cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A003436 Number of inequivalent labeled Hamiltonian circuits on n-octahedron. Interlacing chords joining 2n points on circle.

Original entry on oeis.org

1, 0, 1, 4, 31, 293, 3326, 44189, 673471, 11588884, 222304897, 4704612119, 108897613826, 2737023412199, 74236203425281, 2161288643251828, 67228358271588991, 2225173863019549229, 78087247031912850686, 2896042595237791161749, 113184512236563589997407
Offset: 0

Views

Author

Keywords

Comments

Also called the relaxed ménage problem (cf. A000179).
a(n) can be seen as a subset of the unordered pairings of the first 2n integers (A001147) with forbidden pairs (1,2n) and (i,i+1) for all i in [1,2n-1] (all adjacent integers modulo 2n). The linear version of this constraint is A000806. - Olivier Gérard, Feb 08 2011
Number of perfect matchings in the complement of C_{2n} where C_{2n} is the cycle graph on 2n vertices. - Andrew Howroyd, Mar 15 2016
Also the number of 2-uniform set partitions of {1...2n} containing no two cyclically successive vertices in the same block. - Gus Wiseman, Feb 27 2019

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A003435, A129348. A003437 gives unlabeled case.
First differences of A000806.
Column k=2 of A324428.

Programs

  • Maple
    A003436 := proc(n) local k;
          if n = 0 then 1
        elif n = 1 then 0
        else add( (-1)^k*binomial(n,k)*2*n/(2*n-k)*2^k*(2*n-k)!/2^n/n!,k=0..n) ;
        end if;
    end proc: # R. J. Mathar, Dec 11 2013
    A003436 := n-> `if`(n<2, 1-n, (-1)^n*2*hypergeom([n, -n], [], 1/2)):
    seq(simplify(A003436(n)), n=0..18); # Peter Luschny, Nov 10 2016
  • Mathematica
    a[n_] := (2*n-1)!! * Hypergeometric1F1[-n, 1-2*n, -2]; a[1] = 0;
    Table[a[n], {n, 0, 19}] (* Jean-François Alcover, Apr 05 2013 *)
    twounifll[{}]:={{}};twounifll[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@twounifll[Complement[set,s]]]/@Table[{i,j},{j,If[i==1,Select[set,2<#i+1&]]}];
    Table[Length[twounifll[Range[n]]],{n,0,14,2}] (* Gus Wiseman, Feb 27 2019 *)

Formula

a(n) = A003435(n)/(n!*2^n).
a(n) = 2*n*a(n-1)-2*(n-3)*a(n-2)-a(n-3) for n>4. [Corrected by Vasu Tewari, Apr 11 2010, and by R. J. Mathar, Oct 02 2013]
G.f.: x + ((1-x)/(1+x)) * Sum_{n>=0} A001147(n)*(x/(1+x)^2)^n. - Vladeta Jovovic, Jun 27 2007
a(n) ~ 2^(n+1/2)*n^n/exp(n+1). - Vaclav Kotesovec, Aug 13 2013
a(n) = (-1)^n*2*hypergeom([n, -n], [], 1/2) for n >= 2. - Peter Luschny, Nov 10 2016

Extensions

a(0)=1 prepended by Gus Wiseman, Feb 27 2019

A324429 Number T(n,k) of labeled cyclic chord diagrams having n chords and minimal chord length k (or k=0 if n=0); triangle T(n,k), n>=0, 0<=k<=n, read by rows.

Original entry on oeis.org

1, 0, 1, 0, 2, 1, 0, 11, 3, 1, 0, 74, 24, 6, 1, 0, 652, 225, 57, 10, 1, 0, 7069, 2489, 678, 141, 17, 1, 0, 90946, 32326, 9375, 2107, 352, 28, 1, 0, 1353554, 483968, 146334, 35568, 6722, 832, 46, 1, 0, 22870541, 8211543, 2555228, 661329, 137225, 21510, 1973, 75, 1
Offset: 0

Views

Author

Alois P. Heinz, Feb 27 2019

Keywords

Comments

T(n,k) is defined for all n,k >= 0. The triangle contains only the terms with 0 <= k <= n. T(n,k) = 0 for k > n.

