A052841
Expansion of e.g.f.: 1/(exp(x)*(2-exp(x))).
Original entry on oeis.org
1, 0, 2, 6, 38, 270, 2342, 23646, 272918, 3543630, 51123782, 811316286, 14045783798, 263429174190, 5320671485222, 115141595488926, 2657827340990678, 65185383514567950, 1692767331628422662, 46400793659664205566, 1338843898122192101558, 40562412499252036940910
Offset: 0
encyclopedia(AT)pommard.inria.fr, Jan 25 2000
From _Gus Wiseman_, Feb 13 2019: (Start)
The a(4) = 38 ordered set partitions with no cyclical adjacencies:
{{1}{2}{3}{4}} {{1}{24}{3}} {{13}{24}}
{{1}{2}{4}{3}} {{1}{3}{24}} {{24}{13}}
{{1}{3}{2}{4}} {{13}{2}{4}}
{{1}{3}{4}{2}} {{13}{4}{2}}
{{1}{4}{2}{3}} {{2}{13}{4}}
{{1}{4}{3}{2}} {{2}{4}{13}}
{{2}{1}{3}{4}} {{24}{1}{3}}
{{2}{1}{4}{3}} {{24}{3}{1}}
{{2}{3}{1}{4}} {{3}{1}{24}}
{{2}{3}{4}{1}} {{3}{24}{1}}
{{2}{4}{1}{3}} {{4}{13}{2}}
{{2}{4}{3}{1}} {{4}{2}{13}}
{{3}{1}{2}{4}}
{{3}{1}{4}{2}}
{{3}{2}{1}{4}}
{{3}{2}{4}{1}}
{{3}{4}{1}{2}}
{{3}{4}{2}{1}}
{{4}{1}{2}{3}}
{{4}{1}{3}{2}}
{{4}{2}{1}{3}}
{{4}{2}{3}{1}}
{{4}{3}{1}{2}}
{{4}{3}{2}{1}}
(End)
- Alois P. Heinz, Table of n, a(n) for n = 0..200
- C. G. Bower, Transforms (2)
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 808
- Svante Janson, Euler-Frobenius numbers and rounding, preprint arXiv:1305.3512 [math.PR], 2013.
- Lukas Spiegelhofer, A lower bound for Cusick's conjecture on the digits of n+t, arXiv:1910.13170 [math.NT], 2019.
Inverse binomial transform of
A000670.
-
R:=PowerSeriesRing(Rationals(), 40);
Coefficients(R!(Laplace( Exp(-x)/(2-Exp(x)) ))); // G. C. Greubel, Jun 11 2024
-
spec := [S,{B=Prod(C,C),C=Set(Z,1 <= card),S=Sequence(B)},labeled]: seq(combstruct[count](spec,size=n), n=0..20);
P := proc(n,x) option remember; if n = 0 then 1 else
(n*x+2*(1-x))*P(n-1,x)+x*(1-x)*diff(P(n-1,x),x); expand(%) fi end:
A052841 := n -> subs(x=2, P(n,x)):
seq(A052841(n), n=0..21); # Peter Luschny, Mar 07 2014
h := n -> add(combinat:-eulerian1(n, k)*2^k, k=0..n):
a := n -> (h(n)+(-1)^n)/2: seq(a(n), n=0..21); # Peter Luschny, Sep 19 2015
b := proc(n, m) option remember; if n = 0 then 1 else
(m - 1)*b(n - 1, m) + (m + 1)*b(n - 1, m + 1) fi end:
a := n -> b(n, 0): seq(a(n), n = 0..21); # Peter Luschny, Jun 23 2023
-
a[n_] := If[n == 0, 1, (PolyLog[-n, 1/2]/2 + (-1)^n)/2]; (* or *)
a[n_] := HurwitzLerchPhi[1/2, -n, -1]/2; Table[a[n], {n, 0, 21}] (* Jean-François Alcover, Feb 19 2016, after Vladeta Jovovic *)
With[{nn=30},CoefficientList[Series[1/(Exp[x](2-Exp[x])),{x,0,nn}],x] Range[ 0,nn]!] (* Harvey P. Dale, Apr 08 2019 *)
-
a(n)=if(n<0,0,n!*polcoeff(subst(1/(1-y^2),y,exp(x+x*O(x^n))-1),n))
-
{a(n)=polcoeff(sum(m=0,n,(2*m)!*x^(2*m)/prod(k=1,2*m,1-k*x+x*O(x^n))),n)} /* Paul D. Hanna, Jul 20 2011 */
-
def A052841_list(prec):
P. = PowerSeriesRing(QQ, prec)
return P( exp(-x)/(2-exp(x)) ).egf_to_ogf().list()
A052841_list(40) # G. C. Greubel, Jun 11 2024
A003436
Number of inequivalent labeled Hamiltonian circuits on n-octahedron. Interlacing chords joining 2n points on circle.
