spin-Out and The Brain Puzzler are based on the Gray binary system and require a(n) steps to complete for some number n.
Conjecture: {a(n)} also gives all j for which A048702(j) = A000217(j); i.e., if we take the a(n)-th triangular number (a(n)^2 + a(n))/2 and multiply it by 3, we get a(n)-th even-length binary palindrome A048701(a(n)) concatenated from a(n) and its reverse. E.g., a(4) = 10, which is 1010 in binary; the tenth triangular number is 55, and 55*3 = 165 = 10100101 in binary. - Antti Karttunen, circa 1999. (This has been now proved by Paul K. Stockmeyer in his arXiv:1608.08245 paper.) - Antti Karttunen, Aug 31 2016
Number of ways to tie a tie of n or fewer half turns, excluding mirror images. Also number of walks of length n or less on a triangular lattice with the following restrictions; given l, r and c as the lattice axes. 1. All steps are taken in the positive axis direction. 2. No two consecutive steps are taken on the same axis. 3. All walks begin with l. 4. All walks end with rlc or lrc. - Bill Blewett, Dec 21 2000
a(n) is the minimal number of vertices to be selected in a vertex-cover of the balanced tree B_n. - Sen-peng Eu, Jun 15 2002
A087117(a(n)) = A038374(a(n)) = 1 for n > 1; see also A090050. - Reinhard Zumkeller, Nov 20 2003
Intersection of A003754 and A003714; complement of A107907. - Reinhard Zumkeller, May 28 2005
Equivalently, numbers m whose binary representation is effectively, for some number k, both the lazy Fibonacci and the Zeckendorf representation of k (in which case k = A022290(m)). - Peter Munn, Oct 06 2022
a(n+1) gives row sums of Riordan array (1/(1-x), x(1+2x)). - Paul Barry, Jul 18 2005
Total number of initial 01's in all binary words of length n+1. Example: a(3) = 5 because the binary words of length 4 that start with 01 are (01)00, (01)(01), (01)10 and (01)11 and the total number of initial 01's is 5 (shown between parentheses). a(n) = Sum_{k >= 0} k*A119440(n+1, k). - Emeric Deutsch, May 19 2006
In Norway we call the 10-ring puzzle "strikketoy" or "knitwear" (see link). It takes 682 moves to free the two parts. - Hans Isdahl, Jan 07 2008
Equals A002450 and A020988 interlaced. - Zak Seidov, Feb 10 2008
For n > 1, let B_n = the complete binary tree with vertex set V where |V| = 2^n - 1. If VC is a minimum-size vertex cover of B_n, Sen-Peng Eu points out that a(n) = |VC|. It also follows that if IS = V\VC, a(n+1) = |IS|. - K.V.Iyer, Apr 13 2009
Starting with 1 and convolved with [1, 2, 2, 2, ...] = A000295. - Gary W. Adamson, Jun 02 2009
a(n) written in base 2 is sequence A056830(n). - Jaroslav Krizek, Aug 05 2009
This is the sequence A(0, 1; 1, 2; 1) of the family of sequences [a,b:c,d:k] considered by G. Detlefs, and treated as A(a,b;c,d;k) in the W. Lang link given below. - Wolfdieter Lang, Oct 18 2010
From Vladimir Shevelev, Jan 30 2012, Feb 13 2012: (Start)
1) Denote by {n, k} the number of permutations of 1, ..., n with the up-down index k (for definition, see comment in A203827). Then max_k{n, k} = {n, a(n)} = A000111(n).
2) a(n) is the minimal number > a(n-1) with the Hamming distance d_H(a(n-1), a(n)) = n. Thus this sequence is the Hamming analog of triangular numbers 0, 1, 3, 6, 10, ... (End)
From Hieronymus Fischer, Nov 22 2012: (Start)
Represented in binary form each term after the second one contains every previous term as a substring.
The terms a(2) = 2 and a(3) = 5 are the only primes. Proof: For even n we get a(n) = 2*(2^(2*n) - 1)/3, which shows that a(n) is even, too, and obviously a(n) > 2 for all even n > 2. For odd n we have a(n) = (2^(n+1) - 1)/3 = (2^((n+1)/2) - 1) * (2^((n+1)/2) + 1)/3. Evidently, at least one of these factors is divisible by 3, both are greater than 6, provided n > 3. Hence it follows that a(n) is composite for all odd n > 3.
Represented as a binary number, a(n+1) has exactly n prime substrings. Proof: Evidently, a(1) = 1_2 has zero and a(2) = 10_2 has 1 prime substring. Let n > 1. Written in binary, a(n+1) is 101010101...01 (if n + 1 is odd) and is 101010101...10 (if n + 1 is even) with n + 1 digits. Only the 2- and 3-digits substrings 10_2 (=2) and 101_2 (=5) are prime substrings. All the other substrings are nonprime since every substring is a previous term and all terms unequal to 2 and 5 are nonprime. For even n + 1, the number of prime substrings equal to 2 = 10_2 is (n+1)/2, and the number of prime substrings equal to 5 = 101_2 is (n-1)/2, makes a sum of n. For odd n + 1 we get n/2 for both, the number of 2's and 5's prime substrings, in any case, the sum is n. (End)
Number of different 3-colorings for the vertices of all triangulated planar polygons on a base with n+2 vertices if the colors of the two base vertices are fixed. - Patrick Labarque, Feb 09 2013
A090079(a(n)) = a(n) and A090079(m) <> a(n) for m < a(n). - Reinhard Zumkeller, Feb 16 2013
a(n) is the number of length n binary words containing at least one 1 and ending in an even number (possibly zero) of 0's. a(3) = 5 because we have: 001, 011, 100, 101, 111. - Geoffrey Critzer, Dec 15 2013
a(n) is the number of permutations of length n+1 having exactly one descent such that the first element of the permutation is an even number. - Ran Pan, Apr 18 2015
a(n) is the sequence of the last row of the Hadamard matrix H(2^n) obtained via Sylvester's construction: H(2) = [1,1;1,-1], H(2^n) = H(2^(n-1))*H(2), where * is the Kronecker product. - William P. Orrick, Jun 28 2015
Conjectured record values of A264784: a(n) = A264784(A155051(n-1)). - Reinhard Zumkeller, Dec 04 2015. (This is proved by Paul K. Stockmeyer in his arXiv:1608.08245 paper.) - Antti Karttunen, Aug 31 2016
Decimal representation of the x-axis, from the origin to the right edge, of the n-th stage of growth of the two-dimensional cellular automaton defined by "Rule 131", based on the 5-celled von Neumann neighborhood. See A279053 for references and links. - Robert Price, Dec 05 2016
For n > 4, a(n-2) is the second-largest number in row n of A127824. - Dmitry Kamenetsky, Feb 11 2017
Conjecture: a(n+1) is the number of compositions of n with two kinds of parts, n and n', where the order of the 1 and 1' does not matter. For n=2, a(3) = 5 compositions, enumerated as follows: 2; 2'; 1,1; 1',1 = 1',1; 1',1'. - Gregory L. Simay, Sep 02 2017
Conjecture proved by recognizing the appropriate g.f. is x/(1 - x)(1 - x)(1 - 2*x^2 - 2x^3 - ...) = x/(1 - 2*x - x^2 + 2x^3). - Gregory L. Simay, Sep 10 2017
a(n) = 2^(n-1) + 2^(n-3) + 2^(n-5) + ... a(2*k -1) = A002450(k) is the sum of the powers of 4. a(2*k) = 2*A002450(k). - Gregory L. Simay, Sep 27 2017
a(2*n) = n times the string [10] in binary representation, a(2*n+1) = n times the string [10] followed with [1] in binary representation. Example: a(7) = 85 = (1010101) in binary, a(8) = 170 = (10101010) in binary. - Ctibor O. Zizka, Nov 06 2018
Except for 0, these are the positive integers whose binary expansion has cuts-resistance 1. For the operation of shortening all runs by 1, cuts-resistance is the number of applications required to reach an empty word. Cuts-resistance 2 is A329862. - Gus Wiseman, Nov 27 2019
From Markus Sigg, Sep 14 2020: (Start)
Let s(k) be the length of the Collatz orbit of k, e.g. s(1) = 1, s(2) = 2, s(3) = 5. Then s(a(n)) = n+3 for n >= 3. Proof by induction: s(a(3)) = s(5) = 6 = 3+3. For odd n >= 5 we have s(a(n)) = s(4*a(n-2)+1) = s(12*a(n-2)+4)+1 = s(3*a(n-2)+1)+3 = s(a(n-2))+2 = (n-2)+3+2 = n+3, and for even n >= 4 this gives s(a(n)) = s(2*a(n-1)) = s(a(n-1))+1 = (n-1)+3+1 = n+3.
Conjecture: For n >= 3, a(n) is the second largest natural number whose Collatz orbit has length n+3. (End)
From Gary W. Adamson, May 14 2021: (Start)
With offset 1 the sequence equals the numbers of 1's from n = 1 to 3, 3 to 7, 7 to 15, ...; of A035263; as shown below:
..1 3 7 15...
..1 0 1 1 1 0 1 0 1 0 1 1 1 0 1...
..1.....2...........5......................10...; a(n) = Sum_(k=1..2n-1)A035263(k)
.....1...........2.......................5...; as to zeros.
..1's in the Tower of Hanoi game represent CW moves On disks in the pattern:
..0, 1, 2, 0, 1, 2, ... whereas even numbered disks move in the pattern:
..0, 2, 1, 0, 2, 1, ... (End)
Except for 0, numbers that are repunits in Gray-code representation (A014550). - Amiram Eldar, May 21 2021
From Gus Wiseman, Apr 20 2023: (Start)
Also the number of nonempty subsets of {1..n} with integer median, where the median of a multiset is the middle part in the odd-length case, and the average of the two middle parts in the even-length case. For example, the a(1) = 1 through a(4) = 10 subsets are:
{1} {1} {1} {1}
{2} {2} {2}
{3} {3}
{1,3} {4}
{1,2,3} {1,3}
{2,4}
{1,2,3}
{1,2,4}
{1,3,4}
{2,3,4}
The complement is counted by A005578.
For mean instead of median we have A051293, counting empty sets A327475.
For normal multisets we have A056450, strongly normal A361202.
For partitions we have A325347, strict A359907, complement A307683.
(End)

