Original entry on oeis.org
0, 2, 24, 744, 35160, 2394720, 222712560, 27154350720, 4205374225920, 806700010233600, 187793061031699200, 52162131258836121600, 17043501717850146739200, 6471785359791584459827200, 2826261760629911644744704000, 1406604814631643298586923008000
Offset: 1
-
a[n_]:= n! (2 n - 1)!! Hypergeometric1F1[-n, 1 - 2 n, - 2]; a[1] = 0; Table[a[n], {n, 1, 20}] (* Vincenzo Librandi, Aug 18 2016 *)
Original entry on oeis.org
0, 1, 4, 31, 293, 3326, 44189, 673471, 11588884, 222304897, 4704612119
Offset: 1
A000806
Bessel polynomial y_n(-1).
Original entry on oeis.org
1, 0, 1, -5, 36, -329, 3655, -47844, 721315, -12310199, 234615096, -4939227215, 113836841041, -2850860253240, 77087063678521, -2238375706930349, 69466733978519340, -2294640596998068569, 80381887628910919255, -2976424482866702081004, 116160936719430292078411
Offset: 0
For n=3, the a(3) = 5 solutions are (14) (25) (36), (14) (26) (35), (15) (24) (36), (16) (24) (35), (13) (25) (46) excluding 10 other possible pairings.
G.f. = 1 + x^2 - 5*x^3 + 36*x^4 - 329*x^5 + 3655*x^6 - 47844*x^7 + ...
- G. Kreweras and Y. Poupard, Sur les partitions en paires d'un ensemble fini totalement ordonné, Publications de l'Institut de Statistique de l'Université de Paris, 23 (1978), 57-74.
- J. Riordan, Combinatorial Identities, Wiley, 1968, p. 77.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Seiichi Manyama, Table of n, a(n) for n = 0..404 (first 101 terms from T. D. Noe)
- Ron M. Adin, Arkady Berenstein, Jacob Greenstein, Jian-Rong Li, Avichai Marmor, and Yuval Roichman, Transitive and Gallai colorings, arXiv:2309.11203 [math.CO], 2023. See p. 6.
- G. Kreweras and Y. Poupard, Sur les partitions en paires d'un ensemble fini totalement ordonné, Publications de l'Institut de Statistique de l'Université de Paris, 23 (1978), 57-74. (Annotated scanned copy)
- R. J. Mathar, A class of multinomial permutations avoiding object clusters, vixra:1511.0015 (2015), sequence M_{c,2}/c!.
- J. Riordan, Letter to N. J. A. Sloane, Aug. 1970
- Everett Sullivan, Linear chord diagrams with long chords, arXiv preprint arXiv:1611.02771 [math.CO], 2016.
- J. Touchard, Nombres exponentiels et nombres de Bernoulli, Canad. J. Math., 8 (1956), 305-320.
- Donovan Young, Linear k-Chord Diagrams, arXiv:2004.06921 [math.CO], 2020.
- Index entries for sequences related to Bessel functions or polynomials
-
I:=[0,1]; [1] cat [n le 2 select I[n] else (1-2*n)*Self(n-1)+Self(n-2): n in [1..30]]; // Vincenzo Librandi, Apr 19 2015
-
A000806 := proc(n) option remember; if n<=1 then 1-n else (1-2*n)*procname(n-1)+procname(n-2); fi; end proc;
a := n -> hypergeom([n+1,-n],[],1/2): seq(simplify(a(n)),n=0..20); # Peter Luschny, Nov 10 2016
-
a[n_] := a[n] = (-2n+1)*a[n-1] + a[n-2]; a[0] = 1; a[1] = 0; Table[a[n], {n, 0, 19}] (* Jean-François Alcover, Nov 29 2011, after T. D. Noe *)
Table[Sum[Binomial[n, i]*(2*n-i)!/2^(n-i)*(-1)^(n-i)/n!, {i, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Aug 07 2013 *)