Examples

			Triangle T(n,k) begins:
  1;
  0,       1;
  0,       2,      1;
  0,      11,      3,      1;
  0,      74,     24,      6,     1;
  0,     652,    225,     57,    10,    1;
  0,    7069,   2489,    678,   141,   17,   1;
  0,   90946,  32326,   9375,  2107,  352,  28,  1;
  0, 1353554, 483968, 146334, 35568, 6722, 832, 46, 1;
  ...
		

Crossrefs

Row sums give A001147.
Main diagonal gives A000012.
T(n+1,n) gives A001610.

Programs

  • Maple
    b:= proc(n, f, m, l, j) option remember; (k-> `if`(n `if`(n=0 or k<2, doublefactorial(2*n-1),
                  b(2*n-k+1, [1$k-1], 0, [0$k-1], k-1)):
    T:= (n, k)-> `if`(n=k, 1, A(n, k)-A(n, k+1)):
    seq(seq(T(n, k), k=0..n), n=0..10);
  • Mathematica
    b[n_, f_List, m_, l_List, j_] := b[n, f, m, l, j] = Function[k, If[n < Total[f] + m +  Total[l], 0, If[n == 0, 1, Sum[If[f[[i]] == 0, 0, b[n - 1, ReplacePart[f, i -> 0], m + l[[1]], Append[ReplacePart[l, 1 -> Nothing], 0], Max[0, j - 1]]], {i, Max[1, j + 1], Min[k, n - 1]}] + If[m == 0, 0, m*b[n - 1, f, m - 1 + l[[1]], Append[ReplacePart[l, 1 -> Nothing], 0], Max[0, j-1]]] + b[n-1, f, m + l[[1]], Append[ReplacePart[ l, 1 -> Nothing], 1], Max[0, j - 1]]]]][Length[l]];
    A[n_, k_] := If[n == 0 || k < 2, 2^(n-1) Pochhammer[3/2, n-1], b[2n-k+1, Table[1, {k - 1}], 0, Table[0, {k - 1}], k - 1]];
    T[n_, k_] := If[n == k, 1, A[n, k] - A[n, k + 1]];
    Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Apr 27 2020, after Alois P. Heinz *)

Formula

T(n,k) = A324428(n,k) - A324428(n,k+1) for k > 0, T(n,0) = A000007(n).

A306386 Number of chord diagrams with n chords all having arc length at least 3.

Original entry on oeis.org

1, 0, 0, 1, 7, 68, 837, 11863, 189503, 3377341, 66564396, 1439304777, 33902511983, 864514417843, 23735220814661, 698226455579492, 21914096529153695, 731009183350476805, 25829581529376423945, 963786767538027630275, 37871891147795243899204, 1563295398737378236910447
Offset: 0

Views

Author

Gus Wiseman, Feb 26 2019

Keywords

Comments

A cyclical form of A190823.
Also the number of 2-uniform set partitions of {1...2n} such that, when the vertices are arranged uniformly around a circle, no block has its two vertices separated by an arc length of less than 3.

Examples

			The a(8) = 7 2-uniform set partitions with all arc lengths at least 3:
  {{1,4},{2,6},{3,7},{5,8}}
  {{1,4},{2,7},{3,6},{5,8}}
  {{1,5},{2,6},{3,7},{4,8}}
  {{1,5},{2,6},{3,8},{4,7}}
  {{1,5},{2,7},{3,6},{4,8}}
  {{1,6},{2,5},{3,7},{4,8}}
  {{1,6},{2,5},{3,8},{4,7}}
		

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; `if`(n<8, [1, 0$2, 1, 7, 68, 837, 11863][n+1],
          ((8*n^4-64*n^3+142*n^2-66*n+109)    *a(n-1)
          -(24*n^4-248*n^3+870*n^2-1106*n+241)*a(n-2)
          +(24*n^4-264*n^3+982*n^2-1270*n+145)*a(n-3)
          -(8*n^4-96*n^3+374*n^2-486*n+33)    *a(n-4)
          -(4*n^3-24*n^2+39*n-2)              *a(n-5))/(4*n^3-36*n^2+99*n-69))
        end:
    seq(a(n), n=0..23);  # Alois P. Heinz, Feb 27 2019
  • Mathematica
    dtui[{},]:={{}};dtui[set:{i,___},n_]:=Join@@Function[s,Prepend[#,s]&/@dtui[Complement[set,s],n]]/@Table[{i,j},{j,Switch[i,1,Select[set,3<#i+2&]]}];
    Table[Length[dtui[Range[n],n]],{n,0,12,2}]

Formula

a(n) is even <=> n in { A135042 }. - Alois P. Heinz, Feb 27 2019

Extensions

a(10)-a(16) from Alois P. Heinz, Feb 26 2019
a(17)-a(21) from Alois P. Heinz, Feb 27 2019

A324430 Number of labeled cyclic chord diagrams with n chords such that every chord has length at least four.