Original entry on oeis.org
1, 0, 1, 4, 31, 293, 3326, 44189, 673471, 11588884, 222304897, 4704612119, 108897613826, 2737023412199, 74236203425281, 2161288643251828, 67228358271588991, 2225173863019549229, 78087247031912850686, 2896042595237791161749, 113184512236563589997407
Offset: 0
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- F. R. Bernhart & N. J. A. Sloane, Emails, April-May 1994
- Kenneth P. Bogart and Peter G. Doyle, Nonsexist solution of the menage problem, Amer. Math. Monthly 93:7 (1986), 514-519.
- Robert Cori and G. Hetyei, Counting partitions of a fixed genus, arXiv preprint arXiv:1710.09992 [math.CO], 2017.
- M. Hazewinkel and V. V. Kalashnikov, Counting Interlacing Pairs on the Circle, CWI report AM-R9508 (1995)
- Evgeniy Krasko, Igor Labutin, and Alexander Omelchenko, Enumeration of Labelled and Unlabelled Hamiltonian Cycles in Complete k-partite Graphs, arXiv:1709.03218 [math.CO], 2017.
- E. Krasko and A. Omelchenko, Enumeration of Chord Diagrams without Loops and Parallel Chords, arXiv preprint arXiv:1601.05073 [math.CO], 2016.
- E. Krasko and A. Omelchenko, Enumeration of Chord Diagrams without Loops and Parallel Chords, The Electronic Journal of Combinatorics, 24(3) (2017), #P3.43.
- D. Singmaster, Hamiltonian circuits on the n-dimensional octahedron, J. Combinatorial Theory Ser. B 19 (1975), no. 1, 1-4.
- Gus Wiseman, The a(5) = 293 interlacing chord diagrams.
Cf.
A000179,
A000296,
A000699,
A001147,
A005493,
A170941,
A190823,
A278990,
A306386,
A306419,
A322402,
A324011,
A324172,
A324173.
-
A003436 := proc(n) local k;
if n = 0 then 1
elif n = 1 then 0
else add( (-1)^k*binomial(n,k)*2*n/(2*n-k)*2^k*(2*n-k)!/2^n/n!,k=0..n) ;
end if;
end proc: # R. J. Mathar, Dec 11 2013
A003436 := n-> `if`(n<2, 1-n, (-1)^n*2*hypergeom([n, -n], [], 1/2)):
seq(simplify(A003436(n)), n=0..18); # Peter Luschny, Nov 10 2016
-
a[n_] := (2*n-1)!! * Hypergeometric1F1[-n, 1-2*n, -2]; a[1] = 0;
Table[a[n], {n, 0, 19}] (* Jean-François Alcover, Apr 05 2013 *)
twounifll[{}]:={{}};twounifll[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@twounifll[Complement[set,s]]]/@Table[{i,j},{j,If[i==1,Select[set,2<#i+1&]]}];
Table[Length[twounifll[Range[n]]],{n,0,14,2}] (* Gus Wiseman, Feb 27 2019 *)
A278990
Number of loopless linear chord diagrams with n chords.