a[ n_] := With[ {m = If[ n<0, -n-1, n]}, (-1)^m (2 m - 1)!! Hypergeometric1F1[ -m, -2 m, -2] ]; (* Michael Somos, Jan 27 2014 *)
a[ n_] := With[ {m = If[ n<0, -n-1, n]}, Sum[ (-1)^(m - i) (2 m - i)! / (2^(m - i) i! (m - i)!), {i, 0, m}] ]; (* Michael Somos, Jan 27 2014 *)
a[ n_] := With[ {m = If[ n<0, -n-1, n]}, If[ m<1, 1, (-1)^m Numerator @ FromContinuedFraction[ Table[ (-1)^Quotient[k, 2] If[ OddQ[k], k, 1], {k, 2 m}] ] ] ]; (* Michael Somos, Jan 27 2014 *)
Table[(-1)^n (2 n - 1)!! Hypergeometric1F1[-n, -2 n, -2], {n, 0, 20}] (* Eric W. Weisstein, Nov 14 2018 *)
-
{a(n) = if( n<0, n = -n-1); sum(k=0, n, (2*n-k)! / (k! * (n-k)!) * (-1/2)^(n-k) )}; /* Michael Somos, Apr 02 2007 */
-
{a(n) = local(A); if( n<0, n = -n-1); A = sqrt(1 + 2*x + x * O(x^n)); n! * polcoeff( exp(A-1) / A, n)}; /* Michael Somos, Apr 02 2007 */
-
{a(n) = local(A); if( n<0, n = -n-1); n+=2; -(-1)^n * n! * polcoeff( serreverse( sum(k=1, n, k^(k-2)* x^k / k!, x * O(x^n))), n)}; /* Michael Somos, Apr 02 2007 */
-
{a(n) = if( n<0, n=-n-1); contfracpnqn( vector( 2*n, k, (-1)^(k\2) * if( k%2, k, 1))) [1,1] }; /* Michael Somos, Jan 27 2014 */
A278990
Number of loopless linear chord diagrams with n chords.
Original entry on oeis.org
1, 0, 1, 5, 36, 329, 3655, 47844, 721315, 12310199, 234615096, 4939227215, 113836841041, 2850860253240, 77087063678521, 2238375706930349, 69466733978519340, 2294640596998068569, 80381887628910919255, 2976424482866702081004, 116160936719430292078411
Offset: 0
- Seiichi Manyama, Table of n, a(n) for n = 0..404 (terms 0..200 from Gheorghe Coserea)
- Dmitry Efimov, The hafnian of Toeplitz matrices of a special type, perfect matchings and Bessel polynomials, arXiv:1904.08651 [math.CO], 2019.
- H. Eriksson and A. Martin, Enumeration of Carlitz multipermutations, arXiv:1702.04177 [math.CO], 2017.
- E. Krasko, I. Labutin, and A. Omelchenko, Enumeration of labelled and unlabelled Hamiltonian Cycles in complete k-partite graphs, arXiv:1709.03218 [math.CO], 2017, Table 1.
- E. Krasko and A. Omelchenko, Enumeration of Chord Diagrams without Loops and Parallel Chords, arXiv:1601.05073 [math.CO], 2016.
- E. Krasko and A. Omelchenko, Enumeration of Chord Diagrams without Loops and Parallel Chords, The Electronic Journal of Combinatorics, 24(3) (2017), #P3.43.
- Gus Wiseman, The a(4) = 36 loopless linear chord diagrams.
- Donovan Young, Counting Bubbles in Linear Chord Diagrams, arXiv:2311.01569 [math.CO], 2023.
- Donovan Young, Bubbles in Linear Chord Diagrams: Bridges and Crystallized Diagrams, arXiv:2408.17232 [math.CO], 2024.
Cf.
A000110,
A000699 (topologically connected 2-uniform),
A000806,
A001147 (2-uniform),
A003436 (cyclical version),
A005493,
A170941,
A190823 (distance 3+ version),
A322402,
A324011,
A324172.
Other sequences involving the multiset {1,1,2,2,...,n,n}:
A001147,
A007717,
A020555,
A094574,
A316972.