Examples

			a(4)=10 since 0001, 0011, 0010, 0110, 0111, 0101, 0100, 1100, 1101, 1111 are the 10 binary strings switching 0000 to 1111.
a(3) = 1 because "lrc" is the only way to tie a tie with 3 half turns, namely, pass the business end of the tie behind the standing part to the left, bring across the front to the right, then behind to the center. The final motion of tucking the loose end down the front behind the "lr" piece is not considered a "step".
a(4) = 2 because "lrlc" is the only way to tie a tie with 4 half turns. Note that since the number of moves is even, the first step is to go to the left in front of the tie, not behind it. This knot is the standard "four in hand", the most commonly known men's tie knot. By contrast, the second most well known tie knot, the Windsor, is represented by "lcrlcrlc".
a(n) = (2^0 - 1) XOR (2^1 - 1) XOR (2^2 - 1) XOR (2^3 - 1) XOR ... XOR (2^n - 1). - _Paul D. Hanna_, Nov 05 2011
G.f. = x + 2*x^2 + 5*x^3 + 10*x^4 + 21*x^5 + 42*x^6 + 85*x^7 + 170*x^8 + ...
a(9) = 341 = 2^8 + 2^6 + 2^4 + 2^2 + 2^0 = 4^4 + 4^3 + 4^2 + 4^1 + 4^0 = A002450(5). a(10) = 682 = 2*a(9) = 2*A002450(5). - _Gregory L. Simay_, Sep 27 2017
		

References

  • Thomas Fink and Yong Mao, The 85 Ways to Tie a Tie, Broadway Books, New York (1999), p. 138.
  • Clifford A. Pickover, The Math Book, From Pythagoras to the 57th Dimension, 250 Milestones in the History of Mathematics, Sterling Publ., NY, 2009.

Crossrefs

Partial sums of A001045.
Row sums of triangle A013580.
Equals A026644/2.
Union of the bijections A002450 and A020988. - Robert G. Wilson v, Jun 09 2014
Column k=3 of A261139.
Complement of A107907.
Row 3 of A300653.
Other sequences that relate to the binary representation of the terms: A003714, A003754, A007088, A022290, A056830, A104161, A107909.