Original entry on oeis.org
1, 0, 1, 5, 36, 329, 3655, 47844, 721315, 12310199, 234615096, 4939227215, 113836841041, 2850860253240, 77087063678521, 2238375706930349, 69466733978519340, 2294640596998068569, 80381887628910919255, 2976424482866702081004, 116160936719430292078411
Offset: 0
- Seiichi Manyama, Table of n, a(n) for n = 0..404 (terms 0..200 from Gheorghe Coserea)
- Dmitry Efimov, The hafnian of Toeplitz matrices of a special type, perfect matchings and Bessel polynomials, arXiv:1904.08651 [math.CO], 2019.
- H. Eriksson and A. Martin, Enumeration of Carlitz multipermutations, arXiv:1702.04177 [math.CO], 2017.
- E. Krasko, I. Labutin, and A. Omelchenko, Enumeration of labelled and unlabelled Hamiltonian Cycles in complete k-partite graphs, arXiv:1709.03218 [math.CO], 2017, Table 1.
- E. Krasko and A. Omelchenko, Enumeration of Chord Diagrams without Loops and Parallel Chords, arXiv:1601.05073 [math.CO], 2016.
- E. Krasko and A. Omelchenko, Enumeration of Chord Diagrams without Loops and Parallel Chords, The Electronic Journal of Combinatorics, 24(3) (2017), #P3.43.
- Gus Wiseman, The a(4) = 36 loopless linear chord diagrams.
- Donovan Young, Counting Bubbles in Linear Chord Diagrams, arXiv:2311.01569 [math.CO], 2023.
- Donovan Young, Bubbles in Linear Chord Diagrams: Bridges and Crystallized Diagrams, arXiv:2408.17232 [math.CO], 2024.
Cf.
A000110,
A000699 (topologically connected 2-uniform),
A000806,
A001147 (2-uniform),
A003436 (cyclical version),
A005493,
A170941,
A190823 (distance 3+ version),
A322402,
A324011,
A324172.
Other sequences involving the multiset {1,1,2,2,...,n,n}:
A001147,
A007717,
A020555,
A094574,
A316972.
-
[n le 2 select 2-n else (2*n-3)*Self(n-1) + Self(n-2): n in [1..30]]; // G. C. Greubel, Sep 26 2023
-
RecurrenceTable[{a[n]== (2n-1)a[n-1] +a[n-2], a[0]==1, a[1]==0}, a, {n,0,20}] (* Vaclav Kotesovec, Sep 15 2017 *)
FullSimplify[Table[-I*(BesselI[1/2+n,-1] BesselK[3/2,1] - BesselI[3/2,-1] BesselK[1/2+ n,1]), {n,0,20}]] (* Vaclav Kotesovec, Sep 15 2017 *)
Table[(2 n-1)!! Hypergeometric1F1[-n,-2 n,-2], {n,0,20}] (* Eric W. Weisstein, Nov 14 2018 *)
Table[Sqrt[2/Pi]/E ((-1)^n Pi BesselI[1/2+n,1] +BesselK[1/2+n,1]), {n,0,20}] // FunctionExpand // FullSimplify (* Eric W. Weisstein, Nov 14 2018 *)
twouniflin[{}]:={{}};twouniflin[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@twouniflin[Complement[set,s]]]/@Table[{i,j},{j,Select[set,#>i+1&]}];
Table[Length[twouniflin[Range[n]]],{n,0,14,2}] (* Gus Wiseman, Feb 27 2019 *)
-
seq(N) = {
my(a = vector(N)); a[1] = 0; a[2] = 1;
for (n = 3, N, a[n] = (2*n-1)*a[n-1] + a[n-2]);
concat(1, a);
};
seq(20) \\ Gheorghe Coserea, Dec 09 2016
-
def A278990_list(prec):
P. = PowerSeriesRing(QQ, prec)
return P( exp(-1+sqrt(1-2*x))/sqrt(1-2*x) ).egf_to_ogf().list()
A278990_list(30) # G. C. Greubel, Sep 26 2023
A124323
Triangle read by rows: T(n,k) is the number of partitions of an n-set having k singleton blocks (0<=k<=n).