-
[n le 2 select 2-n else (2*n-3)*Self(n-1) + Self(n-2): n in [1..30]]; // G. C. Greubel, Sep 26 2023
-
RecurrenceTable[{a[n]== (2n-1)a[n-1] +a[n-2], a[0]==1, a[1]==0}, a, {n,0,20}] (* Vaclav Kotesovec, Sep 15 2017 *)
FullSimplify[Table[-I*(BesselI[1/2+n,-1] BesselK[3/2,1] - BesselI[3/2,-1] BesselK[1/2+ n,1]), {n,0,20}]] (* Vaclav Kotesovec, Sep 15 2017 *)
Table[(2 n-1)!! Hypergeometric1F1[-n,-2 n,-2], {n,0,20}] (* Eric W. Weisstein, Nov 14 2018 *)
Table[Sqrt[2/Pi]/E ((-1)^n Pi BesselI[1/2+n,1] +BesselK[1/2+n,1]), {n,0,20}] // FunctionExpand // FullSimplify (* Eric W. Weisstein, Nov 14 2018 *)
twouniflin[{}]:={{}};twouniflin[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@twouniflin[Complement[set,s]]]/@Table[{i,j},{j,Select[set,#>i+1&]}];
Table[Length[twouniflin[Range[n]]],{n,0,14,2}] (* Gus Wiseman, Feb 27 2019 *)
-
seq(N) = {
my(a = vector(N)); a[1] = 0; a[2] = 1;
for (n = 3, N, a[n] = (2*n-1)*a[n-1] + a[n-2]);
concat(1, a);
};
seq(20) \\ Gheorghe Coserea, Dec 09 2016
-
def A278990_list(prec):
P. = PowerSeriesRing(QQ, prec)
return P( exp(-1+sqrt(1-2*x))/sqrt(1-2*x) ).egf_to_ogf().list()
A278990_list(30) # G. C. Greubel, Sep 26 2023
A003437
Number of unlabeled Hamiltonian circuits on n-octahedron (cross polytope); also number of circular chord diagrams with n chords, modulo symmetries.
Original entry on oeis.org
0, 1, 2, 7, 29, 196, 1788, 21994, 326115, 5578431, 107026037, 2269254616, 52638064494, 1325663757897, 36021577975918, 1050443713185782, 32723148860301935, 1084545122297249077, 38105823782987999742, 1414806404051118314077
Offset: 1
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Gheorghe Coserea, Table of n, a(n) for n = 1..300
- Kristin DeSplinter, Satyan L. Devadoss, Jordan Readyhough, and Bryce Wimberly, Unfolding cubes: nets, packings, partitions, chords, arXiv:2007.13266 [math.CO], 2020.
- S. Jablan, R. Sazdanovic, Knots, Links, and Self-avoiding curves, Forma 22 (1) (2007) 5-13. In the denominator on page 8, n-k should read 2n-k.
- E. Krasko, A. Omelchenko, Enumeration of Chord Diagrams without Loops and Parallel Chords, arXiv preprint arXiv:1601.05073 [math.CO], 2016.
- E. Krasko, A. Omelchenko, Enumeration of Chord Diagrams without Loops and Parallel Chords, The Electronic Journal of Combinatorics, 24(3) (2017), #P3.43.
- D. Singmaster, Hamiltonian circuits on the n-dimensional octahedron, J. Combinatorial Theory Ser. B 19 (1975), no. 1, 1-4.
- Evert Stenlund, On the Vassiliev Invariants, June 2017.
-
nn = 20; M = Array[0&, {2nn, 2nn}];
Mget[n_, k_] := Which[n < 0, 0, n==0, 1, n==1, 1-Mod[k, 2], n==2, k - Mod[k, 2], True, M[[n, k]]];
Mset[n_, k_, v_] := (M[[n, k]] = v);
Minit = Module[{tmp = 0}, For[n = 3, n <= 2nn, n++, For[k = 1, k <= 2nn, k++, tmp = If[OddQ[k], k(n-1) Mget[n-2, k] + Mget[n-4, k], Mget[n-1, k] + k(n-1) Mget[n-2, k] - Mget[n-3, k] + Mget[n-4, k]]; Mset[n, k, tmp]]]];
A007474[n_] := Sum[EulerPhi[d] (Mget[2n/d, d] - Mget[2n/d - 2, d]), {d, Divisors[2n]}]/(2n);
a[n_] := A007474[n]/2 + (Mget[n, 2] - Mget[n-1, 2] + Mget[n-2, 2])/4;
Array[a, nn] (* Jean-François Alcover, Aug 12 2018, after Gheorghe Coserea *)
-
N = 20; M = matrix(2*N, 2*N);
Mget(n,k) = { if (n<0, 0, n==0, 1, n==1, 1-(k%2), n==2, k-(k%2), M[n,k]) };
Mset(n,k,v) = { M[n,k] = v;};
Minit() = {
my(tmp = 0);
for (n=3, 2*N, for(k=1, 2*N,
tmp = if (k%2, k*(n-1) * Mget(n-2, k) + Mget(n-4, k),
Mget(n-1, k) + k*(n-1) * Mget(n-2, k) - Mget(n-3, k) + Mget(n-4, k));
Mset(n, k, tmp)));
};
Minit();
A007474(n) = sumdiv(2*n, d, eulerphi(d) * (Mget(2*n/d, d) - Mget(2*n/d-2, d)))/(2*n);
a(n) = A007474(n)/2 + (Mget(n,2) - Mget(n-1,2) + Mget(n-2,2))/4;
vector(N, n, a(n)) \\ Gheorghe Coserea, Dec 10 2016
A324428
Number T(n,k) of labeled cyclic chord diagrams with n chords such that every chord has length at least k; triangle T(n,k), n>=1, 1<=k<=n, read by rows.