Programs

  • GAP
    List([0..35],n->(2^(n+1)-2+(n mod 2))/3); # Muniru A Asiru, Nov 01 2018
    
  • Haskell
    a000975 n = a000975_list !! n
    a000975_list = 0 : 1 : map (+ 1)
       (zipWith (+) (tail a000975_list) (map (* 2) a000975_list))
    -- Reinhard Zumkeller, Mar 07 2012
    
  • Magma
    [(2^(n+1) - 2 + (n mod 2))/3: n in [0..40]]; // Vincenzo Librandi, Mar 18 2015
    
  • Maple
    A000975 := proc(n) option remember; if n <= 1 then n else if n mod 2 = 0 then 2*A000975(n-1) else 2*A000975(n-1)+1 fi; fi; end;
    seq(iquo(2^n,3),n=1..33); # Zerinvary Lajos, Apr 20 2008
    f:=n-> if n mod 2 = 0 then (2^n-1)/3 else (2^n-2)/3; fi; [seq(f(n),n=0..40)]; # N. J. A. Sloane, Mar 21 2017
  • Mathematica
    Array[Ceiling[2(2^# - 1)/3] &, 41, 0]
    RecurrenceTable[{a[0] == 0, a[1] == 1, a[n] == a[n - 1] + 2a[n - 2] + 1}, a, {n, 40}] (* or *)
    LinearRecurrence[{2, 1, -2}, {0, 1, 2}, 40] (* Harvey P. Dale, Aug 10 2013 *)
    f[n_] := Block[{exp = n - 2}, Sum[2^i, {i, exp, 0, -2}]]; Array[f, 33] (* Robert G. Wilson v, Oct 30 2015 *)
    f[s_List] := Block[{a = s[[-1]]}, Append[s, If[OddQ@ Length@ s, 2a + 1, 2a]]]; Nest[f, {0}, 32] (* Robert G. Wilson v, Jul 20 2017 *)
    NestList[2# + Boole[EvenQ[#]] &, 0, 39] (* Alonso del Arte, Sep 21 2018 *)
  • PARI
    {a(n) = if( n<0, 0, 2 * 2^n \ 3)}; /* Michael Somos, Sep 04 2006 */
    
  • PARI
    a(n)=if(n<=0,0,bitxor(a(n-1),2^n-1)) \\ Paul D. Hanna, Nov 05 2011
    
  • PARI
    concat(0, Vec(x/(1-2*x-x^2+2*x^3) + O(x^100))) \\ Altug Alkan, Oct 30 2015
    
  • PARI
    {a(n) = (4*2^n - 3 - (-1)^n) / 6}; /* Michael Somos, Jul 23 2017 */
    
  • Python
    def a(n): return (2**(n+1) - 2 + (n%2))//3
    print([a(n) for n in range(35)]) # Michael S. Branicky, Dec 19 2021

Formula

a(n) = ceiling(2*(2^n-1)/3).
Alternating sum transform (PSumSIGN) of {2^n - 1} (A000225).
a(n) = a(n-1) + 2*a(n-2) + 1.
a(n) = 2*2^n/3 - 1/2 - (-1)^n/6.
a(n) = Sum_{i = 0..n} A001045(i), partial sums of A001045. - Bill Blewett
a(n) = n + 2*Sum_{k = 1..n-2} a(k).
G.f.: x/((1+x)*(1-x)*(1-2*x)) = x/(1-2*x-x^2+2*x^3). - Paul Barry, Feb 11 2003
a(n) = 2*a(n-1) + a(n-2) - 2*a(n-3). - Paul Barry, Feb 11 2003
a(n) = Sum_{k = 0..floor((n-1)/2)} 2^(n-2*k-1). - Paul Barry, Nov 11 2003
a(n+1) = Sum_{k=0..floor(n/2)} 2^(n-2*k); a(n+1) = Sum_{k = 0..n} Sum_{j = 0..k} (-1)^(j+k)*2^j. - Paul Barry, Nov 12 2003
(-1)^(n+1)*a(n) = Sum_{i = 0..n} Sum_{k = 1..i} k!*k* Stirling2(i, k)*(-1)^(k-1) = (1/3)*(-2)^(n+1)-(1/6)(3*(-1)^(n+1)-1). - Mario Catalani (mario.catalani(AT)unito.it), Dec 22 2003
a(n+1) = (n!/3)*Sum_{i - (-1)^i + j = n, i = 0..n, j = 0..n} 1/(i - (-1)^i)!/j!. - Benoit Cloitre, May 24 2004
a(n) = A001045(n+1) - A059841(n). - Paul Barry, Jul 22 2004
a(n) = Sum_{k = 0..n} 2^(n-k-1)*(1-(-1)^k), row sums of A130125. - Paul Barry, Jul 28 2004
a(n) = Sum_{k = 0..n} binomial(k, n-k+1)2^(n-k); a(n) = Sum_{k = 0..floor(n/2)} binomial(n-k, k+1)2^k. - Paul Barry, Oct 07 2004
a(n) = A107909(A104161(n)); A007088(a(n)) = A056830(n). - Reinhard Zumkeller, May 28 2005
a(n) = floor(2^(n+1)/3) = ceiling(2^(n+1)/3) - 1 = A005578(n+1) - 1. - Paul Barry, Oct 08 2005
Convolution of "Number of fixed points in all 231-avoiding involutions in S_n." (A059570) with "1-n" (A024000), treating the result as if offset was 0. - Graeme McRae, Jul 12 2006
a(n) = A081254(n) - 2^n. - Philippe Deléham, Oct 15 2006
Starting (1, 2, 5, 10, 21, 42, ...), these are the row sums of triangle A135228. - Gary W. Adamson, Nov 23 2007
Let T = the 3 X 3 matrix [1,1,0; 1,0,1; 0,1,1]. Then T^n * [1,0,0] = [A005578(n), A001045(n), a(n-1)]. - Gary W. Adamson, Dec 25 2007
2^n = 2*A005578(n-1) + 2*A001045(n) + 2*a(n-2). - Gary W. Adamson, Dec 25 2007
If we define f(m,j,x) = Sum_{k=j..m} binomial(m,k)*stirling2(k,j)*x^(m-k) then a(n-3) = (-1)^(n-1)*f(n,3,-2), (n >= 3). - Milan Janjic, Apr 26 2009
a(n) + A001045(n) = A166920(n). a(n) + A001045(n+2) = A051049(n+1). - Paul Curtz, Oct 29 2009
a(n) = floor(A051049(n+1)/3). - Gary Detlefs, Dec 19 2010
a(n) = round((2^(n+2)-3)/6) = floor((2^(n+1)-1)/3) = round((2^(n+1)-2)/3); a(n) = a(n-2) + 2^(n-1), n > 1. - Mircea Merca, Dec 27 2010
a(n) = binary XOR of 2^k-1 for k=0..n. - Paul D. Hanna, Nov 05 2011
E.g.f.: 2/3*exp(2*x) - 1/2*exp(x) - 1/6*exp(-x) = 2/3*U(0); U(k) = 1 - 3/(4*(2^k) - 4*(2^k)/(1+3*(-1)^k - 24*x*(2^k)/(8*x*(2^k)*(-1)^k - (k+1)/U(k+1)))); (continued fraction). - Sergei N. Gladkovskii, Nov 21 2011
Starting with "1" = triangle A059260 * [1, 2, 2, 2, ...] as a vector. - Gary W. Adamson, Mar 06 2012
a(n) = 2*(2^n - 1)/3, for even n; a(n) = (2^(n+1) - 1)/3 = (1/3)*(2^((n+1)/2) - 1)*(2^((n+1)/2) + 1), for odd n. - Hieronymus Fischer, Nov 22 2012
a(n) + a(n+1) = 2^(n+1) - 1. - Arie Bos, Apr 03 2013
G.f.: Q(0)/(3*(1-x)), where Q(k) = 1 - 1/(4^k - 2*x*16^k/(2*x*4^k - 1/(1 + 1/(2*4^k - 8*x*16^k/(4*x*4^k + 1/Q(k+1)))))); (continued fraction). - Sergei N. Gladkovskii, May 21 2013
floor(a(n+2)*3/5) = A077854(n), for n >= 0. - Armands Strazds, Sep 21 2014
a(n) = (2^(n+1) - 2 + (n mod 2))/3. - Paul Toms, Mar 18 2015
a(0) = 0, a(n) = 2*(a(n-1)) + (n mod 2). - Paul Toms, Mar 18 2015
Binary: a(n) = (a(n-1) shift left 1) + (a(n-1)) NOR (...11110). - Paul Toms, Mar 18 2015
Binary: for n > 1, a(n) = 2*a(n-1) OR a(n-2). - Stanislav Sykora, Nov 12 2015
a(n) = A266613(n) - 20*2^(n-5), for n > 2. - Andres Cicuttin, Mar 31 2016
From Michael Somos, Jul 23 2017: (Start)
a(n) = -(2^n)*a(-n) for even n; a(n) = -(2^(n+1))*a(-n) + 1 for odd n.
0 = +a(n)*(+2 +4*a(n) -4*a(n+1)) + a(n+1)*(-1 +a(n+1)) for all n in Z. (End)
G.f.: (x^1+x^3+x^5+x^7+...)/(1-2*x). - Gregory L. Simay, Sep 27 2017
a(n+1) = A051049(n) + A001045(n). - Yuchun Ji, Jul 12 2018
a(n) = A153772(n+3)/4. - Markus Sigg, Sep 14 2020
a(4*k+d) = 2^(d+1)*a(4*k-1) + a(d), a(n+4) = a(n) + 2^n*10, a(0..3) = [0,1,2,5]. So the last digit is always 0,1,2,5 repeated. - Yuchun Ji, May 22 2023