Original entry on oeis.org
1, 0, 1, 1, 0, 1, 1, 3, 0, 1, 4, 4, 6, 0, 1, 11, 20, 10, 10, 0, 1, 41, 66, 60, 20, 15, 0, 1, 162, 287, 231, 140, 35, 21, 0, 1, 715, 1296, 1148, 616, 280, 56, 28, 0, 1, 3425, 6435, 5832, 3444, 1386, 504, 84, 36, 0, 1, 17722, 34250, 32175, 19440, 8610, 2772, 840, 120, 45, 0, 1
Offset: 0
T(4,2)=6 because we have 12|3|4, 13|2|4, 14|2|3, 1|23|4, 1|24|3 and 1|2|34 (if we take {1,2,3,4} as our 4-set).
Triangle starts:
1
0 1
1 0 1
1 3 0 1
4 4 6 0 1
11 20 10 10 0 1
41 66 60 20 15 0 1
162 287 231 140 35 21 0 1
715 1296 1148 616 280 56 28 0 1
3425 6435 5832 3444 1386 504 84 36 0 1
From _Gus Wiseman_, Feb 13 2019: (Start)
Row n = 5 counts the following set partitions by number of singletons:
{{1234}} {{1}{234}} {{1}{2}{34}} {{1}{2}{3}{4}}
{{12}{34}} {{123}{4}} {{1}{23}{4}}
{{13}{24}} {{124}{3}} {{12}{3}{4}}
{{14}{23}} {{134}{2}} {{1}{24}{3}}
{{13}{2}{4}}
{{14}{2}{3}}
... and the following set partitions by number of cyclical adjacencies:
{{13}{24}} {{1}{2}{34}} {{1}{234}} {{1234}}
{{1}{24}{3}} {{1}{23}{4}} {{12}{34}}
{{13}{2}{4}} {{12}{3}{4}} {{123}{4}}
{{1}{2}{3}{4}} {{14}{2}{3}} {{124}{3}}
{{134}{2}}
{{14}{23}}
(End)
From _Paul Barry_, Apr 23 2009: (Start)
Production matrix is
0, 1,
1, 0, 1,
1, 2, 0, 1,
1, 3, 3, 0, 1,
1, 4, 6, 4, 0, 1,
1, 5, 10, 10, 5, 0, 1,
1, 6, 15, 20, 15, 6, 0, 1,
1, 7, 21, 35, 35, 21, 7, 0, 1,
1, 8, 28, 56, 70, 56, 28, 8, 0, 1 (End)
- Alois P. Heinz, Rows n = 0..140, flattened
- David Callan, On conjugates for set partitions and integer compositions, arXiv:math/0508052 [math.CO], 2005.
- T. Mansour, A. O. Munagi, Set partitions with circular successions, European Journal of Combinatorics, 42 (2014), 207-216.
A250104 is an essentially identical triangle, differing only in row 1.
Cf.
A000126,
A001610,
A032032,
A052841,
A066982,
A080107,
A169985,
A187784,
A324011,
A324014,
A324015.
-
G:=exp(exp(z)-1+(t-1)*z): Gser:=simplify(series(G,z=0,14)): for n from 0 to 11 do P[n]:=sort(n!*coeff(Gser,z,n)) od: for n from 0 to 11 do seq(coeff(P[n],t,k),k=0..n) od; # yields sequence in triangular form
# Program from R. J. Mathar, Jan 22 2015:
A124323 := proc(n,k)
binomial(n,k)*A000296(n-k) ;
end proc:
-
Flatten[CoefficientList[Range[0,10]! CoefficientList[Series[Exp[x y] Exp[Exp[x] - x - 1], {x, 0,10}], x], y]] (* Geoffrey Critzer, Nov 24 2011 *)
sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
Table[Length[Select[sps[Range[n]],Count[#,{}]==k&]],{n,0,9},{k,0,n}] (* _Gus Wiseman, Feb 13 2019 *)
A306417
Number of self-conjugate set partitions of {1, ..., n}.