Original entry on oeis.org
1, 3, 1, 15, 4, 1, 105, 31, 7, 1, 945, 293, 68, 11, 1, 10395, 3326, 837, 159, 18, 1, 135135, 44189, 11863, 2488, 381, 29, 1, 2027025, 673471, 189503, 43169, 7601, 879, 47, 1, 34459425, 11588884, 3377341, 822113, 160784, 23559, 2049, 76, 1, 654729075, 222304897, 66564396, 17066007, 3621067, 607897, 72989, 4788, 123, 1
Offset: 1
Triangle T(n,k) begins:
1;
3, 1;
15, 4, 1;
105, 31, 7, 1;
945, 293, 68, 11, 1;
10395, 3326, 837, 159, 18, 1;
135135, 44189, 11863, 2488, 381, 29, 1;
2027025, 673471, 189503, 43169, 7601, 879, 47, 1;
...
-
b:= proc(n, f, m, l, j) option remember; (k-> `if`(n `if`(n=0 or k<2, doublefactorial(2*n-1),
b(2*n-k+1, [1$k-1], 0, [0$k-1], k-1)):
seq(seq(T(n, k), k=1..n), n=1..10);
-
b[n_, f_List, m_, l_List, j_] := b[n, f, m, l, j] = Function[k, If[n < Total[f] + m + Total[l], 0, If[n == 0, 1, Sum[If[f[[i]] == 0, 0, b[n - 1, ReplacePart[f, i -> 0], m + l[[1]], Append[ReplacePart[l, 1 -> Nothing], 0], Max[0, j - 1]]],{i, Max[1, j + 1], Min[k, n - 1]}] + If[m == 0, 0, m*b[n - 1, f, m - 1 + l[[1]], Append[ReplacePart[l, 1 -> Nothing], 0], Max[0, j - 1]]] + b[n - 1, f, m + l[[1]], Append[ReplacePart[l, 1 -> Nothing], 1], Max[0, j - 1]]]]][Length[l]];
T[n_, k_] := If[n == 0 || k < 2, 2^(n-1) Pochhammer[3/2, n-1], b[2n-k+1, Table[1, {k-1}], 0, Table[0, {k-1}], k-1]];
Table[T[n, k], {n, 1, 10}, {k, 1, n}] // Flatten (* Jean-François Alcover, Apr 27 2020, after Alois P. Heinz *)
A324461
Number of simple graphs with n vertices and distinct rotations.
Original entry on oeis.org
1, 1, 0, 6, 48, 1020, 32232, 2097144, 268369920, 68719472640, 35184338533920, 36028797018963936, 73786976226114539520, 302231454903657293676480, 2475880078570197599844819072, 40564819207303340847860140736640, 1329227995784915854457062986570792960
Offset: 0
Cf.
A000088,
A000740,
A003436,
A006125,
A027375,
A192314,
A192332,
A306669,
A306715,
A323860,
A323864,
A323867,
A324462 (covering case),
A324463,
A324464.
-
rotgra[g_,m_]:=Sort[Sort/@(g/.k_Integer:>If[k==m,1,k+1])];
Table[Length[Select[Subsets[Subsets[Range[n],{2}]],UnsameQ@@Table[Nest[rotgra[#,n]&,#,j],{j,n}]&]],{n,0,5}]
-
a(n)={if(n==0, 1, sumdiv(n, d, moebius(d)*2^(n*(n/d-1)/2 + n*(d\2)/d)))} \\ Andrew Howroyd, Aug 15 2019
-
from sympy import mobius, divisors
def A324461(n): return sum(mobius(m:=n//d)<<(n*(d-1)>>1)+d*(m>>1) for d in divisors(n,generator=True)) if n else 1 # Chai Wah Wu, Jul 03 2024
A129348
Number of (directed) Hamiltonian circuits in the cocktail party graph of order n.