Extensions

Additional comments from Barry E. Williams, Jan 10 2000

A000296 Set partitions without singletons: number of partitions of an n-set into blocks of size > 1. Also number of cyclically spaced (or feasible) partitions.

Original entry on oeis.org

1, 0, 1, 1, 4, 11, 41, 162, 715, 3425, 17722, 98253, 580317, 3633280, 24011157, 166888165, 1216070380, 9264071767, 73600798037, 608476008122, 5224266196935, 46499892038437, 428369924118314, 4078345814329009, 40073660040755337, 405885209254049952, 4232705122975949401
Offset: 0

Views

Author

Keywords

Comments

a(n+2) = p(n+1) where p(x) is the unique degree-n polynomial such that p(k) = A000110(k) for k = 0, 1, ..., n. - Michael Somos, Oct 07 2003
Number of complete rhyming schemes.
Whereas the Bell number B(n) (A000110(n)) is the number of terms in the polynomial that expresses the n-th moment of a probability distribution as a function of the first n cumulants, these numbers give the number of terms in the corresponding expansion of the central moment as a function of the first n cumulants. - Michael Hardy (hardy(AT)math.umn.edu), Jan 26 2005
a(n) is the number of permutations on [n] for which the left-to-right maxima coincide with the descents (entries followed by a smaller number). For example, a(4) counts 2143, 3142, 3241, 4123. - David Callan, Jul 20 2005
From Gus Wiseman, Feb 10 2019: (Start)
Also the number of stable partitions of an n-cycle, where a stable partition of a graph is a set partition of the vertex set such that no edge has both ends in the same block. A bijective proof is given in David Callan's article. For example, the a(5) = 11 stable partitions are:
{{1},{2},{3},{4},{5}}
{{1},{2},{3,5},{4}}
{{1},{2,4},{3},{5}}
{{1},{2,5},{3},{4}}
{{1,3},{2},{4},{5}}
{{1,4},{2},{3},{5}}
{{1},{2,4},{3,5}}
{{1,3},{2,4},{5}}
{{1,3},{2,5},{4}}
{{1,4},{2},{3,5}}
{{1,4},{2,5},{3}}
(End)
Also number of partitions of {1, 2, ..., n-1} with singletons. E.g., a(4) = 4: {1|2|3, 12|3, 13|2, 1|23}. Also number of cyclical adjacencies partitions of {1, 2, ..., n-1}. E.g., a(4) = 4: {12|3, 13|2, 1|23, 123}. The two partitions can be mapped by a Kreweras bijection. - Yuchun Ji, Feb 22 2021
Also the k-th central moment of a Poisson random variable with mean 1. a(n) = E[(X-1)^n, X~Poisson(1)]. - Thomas Dybdahl Ahle, Dec 14 2022

Examples

			a(4) = card({{{1, 2}, {3, 4}}, {{1, 4}, {2, 3}}, {{1, 3}, {2, 4}}, {{1, 2, 3, 4}}}) = 4.
		

References

  • Martin Gardner in Sci. Amer. May 1977.
  • D. E. Knuth, The Art of Computer Programming, vol. 4A, Combinatorial Algorithms, Section 7.2.1.5 (p. 436).
  • G. Pólya and G. Szegő, Problems and Theorems in Analysis, Springer-Verlag, NY, 2 vols., 1972, Vol. 1, p. 228.
  • J. Riordan, A budget of rhyme scheme counts, pp. 455-465 of Second International Conference on Combinatorial Mathematics, New York, April 4-7, 1978. Edited by Allan Gewirtz and Louis V. Quintas. Annals New York Academy of Sciences, 319, 1979.
  • J. Shallit, A Triangle for the Bell numbers, in V. E. Hoggatt, Jr. and M. Bicknell-Johnson, A Collection of Manuscripts Related to the Fibonacci Sequence, 1980, pp. 69-71.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

A diagonal of triangle in A106436.
Row sums of the triangle of associated Stirling numbers of second kind A008299. - Philippe Deléham, Feb 10 2005
Row sums of the triangle of basic multinomial coefficients A178866. - Johannes W. Meijer, Jun 21 2010
Row sums of A105794. - Peter Bala, Jan 14 2015
Row sums of A261139, main diagonal of A261137.
Column k=0 of A216963.
Column k=0 of A124323.