Original entry on oeis.org
1, 1, 0, 1, 1, 2, 7, 7, 46, 39, 321
Offset: 0
The a(3) = 1 through a(7) = 7 self-conjugate set partitions:
{{12}{3}} {{13}{24}} {{123}{4}{5}} {{135}{246}} {{13}{246}{57}}
{{13}{2}{45}} {{124}{35}{6}} {{15}{246}{37}}
{{13}{25}{46}} {{1234}{5}{6}{7}}
{{14}{2}{356}} {{124}{3}{56}{7}}
{{14}{236}{5}} {{134}{2}{5}{67}}
{{14}{25}{36}} {{14}{2}{3}{567}}
{{145}{26}{3}} {{14}{23}{57}{6}}
Cf.
A000110,
A000126,
A000296,
A001610,
A032032,
A052841,
A080107,
A169985,
A306416,
A324011,
A324012.
A324012
Number of self-complementary set partitions of {1, ..., n} with no singletons or cyclical adjacencies (successive elements in the same block, where 1 is a successor of n).
Original entry on oeis.org
1, 0, 0, 0, 1, 0, 3, 2, 14, 11, 80, 85, 510
Offset: 0
The a(6) = 3 through a(9) = 11 self-complementary set partitions with no singletons or cyclical adjacencies:
{{135}{246}} {{13}{246}{57}} {{1357}{2468}} {{136}{258}{479}}
{{13}{25}{46}} {{15}{246}{37}} {{135}{27}{468}} {{147}{258}{369}}
{{14}{25}{36}} {{146}{27}{358}} {{148}{269}{357}}
{{147}{258}{36}} {{168}{249}{357}}
{{157}{248}{36}} {{13}{258}{46}{79}}
{{13}{24}{57}{68}} {{14}{258}{37}{69}}
{{13}{25}{47}{68}} {{14}{28}{357}{69}}
{{14}{26}{37}{58}} {{16}{258}{37}{49}}
{{14}{27}{36}{58}} {{16}{28}{357}{49}}
{{15}{26}{37}{48}} {{17}{258}{39}{46}}
{{15}{27}{36}{48}} {{18}{29}{357}{46}}
{{16}{24}{38}{57}}
{{16}{25}{38}{47}}
{{17}{28}{35}{46}}
Cf.
A000110,
A000126,
A000296,
A001610,
A080107,
A169985,
A261139,
A306417 (all self-conjugate set partitions),
A324011 (self-complementarity not required),
A324013 (adjacencies allowed),
A324014 (singletons allowed),
A324015.
-
sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
cmp[stn_]:=Union[Sort[Max@@Join@@stn+1-#]&/@stn];
Table[Select[sps[Range[n]],And[cmp[#]==Sort[#],Count[#,{_}]==0,Total[If[First[#]==1&&Last[#]==n,1,0]+Count[Subtract@@@Partition[#,2,1],-1]&/@#]==0]&]//Length,{n,0,10}]
A306386
Number of chord diagrams with n chords all having arc length at least 3.
Original entry on oeis.org
1, 0, 0, 1, 7, 68, 837, 11863, 189503, 3377341, 66564396, 1439304777, 33902511983, 864514417843, 23735220814661, 698226455579492, 21914096529153695, 731009183350476805, 25829581529376423945, 963786767538027630275, 37871891147795243899204, 1563295398737378236910447
Offset: 0
The a(8) = 7 2-uniform set partitions with all arc lengths at least 3:
{{1,4},{2,6},{3,7},{5,8}}
{{1,4},{2,7},{3,6},{5,8}}
{{1,5},{2,6},{3,7},{4,8}}
{{1,5},{2,6},{3,8},{4,7}}
{{1,5},{2,7},{3,6},{4,8}}
{{1,6},{2,5},{3,7},{4,8}}
{{1,6},{2,5},{3,8},{4,7}}
Cf.
A000296,
A000699,
A001006,
A001147,
A001610,
A003436,
A038041,
A054726,
A135042,
A170941,
A190823,
A278990,
A306419,
A322402,
A324011,
A324169.
