A003436
Number of inequivalent labeled Hamiltonian circuits on n-octahedron. Interlacing chords joining 2n points on circle.
Original entry on oeis.org
1, 0, 1, 4, 31, 293, 3326, 44189, 673471, 11588884, 222304897, 4704612119, 108897613826, 2737023412199, 74236203425281, 2161288643251828, 67228358271588991, 2225173863019549229, 78087247031912850686, 2896042595237791161749, 113184512236563589997407
Offset: 0
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- F. R. Bernhart & N. J. A. Sloane, Emails, April-May 1994
- Kenneth P. Bogart and Peter G. Doyle, Nonsexist solution of the menage problem, Amer. Math. Monthly 93:7 (1986), 514-519.
- Robert Cori and G. Hetyei, Counting partitions of a fixed genus, arXiv preprint arXiv:1710.09992 [math.CO], 2017.
- M. Hazewinkel and V. V. Kalashnikov, Counting Interlacing Pairs on the Circle, CWI report AM-R9508 (1995)
- Evgeniy Krasko, Igor Labutin, and Alexander Omelchenko, Enumeration of Labelled and Unlabelled Hamiltonian Cycles in Complete k-partite Graphs, arXiv:1709.03218 [math.CO], 2017.
- E. Krasko and A. Omelchenko, Enumeration of Chord Diagrams without Loops and Parallel Chords, arXiv preprint arXiv:1601.05073 [math.CO], 2016.
- E. Krasko and A. Omelchenko, Enumeration of Chord Diagrams without Loops and Parallel Chords, The Electronic Journal of Combinatorics, 24(3) (2017), #P3.43.
- D. Singmaster, Hamiltonian circuits on the n-dimensional octahedron, J. Combinatorial Theory Ser. B 19 (1975), no. 1, 1-4.
- Gus Wiseman, The a(5) = 293 interlacing chord diagrams.
Cf.
A000179,
A000296,
A000699,
A001147,
A005493,
A170941,
A190823,
A278990,
A306386,
A306419,
A322402,
A324011,
A324172,
A324173.
-
A003436 := proc(n) local k;
if n = 0 then 1
elif n = 1 then 0
else add( (-1)^k*binomial(n,k)*2*n/(2*n-k)*2^k*(2*n-k)!/2^n/n!,k=0..n) ;
end if;
end proc: # R. J. Mathar, Dec 11 2013
A003436 := n-> `if`(n<2, 1-n, (-1)^n*2*hypergeom([n, -n], [], 1/2)):
seq(simplify(A003436(n)), n=0..18); # Peter Luschny, Nov 10 2016
-
a[n_] := (2*n-1)!! * Hypergeometric1F1[-n, 1-2*n, -2]; a[1] = 0;
Table[a[n], {n, 0, 19}] (* Jean-François Alcover, Apr 05 2013 *)
twounifll[{}]:={{}};twounifll[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@twounifll[Complement[set,s]]]/@Table[{i,j},{j,If[i==1,Select[set,2<#i+1&]]}];
Table[Length[twounifll[Range[n]]],{n,0,14,2}] (* Gus Wiseman, Feb 27 2019 *)
A324429
Number T(n,k) of labeled cyclic chord diagrams having n chords and minimal chord length k (or k=0 if n=0); triangle T(n,k), n>=0, 0<=k<=n, read by rows.
Original entry on oeis.org
1, 0, 1, 0, 2, 1, 0, 11, 3, 1, 0, 74, 24, 6, 1, 0, 652, 225, 57, 10, 1, 0, 7069, 2489, 678, 141, 17, 1, 0, 90946, 32326, 9375, 2107, 352, 28, 1, 0, 1353554, 483968, 146334, 35568, 6722, 832, 46, 1, 0, 22870541, 8211543, 2555228, 661329, 137225, 21510, 1973, 75, 1
Offset: 0
Triangle T(n,k) begins:
1;
0, 1;
0, 2, 1;
0, 11, 3, 1;
0, 74, 24, 6, 1;
0, 652, 225, 57, 10, 1;
0, 7069, 2489, 678, 141, 17, 1;
0, 90946, 32326, 9375, 2107, 352, 28, 1;
0, 1353554, 483968, 146334, 35568, 6722, 832, 46, 1;
...
Columns k=0-10 give:
A000007,
A324445,
A324446,
A324447,
A324448,
A324449,
A324450,
A324451,
A324452,
A324453,
A324454.
-
b:= proc(n, f, m, l, j) option remember; (k-> `if`(n `if`(n=0 or k<2, doublefactorial(2*n-1),
b(2*n-k+1, [1$k-1], 0, [0$k-1], k-1)):
T:= (n, k)-> `if`(n=k, 1, A(n, k)-A(n, k+1)):
seq(seq(T(n, k), k=0..n), n=0..10);
-
b[n_, f_List, m_, l_List, j_] := b[n, f, m, l, j] = Function[k, If[n < Total[f] + m + Total[l], 0, If[n == 0, 1, Sum[If[f[[i]] == 0, 0, b[n - 1, ReplacePart[f, i -> 0], m + l[[1]], Append[ReplacePart[l, 1 -> Nothing], 0], Max[0, j - 1]]], {i, Max[1, j + 1], Min[k, n - 1]}] + If[m == 0, 0, m*b[n - 1, f, m - 1 + l[[1]], Append[ReplacePart[l, 1 -> Nothing], 0], Max[0, j-1]]] + b[n-1, f, m + l[[1]], Append[ReplacePart[ l, 1 -> Nothing], 1], Max[0, j - 1]]]]][Length[l]];
A[n_, k_] := If[n == 0 || k < 2, 2^(n-1) Pochhammer[3/2, n-1], b[2n-k+1, Table[1, {k - 1}], 0, Table[0, {k - 1}], k - 1]];
T[n_, k_] := If[n == k, 1, A[n, k] - A[n, k + 1]];
Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Apr 27 2020, after Alois P. Heinz *)
A306386
Number of chord diagrams with n chords all having arc length at least 3.