Programs

  • Magma
    [1,0] cat [ n le 1 select 1 else Bell(n)-Self(n-1) : n in [1..40]]; // Vincenzo Librandi, Jun 22 2015
    
  • Maple
    spec := [ B, {B=Set(Set(Z,card>1))}, labeled ]; [seq(combstruct[count](spec, size=n), n=0..30)];
    with(combinat): A000296 :=n->(-1)^n + add((-1)^(j-1)*bell(n-j),j=1..n): seq(A000295(n),n=0..30); # Emeric Deutsch, Oct 29 2006
    f:=exp(exp(x)-1-x): fser:=series(f, x=0, 31): 1, seq(n!*coeff(fser, x^n), n=1..23); # Zerinvary Lajos, Nov 22 2006
    G:={P=Set(Set(Atom,card>=2))}: combstruct[gfsolve](G,unlabeled,x): seq(combstruct[count]([P,G,labeled], size=i), i=0..23); # Zerinvary Lajos, Dec 16 2007
    # [a(0),a(1),..,a(n)]
    A000296_list := proc(n)
    local A, R, i, k;
    if n = 0 then return 1 fi;
    A := array(0..n-1);
    A[0] := 1; R := 1;
    for i from 0 to n-2 do
       A[i+1] := A[0] - A[i];
       A[i] := A[0];
       for k from i by -1 to 1 do
          A[k-1] := A[k-1] + A[k] od;
       R := R,A[i+1];
    od;
    R,A[0]-A[i] end:
    A000296_list(100);  # Peter Luschny, Apr 09 2011
  • Mathematica
    nn = 25; Range[0, nn]! CoefficientList[Series[Exp[Exp[x] - 1 - x], {x, 0, nn}], x]
    (* Second program: *)
    a[n_] := a[n] = If[n==0, 1, Sum[Binomial[n-1, i]*a[n-i-1], {i, 1, n-1}]]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Feb 06 2016, after Vladimir Kruchinin *)
    spsu[,{}]:={{}};spsu[foo,set:{i_,_}]:= Join@@Function[s,Prepend[#,s]&/@spsu[ Select[foo,Complement[#, Complement[set,s]]=={}&], Complement[set,s]]]/@Cases[foo,{i,_}];
    Table[Length[spsu[Select[Subsets[Range[n]],Select[Partition[Range[n],2,1,1], Function[ed,Complement[ed,#]=={}]]=={}&],Range[n]]],{n,8}] (* Gus Wiseman, Feb 10 2019 *)
    s = 1; Join[{1}, Table[s = BellB[n] - s, {n, 0, 25}]] (* Vaclav Kotesovec, Jun 20 2022 *)
  • Maxima
    a(n):=if n=0 then 1 else sum(binomial(n-1,i)*a(n-i-1),i,1,n-1); /* Vladimir Kruchinin, Feb 22 2015 */
    
  • PARI
    a(n) = if(n<2, n==0, subst( polinterpolate( Vec( serlaplace( exp( exp( x+O(x^n)/x )-1 ) ) ) ), x, n) )
    
  • Python
    from itertools import accumulate, islice
    def A000296_gen():
        yield from (1,0)
        blist, a, b = (1,), 0, 1
        while True:
            blist = list(accumulate(blist, initial = (b:=blist[-1])))
            yield (a := b-a)
    A000296_list = list(islice(A000296_gen(),20)) # Chai Wah Wu, Jun 22 2022

Formula

E.g.f.: exp(exp(x) - 1 - x).
B(n) = a(n) + a(n+1), where B = A000110 = Bell numbers [Becker].
Inverse binomial transform of Bell numbers (A000110).
a(n)= Sum_{k>=-1} (k^n/(k+1)!)/exp(1). - Vladeta Jovovic and Karol A. Penson, Feb 02 2003
a(n) = Sum_{k=0..n} ((-1)^(n-k))*binomial(n, k)*Bell(k) = (-1)^n + Bell(n) - A087650(n), with Bell(n) = A000110(n). - Wolfdieter Lang, Dec 01 2003
O.g.f.: A(x) = 1/(1-0*x-1*x^2/(1-1*x-2*x^2/(1-2*x-3*x^2/(1-... -(n-1)*x-n*x^2/(1- ...))))) (continued fraction). - Paul D. Hanna, Jan 17 2006
a(n) = Sum_{k = 0..n} {(-1)^(n-k) * Sum_{j = 0..k}((-1)^j * binomial(k,j) * (1-j)^n)/ k!} = sum over row n of A105794. - Tom Copeland, Jun 05 2006
a(n) = (-1)^n + Sum_{j=1..n} (-1)^(j-1)*B(n-j), where B(q) are the Bell numbers (A000110). - Emeric Deutsch, Oct 29 2006
Let A be the upper Hessenberg matrix of order n defined by: A[i, i-1] = -1, A[i,j] = binomial(j-1, i-1), (i <= j), and A[i, j] = 0 otherwise. Then, for n >= 2, a(n) = (-1)^(n)charpoly(A,1). - Milan Janjic, Jul 08 2010
From Sergei N. Gladkovskii, Sep 20 2012, Oct 11 2012, Dec 19 2012, Jan 15 2013, May 13 2013, Jul 20 2013, Oct 19 2013, Jan 25 2014: (Start)
Continued fractions:
G.f.: (2/E(0) - 1)/x where E(k) = 1 + 1/(1 + 2*x/(1 - 2*(k+1)*x/E(k+1))).
G.f.: 1/U(0) where U(k) = 1 - x*k - x^2*(k+1)/U(k+1).
G.f.: G(0)/(1+2*x) where G(k) = 1 - 2*x*(k+1)/((2*k+1)*(2*x*k-x-1) - x*(2*k+1)*(2*k+3)*(2*x*k-x-1)/(x*(2*k+3) - 2*(k+1)*(2*x*k-1)/G(k+1))).
G.f.: (G(0) - 1)/(x-1) where G(k) = 1 - 1/(1+x-k*x)/(1-x/(x-1/G(k+1))).
G.f.: 1 + x^2/(1+x)/Q(0) where Q(k) = 1-x-x/(1-x*(2*k+1)/(1-x-x/(1-x*(2*k+2)/Q(k+1)))).
G.f.: 1/(x*Q(0)) where Q(k) = 1 + 1/(x + x^2/(1 - x - (k+1)/Q(k+1))).
G.f.: -(1+(2*x+1)/G(0))/x where G(k) = x*k - x - 1 - (k+1)*x^2/G(k+1).
G.f.: T(0) where T(k) = 1 - x^2*(k+1)/( x^2*(k+1) - (1-x*k)*(1-x-x*k)/T(k+1)).
G.f.: (1 + x * Sum_{k>=0} (x^k / Product_{p=0..k}(1 - p*x))) / (1 + x). (End)
a(n) = Sum_{i=1..n-1} binomial(n-1,i)*a(n-i-1), a(0)=1. - Vladimir Kruchinin, Feb 22 2015
G.f. A(x) satisfies: A(x) = (1/(1 + x)) * (1 + x * A(x/(1 - x)) / (1 - x)). - Ilya Gutkovskiy, May 21 2021
a(n) ~ exp(n/LambertW(n) - n - 1) * n^(n-1) / (sqrt(1 + LambertW(n)) * LambertW(n)^(n-1)). - Vaclav Kotesovec, Jun 28 2022