-
a:= proc(n) option remember; `if`(n<8, [1, 0$2, 1, 7, 68, 837, 11863][n+1],
((8*n^4-64*n^3+142*n^2-66*n+109) *a(n-1)
-(24*n^4-248*n^3+870*n^2-1106*n+241)*a(n-2)
+(24*n^4-264*n^3+982*n^2-1270*n+145)*a(n-3)
-(8*n^4-96*n^3+374*n^2-486*n+33) *a(n-4)
-(4*n^3-24*n^2+39*n-2) *a(n-5))/(4*n^3-36*n^2+99*n-69))
end:
seq(a(n), n=0..23); # Alois P. Heinz, Feb 27 2019
-
dtui[{},]:={{}};dtui[set:{i,___},n_]:=Join@@Function[s,Prepend[#,s]&/@dtui[Complement[set,s],n]]/@Table[{i,j},{j,Switch[i,1,Select[set,3<#i+2&]]}];
Table[Length[dtui[Range[n],n]],{n,0,12,2}]
A268814
Number of purely crossing partitions of [n].
Original entry on oeis.org
1, 0, 0, 0, 1, 0, 5, 14, 62, 298, 1494, 8140, 47146, 289250, 1873304, 12756416, 91062073, 679616480, 5290206513, 42858740990, 360686972473, 3147670023632, 28439719809159, 265647698228954, 2561823514680235, 25475177517626196, 260922963832247729, 2749617210928715246
Offset: 0
G.f.: A(x) = 1 + x^4 + 5*x^6 + 14*x^7 + 62*x^8 + 298*x^9 + 1494*x^10 + 8140*x^11 + 47146*x^12 +...
Cf.
A000108 (non-crossing partitions),
A000110,
A000699,
A001263,
A002662,
A005493,
A016098,
A054726,
A099947,
A268815,
A306417,
A324011,
A324166,
A324172,
A324173,
A324324.
-
n = 30; F = x*Sum[BellB[k] x^k, {k, 0, n}] + O[x]^n; B = ComposeSeries[1/( InverseSeries[F, w]/w)-1, x/(1+x) + O[x]^n]; A = (B-x)/(1+x); Join[{1}, CoefficientList[A, x] // Rest] (* Jean-François Alcover, Feb 23 2016, adapted from K. J. Dykema's code *)
intvQ[set_]:=Or[set=={},Sort[set]==Range[Min@@set,Max@@set]];
sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
Table[Length[Select[sps[Range[n]],And[!MatchQ[#,{_,{_,x_,y_,_},_}/;x+1==y],#=={}||And@@Not/@intvQ/@Union@@@Subsets[#,{1,Length[#]-1}],#=={}||Position[#,1][[1,1]]!=Position[#,n][[1,1]]]&]],{n,0,10}] (* Gus Wiseman, Feb 23 2019 *)
-
lista(nn) = {c = x/serreverse(x*serlaplace(exp(exp(x+x*O(x^nn)) -1))); b = subst(c, x, x/(1+x)+ O(x^nn)); vb = Vec(b-1); va = vector(#vb); va[1] = 0; va[2] = 0; for (k=3, #va, va[k] = vb[k] - va[k-1]; ); concat(1, va); }
-
{a(n) = my(A=1+x^3); for(i=1, n, A = sum(m=0, n, x^m/prod(k=1, m, (1+x)^2*A - k*x +x*O(x^n)) )/(1+x) ); polcoeff( A, n)}
for(n=0,35,print1(a(n),", ")) \\ Paul D. Hanna, Mar 07 2016
-
{Stirling2(n, k) = n!*polcoeff(((exp(x+x*O(x^n)) - 1)^k)/k!, n)}
{Bell(n) = sum(k=0,n, Stirling2(n, k) )}
{a(n) = my(A=1+x); for(i=1, n, A = sum(m=0, n, Bell(m)*x^m/((1+x +x*O(x^n))^(2*m+1)*A^m)) ); polcoeff(A, n)}
for(n=0,25,print1(a(n),", ")) \\ Paul D. Hanna, Mar 07 2016
A324323
Regular triangle read by rows where T(n,k) is the number of topologically connected set partitions of {1,...,n} with k blocks, 0 <= k <= n.