Original entry on oeis.org

1, 0, 0, 0, 1, 11, 159, 2488, 43169, 822113, 17066007, 384422661, 9357185385, 245099146171, 6881055868664, 206270437643247, 6578921849694561, 222533460191360229, 7959059236941486231, 300168498172776752829, 11907361524870216908385, 495692886834636282431752
Offset: 0

Views

Author

Alois P. Heinz, Feb 27 2019

Keywords

Crossrefs

Column k=4 of A324428.

A324431 Number of labeled cyclic chord diagrams with n chords such that every chord has length at least five.

Original entry on oeis.org

1, 0, 0, 0, 0, 1, 18, 381, 7601, 160784, 3621067, 87089383, 2235081950, 61129825519, 1778536033055, 54930050817476, 1796853497380257, 62110926582550043, 2263534922105574576, 86779223311878261139, 3492564794206986891273, 147269976213917444452508
Offset: 0

Views

Author

Alois P. Heinz, Feb 27 2019

Keywords

Crossrefs

Column k=5 of A324428.

A324432 Number of labeled cyclic chord diagrams with n chords such that every chord has length at least six.

Original entry on oeis.org

1, 0, 0, 0, 0, 0, 1, 29, 879, 23559, 607897, 16179520, 449286927, 13098525681, 401675273973, 12961858610835, 439969542845247, 15694595867800757, 587665598756534677, 23065866584266238427, 947631130543961813887, 40691002929409496892633, 1823524185613956274776800
Offset: 0

Views

Author

Alois P. Heinz, Feb 27 2019

Keywords

Crossrefs

Column k=6 of A324428.

A324433 Number of labeled cyclic chord diagrams with n chords such that every chord has length at least seven.

Original entry on oeis.org

1, 0, 0, 0, 0, 0, 0, 1, 47, 2049, 72989, 2320389, 72984903, 2340136832, 77373758909, 2655913191455, 94925974424159, 3537409377070327, 137498256564370813, 5573810976335976071, 235519207528086247775, 10365638931006805924491, 474762601555480759969273
Offset: 0

Views

Author

Alois P. Heinz, Feb 27 2019

Keywords

Crossrefs

Column k=7 of A324428.

A324434 Number of labeled cyclic chord diagrams with n chords such that every chord has length at least eight.

Original entry on oeis.org

1, 0, 0, 0, 0, 0, 0, 0, 1, 76, 4788, 221917, 8887710, 331432067, 12269388935, 460168784128, 17665933357441, 698638441294365, 28556568958525122, 1208570048233111199, 53007713800631794460, 2410148120774836584364, 113594056221675357350279, 5547970208256475164372741
Offset: 0

Views

Author

Alois P. Heinz, Feb 27 2019

Keywords

Crossrefs

Column k=8 of A324428.

A324435 Number of labeled cyclic chord diagrams with n chords such that every chord has length at least nine.

Original entry on oeis.org

1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 123, 11179, 678033, 33920411, 1510561303, 64644980613, 2750055687841, 118100969286656, 5165550855166131, 231446409801491355, 10658817807766612225, 505538573513456703833, 24722367556570294858207, 1247328697401969440599017
Offset: 0

Views

Author

Alois P. Heinz, Feb 27 2019

Keywords

Crossrefs

Column k=9 of A324428.

A324436 Number of labeled cyclic chord diagrams with n chords such that every chord has length at least ten.

Original entry on oeis.org

1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 199, 26071, 2076337, 128036597, 6885473559, 341688260735, 16496710343843, 792460210118481, 38341661821182976, 1882679817632403839, 94308395144305086977, 4834964742446401521057, 254210075409129027824513
Offset: 0

Views

Author

Alois P. Heinz, Feb 27 2019

Keywords

Crossrefs

Column k=10 of A324428.
Showing 1-10 of 11 results. Next