Extensions

More terms, new description from Christian G. Bower, Nov 15 1999
a(23) corrected by Sean A. Irvine, Jun 22 2015

A324011 Number of set partitions of {1, ..., n} with no singletons or cyclical adjacencies (successive elements in the same block, where 1 is a successor of n).

Original entry on oeis.org

1, 0, 0, 0, 1, 0, 5, 14, 66, 307, 1554, 8415, 48530, 296582, 1913561, 12988776, 92467629, 688528288, 5349409512, 43270425827, 363680219762, 3170394634443, 28619600156344, 267129951788160, 2574517930001445, 25587989366964056, 261961602231869825
Offset: 0

Views

Author

Gus Wiseman, Feb 12 2019

Keywords

Comments

These set partitions are fixed points under Callan's bijection phi on set partitions.

Examples

			The a(4) = 1, a(6) = 5, and a(7) = 14 set partitions:
  {{13}{24}}  {{135}{246}}    {{13}{246}{57}}
              {{13}{25}{46}}  {{13}{257}{46}}
              {{14}{25}{36}}  {{135}{26}{47}}
              {{14}{26}{35}}  {{135}{27}{46}}
              {{15}{24}{36}}  {{136}{24}{57}}
                              {{136}{25}{47}}
                              {{14}{257}{36}}
                              {{14}{26}{357}}
                              {{146}{25}{37}}
                              {{146}{27}{35}}
                              {{15}{246}{37}}
                              {{15}{247}{36}}
                              {{16}{24}{357}}
                              {{16}{247}{35}}
		

Crossrefs

Cf. A000110, A000126, A000296 (singletons allowed, or adjacencies allowed), A001610, A124323, A169985, A261139, A324012, A324014, A324015.

Programs

  • Mathematica
    Table[Select[sps[Range[n]],And[Count[#,{_}]==0,Total[If[First[#]==1&&Last[#]==n,1,0]+Count[Subtract@@@Partition[#,2,1],-1]&/@#]==0]&]//Length,{n,0,10}]

Extensions

a(11)-a(26) from Alois P. Heinz, Feb 12 2019

A324012 Number of self-complementary set partitions of {1, ..., n} with no singletons or cyclical adjacencies (successive elements in the same block, where 1 is a successor of n).

Original entry on oeis.org

1, 0, 0, 0, 1, 0, 3, 2, 14, 11, 80, 85, 510
Offset: 0

Views

Author

Gus Wiseman, Feb 12 2019

Keywords

Comments

The complement of a set partition pi of {1, ..., n} is defined as n + 1 - pi (elementwise) on page 3 of Callan. For example, the complement of {{1,5},{2},{3,6},{4}} is {{1,4},{2,6},{3},{5}}. This sequence counts certain self-conjugate set partitions, i.e., fixed points under Callan's conjugation operation.

Examples

			The  a(6) = 3 through a(9) = 11 self-complementary set partitions with no singletons or cyclical adjacencies:
  {{135}{246}}    {{13}{246}{57}}  {{1357}{2468}}      {{136}{258}{479}}
  {{13}{25}{46}}  {{15}{246}{37}}  {{135}{27}{468}}    {{147}{258}{369}}
  {{14}{25}{36}}                   {{146}{27}{358}}    {{148}{269}{357}}
                                   {{147}{258}{36}}    {{168}{249}{357}}
                                   {{157}{248}{36}}    {{13}{258}{46}{79}}
                                   {{13}{24}{57}{68}}  {{14}{258}{37}{69}}
                                   {{13}{25}{47}{68}}  {{14}{28}{357}{69}}
                                   {{14}{26}{37}{58}}  {{16}{258}{37}{49}}
                                   {{14}{27}{36}{58}}  {{16}{28}{357}{49}}
                                   {{15}{26}{37}{48}}  {{17}{258}{39}{46}}
                                   {{15}{27}{36}{48}}  {{18}{29}{357}{46}}
                                   {{16}{24}{38}{57}}
                                   {{16}{25}{38}{47}}
                                   {{17}{28}{35}{46}}
		

Crossrefs

Cf. A000110, A000126, A000296, A001610, A080107, A169985, A261139, A306417 (all self-conjugate set partitions), A324011 (self-complementarity not required), A324013 (adjacencies allowed), A324014 (singletons allowed), A324015.

Programs

  • Mathematica
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    cmp[stn_]:=Union[Sort[Max@@Join@@stn+1-#]&/@stn];
    Table[Select[sps[Range[n]],And[cmp[#]==Sort[#],Count[#,{_}]==0,Total[If[First[#]==1&&Last[#]==n,1,0]+Count[Subtract@@@Partition[#,2,1],-1]&/@#]==0]&]//Length,{n,0,10}]

A327396 Triangle read by rows: T(n,k) is the number of n-bead necklace structures with beads of exactly k colors and no adjacent beads having the same color.

Original entry on oeis.org

0, 0, 1, 0, 0, 1, 0, 1, 1, 1, 0, 0, 1, 1, 1, 0, 1, 3, 5, 2, 1, 0, 0, 3, 10, 8, 2, 1, 0, 1, 7, 33, 40, 18, 3, 1, 0, 0, 11, 83, 157, 104, 28, 3, 1, 0, 1, 19, 237, 650, 615, 246, 46, 4, 1, 0, 0, 31, 640, 2522, 3318, 1857, 495, 65, 4, 1, 0, 1, 63, 1817, 9888, 17594, 13311, 4911, 944, 97, 5, 1
Offset: 1

Views

Author

Andrew Howroyd, Oct 04 2019

Keywords

Comments

Permuting the colors does not change the necklace structure.
Equivalently, the number of k-block partitions of an n-set up to rotations where no block contains cyclically adjacent elements of the n-set.