Original entry on oeis.org
1, 0, 0, 1, 7, 68, 837, 11863, 189503, 3377341, 66564396, 1439304777, 33902511983, 864514417843, 23735220814661, 698226455579492, 21914096529153695, 731009183350476805, 25829581529376423945, 963786767538027630275, 37871891147795243899204, 1563295398737378236910447
Offset: 0
The a(8) = 7 2-uniform set partitions with all arc lengths at least 3:
{{1,4},{2,6},{3,7},{5,8}}
{{1,4},{2,7},{3,6},{5,8}}
{{1,5},{2,6},{3,7},{4,8}}
{{1,5},{2,6},{3,8},{4,7}}
{{1,5},{2,7},{3,6},{4,8}}
{{1,6},{2,5},{3,7},{4,8}}
{{1,6},{2,5},{3,8},{4,7}}
Cf.
A000296,
A000699,
A001006,
A001147,
A001610,
A003436,
A038041,
A054726,
A135042,
A170941,
A190823,
A278990,
A306419,
A322402,
A324011,
A324169.
-
a:= proc(n) option remember; `if`(n<8, [1, 0$2, 1, 7, 68, 837, 11863][n+1],
((8*n^4-64*n^3+142*n^2-66*n+109) *a(n-1)
-(24*n^4-248*n^3+870*n^2-1106*n+241)*a(n-2)
+(24*n^4-264*n^3+982*n^2-1270*n+145)*a(n-3)
-(8*n^4-96*n^3+374*n^2-486*n+33) *a(n-4)
-(4*n^3-24*n^2+39*n-2) *a(n-5))/(4*n^3-36*n^2+99*n-69))
end:
seq(a(n), n=0..23); # Alois P. Heinz, Feb 27 2019
-
dtui[{},]:={{}};dtui[set:{i,___},n_]:=Join@@Function[s,Prepend[#,s]&/@dtui[Complement[set,s],n]]/@Table[{i,j},{j,Switch[i,1,Select[set,3<#i+2&]]}];
Table[Length[dtui[Range[n],n]],{n,0,12,2}]
A324430
Number of labeled cyclic chord diagrams with n chords such that every chord has length at least four.
Original entry on oeis.org
1, 0, 0, 0, 1, 11, 159, 2488, 43169, 822113, 17066007, 384422661, 9357185385, 245099146171, 6881055868664, 206270437643247, 6578921849694561, 222533460191360229, 7959059236941486231, 300168498172776752829, 11907361524870216908385, 495692886834636282431752
Offset: 0
A324431
Number of labeled cyclic chord diagrams with n chords such that every chord has length at least five.
Original entry on oeis.org
1, 0, 0, 0, 0, 1, 18, 381, 7601, 160784, 3621067, 87089383, 2235081950, 61129825519, 1778536033055, 54930050817476, 1796853497380257, 62110926582550043, 2263534922105574576, 86779223311878261139, 3492564794206986891273, 147269976213917444452508
Offset: 0
A324432
Number of labeled cyclic chord diagrams with n chords such that every chord has length at least six.
Original entry on oeis.org
1, 0, 0, 0, 0, 0, 1, 29, 879, 23559, 607897, 16179520, 449286927, 13098525681, 401675273973, 12961858610835, 439969542845247, 15694595867800757, 587665598756534677, 23065866584266238427, 947631130543961813887, 40691002929409496892633, 1823524185613956274776800
Offset: 0
A324433
Number of labeled cyclic chord diagrams with n chords such that every chord has length at least seven.
Original entry on oeis.org
1, 0, 0, 0, 0, 0, 0, 1, 47, 2049, 72989, 2320389, 72984903, 2340136832, 77373758909, 2655913191455, 94925974424159, 3537409377070327, 137498256564370813, 5573810976335976071, 235519207528086247775, 10365638931006805924491, 474762601555480759969273
Offset: 0
A324434
Number of labeled cyclic chord diagrams with n chords such that every chord has length at least eight.
Original entry on oeis.org
1, 0, 0, 0, 0, 0, 0, 0, 1, 76, 4788, 221917, 8887710, 331432067, 12269388935, 460168784128, 17665933357441, 698638441294365, 28556568958525122, 1208570048233111199, 53007713800631794460, 2410148120774836584364, 113594056221675357350279, 5547970208256475164372741
Offset: 0
A324435
Number of labeled cyclic chord diagrams with n chords such that every chord has length at least nine.
Original entry on oeis.org
1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 123, 11179, 678033, 33920411, 1510561303, 64644980613, 2750055687841, 118100969286656, 5165550855166131, 231446409801491355, 10658817807766612225, 505538573513456703833, 24722367556570294858207, 1247328697401969440599017
Offset: 0
A324436
Number of labeled cyclic chord diagrams with n chords such that every chord has length at least ten.
Original entry on oeis.org
1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 199, 26071, 2076337, 128036597, 6885473559, 341688260735, 16496710343843, 792460210118481, 38341661821182976, 1882679817632403839, 94308395144305086977, 4834964742446401521057, 254210075409129027824513
Offset: 0
Showing 1-10 of 11 results.
Comments