Original entry on oeis.org
0, 2, 32, 1488, 112512, 12771840, 2036229120, 434469611520, 119619533537280, 41303040523960320, 17481826772405452800, 8902337068174698086400, 5370014079716477003366400, 3786918976243761421064601600, 3087031512410698159166482022400, 2880726660365605475506018320384000
Offset: 1
-
a:= proc(n) option remember; `if`(n<3, n*(n-1),
((136*n^3-608*n^2+762*n-470) *a(n-1)
+4*(n-2)*(14*n^2+29*n-193) *a(n-2)
-80*(n-2)*(n-3)*(n-4) *a(n-3)) /(34*n-101))
end:
seq(a(n), n=0..20); # Alois P. Heinz, Feb 09 2014
-
Prepend[Table[Sum[(-1)^i Binomial[n, i] (2n - 1 - i)! 2^i, {i, 0, n}], {n, 2, 16}], 0] (* Geoffrey Critzer, Feb 09 2014 *)
Table[Piecewise[{{(-1 + 2 n)! Hypergeometric1F1[-n, 1 - 2 n, -2],
n > 1}}], {n, 16}] (* Eric W. Weisstein, Mar 29 2014 *)
-
{ A129348(n) = sum(m=0,n-1, sum(k=1,n-m, (-1)^k * binomial(n-1,m) * binomial(n-m-1,k-1) * 2^(k-1) * ([0,k-1,2*(n-m-k);1,k-2,2*(n-m-k);1,k-1,2*(n-m-k-1)]^(2*n))[1,1] ) + sum(k=0,n-m, (-1)^k * binomial(n-1,m) * binomial(n-m-1,k) * 2^(k-1) * ([0,k,2*(n-m-k-1);2,k-1,2*(n-m-k-1);2,k,2*(n-m-k-2)]^(2*n))[1,1] ) ) } \\ Max Alekseyev, Dec 22 2013
A348815
a(n) = number of chord labeled loopless diagrams by number of K_4.
Original entry on oeis.org
0, 1, 134, 75843, 83002866, 158861646466, 490294453324924, 2292204611710892971, 15459367618357013402267, 144663877588996810362218074, 1819753109993633276315632934129, 29976383544377113242613349012354566, 632574848906117234957565158900144038734
Offset: 1
A369923
Array read by antidiagonals: A(n,k) is the number of permutations of n copies of 1..k with values introduced in order and without cyclically adjacent elements equal.
Original entry on oeis.org
0, 1, 0, 1, 1, 0, 1, 4, 1, 0, 1, 31, 22, 1, 0, 1, 293, 1415, 134, 1, 0, 1, 3326, 140343, 75843, 866, 1, 0, 1, 44189, 20167651, 83002866, 4446741, 5812, 1, 0, 1, 673471, 3980871156, 158861646466, 55279816356, 276154969, 40048, 1, 0
Offset: 1
Array begins:
n\k| 1 2 3 4 5 6 ...
---+-----------------------------------------------------------
1 | 0 1 1 1 1 1 ...
2 | 0 1 4 31 293 3326 ...
3 | 0 1 22 1415 140343 20167651 ...
4 | 0 1 134 75843 83002866 158861646466 ...
5 | 0 1 866 4446741 55279816356 1450728060971387 ...
6 | 0 1 5812 276154969 39738077935264 14571371516350429940 ...
...
- Andrew Howroyd, Table of n, a(n) for n = 1..1275 (first 51 antidiagonals)
- Evgeniy Krasko, Igor Labutin, and Alexander Omelchenko, Enumeration of Labelled and Unlabelled Hamiltonian Cycles in Complete k-partite Graphs, arXiv:1709.03218 [math.CO], 2017.
- Mathematics.StackExchange, Find the number of k 1's, k 2's, ... , k n's - total kn cards, Apr 08 2012.
-
T[n_, k_] := If[k == 1, 0, Expand[(-1)^(k (n + 1))/(k - 1)! n Hypergeometric1F1[1 - n, 2, x]^k x^(k - 1)] /. x^p_ :> p!] (* Eric W. Weisstein, Feb 20 2025 *)
-
\\ compare with A322013.
q(n, x) = sum(i=1, n, (-1)^(n-i) * binomial(n-1, n-i) * x^i/i!)
T(n, k) = if(k > 1, subst(serlaplace(n*q(n, x)^k/x), x, 1)/(k-1)!, 0)
Showing 1-10 of 29 results.
Comments