Examples

			Triangle begins:
  0;
  0, 1;
  0, 0,  1;
  0, 1,  1,    1;
  0, 0,  1,    1,    1;
  0, 1,  3,    5,    2,     1;
  0, 0,  3,   10,    8,     2,     1;
  0, 1,  7,   33,   40,    18,     3,    1;
  0, 0, 11,   83,  157,   104,    28,    3,   1;
  0, 1, 19,  237,  650,   615,   246,   46,   4,  1;
  0, 0, 31,  640, 2522,  3318,  1857,  495,  65,  4, 1;
  0, 1, 63, 1817, 9888, 17594, 13311, 4911, 944, 97, 5, 1;
  ...
		

Crossrefs

Columns k=3..4 are A327397, A328130.
Partial row sums include A306888, A309673.
Row sums are A328150.

Programs

  • PARI
    R(n) = {Mat(Col([Vecrev(p/y, n) | p<-Vec(intformal(sum(m=1, n, eulerphi(m) * subst(serlaplace((y-1)*exp(-x + O(x*x^(n\m))) - y + exp(-x + sumdiv(m, d, y^d*(exp(d*x + O(x*x^(n\m)))-1)/d)) ), x, x^m))/x), -n)]))}
    { my(A=R(12)); for(n=1, #A, print(A[n, 1..n])) } \\ Andrew Howroyd, Oct 09 2019

A261137 Number of set partitions B'_t(n) of {1,2,...,t} into at most n parts, so that no part contains both 1 and t, or both i and i+1 with 1 <= i < t; triangle B'_t(n), t>=0, 0<=n<=t, read by rows.

Original entry on oeis.org

1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 3, 4, 0, 0, 0, 5, 10, 11, 0, 0, 1, 11, 31, 40, 41, 0, 0, 0, 21, 91, 147, 161, 162, 0, 0, 1, 43, 274, 568, 694, 714, 715, 0, 0, 0, 85, 820, 2227, 3151, 3397, 3424, 3425, 0, 0, 1, 171, 2461, 8824, 14851, 17251, 17686, 17721, 17722
Offset: 0

Views

Author

Mark Wildon, Aug 10 2015

Keywords

Comments

B'_t(n) is the number of sequences of t non-identity top-to-random shuffles that leave a deck of n cards invariant.
B't(n) = <chi^t, 1{Sym_n}> where chi is the degree n-1 constituent of the natural permutation character of the symmetric group Sym_n. This gives a combinatorial interpretation of B'_t(n) using sequences of box moves on Young diagrams.
B'_t(t) is the number of set partitions of a set of size t into parts of size at least 2 (A000296); this is also the number of cyclically spaced partitions of a set of size t.
B'_t(n) = B'_t(t) if n > t.

Examples

			Triangle starts:
  1;
  0, 0;
  0, 0, 1;
  0, 0, 0,  1;
  0, 0, 1,  3,   4;
  0, 0, 0,  5,  10,   11;
  0, 0, 1, 11,  31,   40,   41;
  0, 0, 0, 21,  91,  147,  161,  162;
  0, 0, 1, 43, 274,  568,  694,  714,  715;
  0, 0, 0, 85, 820, 2227, 3151, 3397, 3424, 3425;
  ...
		

Crossrefs

For columns n=3-8 see: A001045, A006342, A214142, A214167, A214188, A214239.

Programs

  • Maple
    g:= proc(t, l, h) option remember; `if`(t=0, `if`(l=1, 0, x^h),
           add(`if`(j=l, 0, g(t-1, j, max(h,j))), j=1..h+1))
        end:
    B:= t-> (p-> seq(add(coeff(p, x, j), j=0..i), i=0..t))(g(t, 0$2)):
    seq(B(t), t=0..12);  # Alois P. Heinz, Aug 10 2015
  • Mathematica
    StirPrimedGF[0, x_] := 1; StirPrimedGF[1, x_] := 0;
    StirPrimedGF[n_, x_] := x^n/(1 + x)*Product[1/(1 - j*x), {j, 1, n - 1}];
    StirPrimed[0, 0] := 1; StirPrimed[0, _] := 0;
    StirPrimed[t_, n_] := Coefficient[Series[StirPrimedGF[n, x], {x, 0, t}], x^t];
    BPrimed[t_, n_] := Sum[StirPrimed[t, m], {m, 0, n}]
    (* Second program: *)
    g[t_, l_, h_] := g[t, l, h] = If[t == 0, If[l == 1, 0, x^h], Sum[If[j == l, 0, g[t - 1, j, Max[h, j]]], {j, 1, h + 1}]];
    B[t_] := Function[p, Table[Sum[Coefficient[p, x, j], {j, 0, i}], {i, 0, t}] ][g[t, 0, 0]];
    Table[B[t], {t, 0, 12}] // Flatten (* Jean-François Alcover, May 20 2016, after Alois P. Heinz *)

Formula

B't(n) = Sum{i=0..n} A261139(t,i).

A243869 Expansion of x^4/[(1+x)*Product_{k=1..3} (1-k*x)].

Original entry on oeis.org

1, 5, 20, 70, 231, 735, 2290, 7040, 21461, 65065, 196560, 592410, 1782691, 5358995, 16098830, 48340180, 145107921, 435498525, 1306845100, 3921234350, 11765101151, 35298099655, 105899891370, 317710858920, 953154946381, 2859509578385, 8578618213640
Offset: 4

Views

Author

R. J. Mathar, Jun 13 2014

Keywords

Comments

The number of ways to partition a set of n people around a circular table into 4 affinity groups with no two members of a group seated next to each other [Knuth].
The first two primes of the sequence are a(5) and a(96). - Bruno Berselli, Jun 13 2014

Crossrefs

Cf. A000975 (3 affinity groups).
Column k=4 of A261139.