Original entry on oeis.org
1, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 5, 0, 0, 0, 0, 1, 16, 4, 0, 0, 0, 0, 1, 42, 42, 0, 0, 0, 0, 0, 1, 99, 258, 27, 0, 0, 0, 0, 0, 1, 219, 1222, 465, 0, 0, 0, 0, 0
Offset: 0
Triangle begins:
1
0 1
0 1 0
0 1 0 0
0 1 1 0 0
0 1 5 0 0 0
0 1 16 4 0 0 0
0 1 42 42 0 0 0 0
0 1 99 258 27 0 0 0 0
0 1 219 1222 465 0 0 0 0 0
Row n = 6 counts the following set partitions:
{{123456}} {{1235}{46}} {{13}{25}{46}}
{{124}{356}} {{14}{25}{36}}
{{1245}{36}} {{14}{26}{35}}
{{1246}{35}} {{15}{24}{36}}
{{125}{346}}
{{13}{2456}}
{{134}{256}}
{{1345}{26}}
{{1346}{25}}
{{135}{246}}
{{1356}{24}}
{{136}{245}}
{{14}{2356}}
{{145}{236}}
{{146}{235}}
{{15}{2346}}
-
croXQ[stn_]:=MatchQ[stn,{_,{_,x_,_,y_,_},_,{_,z_,_,t_,_},_}/;x0]&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
crosscmpts[stn_]:=csm[Union[Subsets[stn,{1}],Select[Subsets[stn,{2}],croXQ]]];
sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
Table[Length[Select[sps[Range[n]],Length[crosscmpts[#]]<=1&&Length[#]==k&]],{n,0,6},{k,0,n}]
A268815
Number of purely crossing + partitions of [n].
Original entry on oeis.org
1, 1, 0, 0, 1, 1, 5, 19, 76, 360, 1792, 9634, 55286, 336396, 2162554, 14629720, 103818489, 770678553, 5969822993, 48148947503, 403545713463, 3508356996105, 31587389832791, 294087418038113, 2827471212909189, 28037001032306431, 286398141349873925, 3010540174760962975
Offset: 0
G.f.: A(x) = 1 + x + x^4 + x^5 + 5*x^6 + 19*x^7 + 76*x^8 + 360*x^9 + 1792*x^10 +...
Cf.
A000108,
A000110,
A005493,
A016098,
A099947,
A268814,
A306417,
A324011,
A324166,
A324173,
A324324,
A324327.
-
n = 30; F = x*Sum[BellB[k] x^k, {k, 0, n}] + O[x]^n; B = ComposeSeries[1/( InverseSeries[F, w] /w)-1, x/(1+x) + O[x]^n]; CoefficientList[B, x] // Rest (* Jean-François Alcover, Feb 16 2016, adapted from K. J. Dykema's code *)
sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
intvQ[set_]:=Or[set=={},Sort[set]==Range[Min@@set,Max@@set]];
Table[Length[Select[sps[Range[n]],And[!MatchQ[#,{_,{_,x_,y_,_},_}/;x+1==y],#=={}||And@@Not/@intvQ/@Union@@@Subsets[#,{1,Length[#]-1}]]&]],{n,0,10}] (* Gus Wiseman, Feb 23 2019 *)
-
lista(nn) = {c = x/serreverse(x*serlaplace(exp(exp(x+x*O(x^nn)) -1))); b = subst(c, x, x/(1+x) + O(x^nn)); Vec(b);}
-
{a(n) = my(A=1+x); for(i=1, n, A = sum(m=0, n, x^m/prod(k=1, m, (1+x)*A - k*x +x*O(x^n)) )); polcoeff(A, n)}
for(n=0,25,print1(a(n),", ")) \\ Paul D. Hanna, Mar 07 2016
-
{Stirling2(n, k) = n!*polcoeff(((exp(x+x*O(x^n)) - 1)^k)/k!, n)}
{Bell(n) = sum(k=0,n, Stirling2(n, k) )}
{a(n) = my(A=1+x); for(i=1, n, A = sum(m=0, n, Bell(m)*x^m/((1+x)*A +x*O(x^n))^m) ); polcoeff(A, n)}
for(n=0,25,print1(a(n),", ")) \\ Paul D. Hanna, Mar 07 2016
Showing 1-10 of 12 results.
Comments