Programs

  • Magma
    [(3^n-4*2^n+(-1)^n+6)/24: n in [4..30]]; // Bruno Berselli, Jun 13 2014
    
  • Mathematica
    Table[(3^n - 4 2^n + (-1)^n + 6)/24, {n, 4, 30}] (* Bruno Berselli, Jun 13 2014 *)
  • PARI
    for(n=4,50, print1(( 3^n - 4*2^n + (-1)^n + 6 )/24, ", ")) \\ G. C. Greubel, Oct 11 2017

Formula

a(n) - 3*a(n-1) = A000975(n-3).
From Bruno Berselli, Jun 13 2014: (Start)
G.f.: x^4/(1 - 5*x + 5*x^2 + 5*x^3 - 6*x^4).
a(n) = ( 3^n - 4*2^n + (-1)^n + 6 )/24. (End)
a(n) = 5*a(n-1) - 5*a(n-2) - 5*a(n-3) + 6*a(n-4). - Wesley Ivan Hurt, May 27 2021
a(n) = Sum_{i=0..n-1} Stirling2(i,3)*(-1)^(i+n-1). (See Peter Bala's original formula at A105794 dated Jul 10 2013.) - Igor Victorovich Statsenko, May 31 2024

A261318 Number of set partitions T'_t(n) of {1,2,...,t} into exactly n parts, with an even number of elements in each part distinguished by marks, and such that no part contains both 1 and t with 1 unmarked or both i and i+1 with i+1 unmarked for some i with 1 <= i < t; triangle T'_t(n), t>=0, 0<=n<=t, read by rows.

Original entry on oeis.org

1, 0, 0, 0, 1, 1, 0, 0, 3, 1, 0, 1, 10, 8, 1, 0, 0, 30, 50, 15, 1, 0, 1, 91, 280, 155, 24, 1, 0, 0, 273, 1491, 1365, 371, 35, 1, 0, 1, 820, 7728, 11046, 4704, 756, 48, 1, 0, 0, 2460, 39460, 85050, 53382, 13020, 1380, 63, 1
Offset: 0

Views

Author

Mark Wildon, Aug 14 2015

Keywords

Comments

T'_t(n) is the number of sequences of t non-identity top-to-random shuffles that leave a deck of n cards invariant, if each shuffle is permitted to flip the orientation of the card it moves and every card must be moved at least once.

Examples

			Triangle starts:
1;
0,  0;
0,  1,   1;
0,  0,   3,    1;
0,  1,  10,    8,     1;
0,  0,  30,   50,    15,    1;
0,  1,  91,  280,   155,   24,   1;
0,  0, 273, 1491,  1365,  371,  35,  1;
0,  1, 820, 7728, 11046, 4704, 756, 48,  1;
		

Crossrefs

Programs

  • Mathematica
    TGF[1, x_] := x^2/(1 - x^2); TGF[n_, x_] := x^n/(1 + x)*Product[1/(1 - (2*j - 1)*x), {j, 1, n}];
    T[0, 0] := 1; T[, 0] := 0; T[0,]:=0; T[t_, n_] := Coefficient[Series[TGF[n, x], {x, 0, t}], x^t]
  • PARI
    T(t, n) = {if ((t==0) && (n==0), return(1)); if (n==0, return(0)); if (n==1, return(1 - t%2)); 1/(2^n*n!)*(sum(k=0,n-1,binomial(n,k)*(-1)^k*(2*(n-k)-1)^t)+(-1)^(n+t));}
    tabl(nn) = {for (t=0, nn, for (n=0, t, print1(T(t, n), ", ");); print(););} \\ Michel Marcus, Aug 17 2015

Formula

T'_t(n) = 1/2^n n! sum(k=0..n-1,binomial(n,k)*(-1)^k*(2(n-k)-1)^t)+(-1)^(n+t)/2^n! for n > 1.
G.f. for column n>1: x^n/((1+x)*Product_{j=1..n-1} 1/(1-(2*j-1)*x)).
Asymptotically for n > 1: T'_t(n) equals (2n-1)^t/2^n n!

Extensions

One more row by Michel Marcus, Aug 17 2015
Corrected description in name to agree with section 4.1 in linked paper Mark Wildon, Mar 11 2019

A261319 Number of set partitions C'_t(n) of {1,2,...,t} into at most n parts, with an even number of elements in each part distinguished by marks and such that no part contains both 1 and t (each unmarked) or both i and i+1 (each unmarked) for some i with 1 <= i < t; triangle C'_t(n), t>=0, 0<=n<=t, read by rows.

Original entry on oeis.org

1, 0, 0, 0, 1, 2, 0, 0, 3, 4, 0, 1, 11, 19, 20, 0, 0, 30, 80, 95, 96, 0, 1, 92, 372, 527, 551, 552, 0, 0, 273, 1764, 3129, 3500, 3535, 3536, 0, 1, 821, 8549, 19595, 24299, 25055, 25103, 25104
Offset: 0

Views

Author

Mark Wildon, Aug 14 2015

Keywords

Comments

C'_t(n) is the number of sequences of t non-identity top-to-random shuffles that leave a deck of n cards invariant, if each shuffle is permitted to flip the orientation of the card it moves.
C't(n) = <(pi-1{BSym_n})^t, 1_{BSym_n}> where pi is the permutation character of the hyperoctahedral group BSym_n = C_2 wreath Sym_n given by its imprimitive action on a set of size 2n. This gives a combinatorial interpretation of C'_t(n) using sequences of box moves on pairs of Young diagrams.
C'_t(t) is the number of set partitions of a set of size t with an even number of elements in each part distinguished by marks and such that no part contains both 1 and t (each unmarked) or both i and i+1 (each unmarked) for some i with 1 <= i < t.
C'_t(n) = C'_t(t) if n > t.

Examples

			Triangle starts:
1;
0,  0;
0,  1,   2;
0,  0,   3,    4;
0,  1,  11,   19,    20;
0,  0,  30,   80,    95,    96;
0,  1,  92,  372,   527,   551,   552;
0,  0, 273, 1764,  3129,  3500,  3535,  3536;
0,  1, 821, 8549, 19595, 24299, 25055, 25103, 25104;
		

Crossrefs

Programs

  • Mathematica
    TGF[1, x_] := x^2/(1 - x^2); TGF[n_, x_] := x^n/(1 + x)*Product[1/(1 - (2*j - 1)*x), {j, 1, n}];
    T[0, 0] := 1; T[, 0] := 0; T[0, ] := 0; T[t_, n_] := Coefficient[Series[TGF[n, x], {x, 0, t}], x^t];
    CC[t_, n_] := Sum[T[t, m], {m, 0, n}]

Formula

C't(n) + C'_t(n-1) = Sum{s=0..t-1} binomial(t-1,s)*A261275(s,n-1) for n>=1.
E.g.f.: diagonal is exp(1/2*(exp(2*x)-2*x-1)).
C't(n) = Sum{i=0..n} A261318(t,i).
Showing 1-9 of 9 results.