cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A322013 Square array A(n,k), n >= 1, k >= 1, read by antidiagonals, where A(n,k) is the number of permutations of n copies of 1..k introduced in order 1..k with no element equal to another within a distance of 1.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 5, 1, 0, 1, 36, 29, 1, 0, 1, 329, 1721, 182, 1, 0, 1, 3655, 163386, 94376, 1198, 1, 0, 1, 47844, 22831355, 98371884, 5609649, 8142, 1, 0, 1, 721315, 4420321081, 182502973885, 66218360625, 351574834, 56620, 1, 0
Offset: 1

Views

Author

Seiichi Manyama, Nov 24 2018

Keywords

Examples

			Square array begins:
   1, 1,     1,         1,              1,                    1, ...
   0, 1,     5,        36,            329,                 3655, ...
   0, 1,    29,      1721,         163386,             22831355, ...
   0, 1,   182,     94376,       98371884,         182502973885, ...
   0, 1,  1198,   5609649,    66218360625,     1681287695542855, ...
   0, 1,  8142, 351574834, 47940557125969, 16985819072511102549, ...
		

Crossrefs

Main diagonal gives A321666.

Programs

  • PARI
    q(n,x) = sum(i=1, n, (-1)^(n-i) * binomial(n-1, n-i) * x^i/i!)
    T(n,k) = subst(serlaplace(q(n,x)^k), x, 1)/k! \\ Andrew Howroyd, Feb 03 2024

Formula

T(n,k) = A322093(n,k) / k!. - Andrew Howroyd, Feb 03 2024

A348815 a(n) = number of chord labeled loopless diagrams by number of K_4.

Original entry on oeis.org

0, 1, 134, 75843, 83002866, 158861646466, 490294453324924, 2292204611710892971, 15459367618357013402267, 144663877588996810362218074, 1819753109993633276315632934129, 29976383544377113242613349012354566, 632574848906117234957565158900144038734
Offset: 1

Views

Author

Michael De Vlieger, Nov 01 2021

Keywords

Crossrefs

Extensions

a(11) onwards from Andrew Howroyd, Feb 05 2024

A348813 a(n) = number of chord labeled loopless diagrams by number of K_3.

Original entry on oeis.org

0, 1, 22, 1415, 140343, 20167651, 3980871156, 1035707510307, 343866839138005, 141979144588872613, 71386289535825383386, 42954342000612934599071, 30482693813120122213093587, 25196997894058490607106028095, 24001522306527907199721466108488, 26102037346800387738363882455862531
Offset: 1

Views

Author

Michael De Vlieger, Nov 01 2021

Keywords

Crossrefs

Extensions

a(14) onwards from Andrew Howroyd, Feb 05 2024

A348818 a(n) = number of chord labeled loopless diagrams by number of K_5.

Original entry on oeis.org

0, 1, 866, 4446741, 55279816356, 1450728060971387, 72078730629785795963, 6235048155225093080061949, 879601407931825739964190440635, 192100729970218737700046212217095291, 62258393664270652226502315136978421947948, 28913744296806659870889046765907226809528931041
Offset: 1

Views

Author

Michael De Vlieger, Nov 01 2021

Keywords

Crossrefs

Extensions

a(9) onwards from Andrew Howroyd, Feb 05 2024

A348821 a(n) = number of chord labeled loopless diagrams by number of K_6.

Original entry on oeis.org

0, 1, 5812, 276154969, 39738077935264, 14571371516350429940, 11876790400066163254723167, 19372051918038657958659363247949, 58256941603805590330534264712744407687, 302616041649108508974263266688425815263488561, 2575195630881373033515248134269171034879932771154311
Offset: 1

Views

Author

Michael De Vlieger, Nov 01 2021

Keywords

Crossrefs

Extensions

a(8) onwards from Andrew Howroyd, Feb 05 2024

A369925 Number of uniform circular words of length n with adjacent elements unequal using an infinite alphabet up to permutations of the alphabet.

Original entry on oeis.org

1, 0, 1, 1, 2, 1, 6, 1, 33, 23, 295, 1, 4877, 1, 44191, 141210, 749316, 1, 31762349, 1, 309754506, 3980911205, 4704612121, 1, 1303743206944, 55279816357, 2737023412201, 343866841144704, 564548508168226, 1, 145630899385513158, 1, 2359434158555273239
Offset: 0

Views

Author

Andrew Howroyd, Feb 06 2024

Keywords

Comments

A word is uniform here if each symbol that occurs in the word occurs with the same frequency.
a(n) is the number of ways to partition [n] into parts of equal size and no part containing values that differ by 1 modulo n.

Examples

			a(1) = 0 because the symbol 'a' is considered to be adjacent to itself in a circular word. The set partition {{1}} is also excluded because 1 == 1 + 1 (mod 1).
The a(6) = 6 words are ababab, abacbc, abcabc, abcacb, abcbac, abcdef.
The corresponding a(6) = 6 set partitions are:
   {{1,3,5},{2,4,6}},
   {{1,3},{2,5},{4,6}},
   {{1,4},{2,5},{3,6}},
   {{1,4},{2,6},{3,5}},
   {{1,5},{2,4},{3,6}},
   {{1},{2},{3},{4},{5},{6}}.
		

Crossrefs

The case for adjacent elements possibly equal is A038041.
Cf. A369923, A369924 (linear words).

Programs

  • PARI
    \\ Needs T(n,k) from A369923.
    a(n) = {if(n==0, 1, sumdiv(n, d, T(d, n/d)))}

Formula

a(n) = Sum_{d|n} A369923(d, n/d) for n > 0.
a(p) = 1 for prime p.

A378241 Numbers of directed Hamiltonian cycles in the complete 4-partite graph K_{n,n,n,n}.

Original entry on oeis.org

6, 1488, 3667680, 37744330752, 1106491456512000, 74213488705904640000, 9872975878366503813120000, 2355966665497190945783808000000, 935825492908108988335792827924480000, 584053924678169568704863421815848960000000
Offset: 1

Views

Author

Zlatko Damijanic, Nov 20 2024

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[Sum[Sum[Sum[ (2n - i - j - 1)! 2^(2i) 3^j (n!)^4/(j!) * (3n - 3i - 3j - 2d)!/((2i + j - n + d)! (n - j - d)! (2n - 3i - 2j - d)!) * (2n - 2i - 2j - 2e)!/(e! (d - e)! (2n - 2i - 2j - d - e)! (n - i - j - d + e)! ((n - i - j - e)!)^2), {e, Max[0, i + j - n + d], Min[d, 2n - 2i - 2j - d]}], {d, Max[0, n - j - 2i], Min[n - j, 2n - 3i - 2j]}], {i, 0, Floor[2(n - j)/3]}], {j, 0, n}], {n, 1, 10}]
    Table[(n!)^4 Expand[Hypergeometric1F1[1 - n, 2, x]^4 x^3] /. x^p_ :> p!, {n, 10}] (* Eric W. Weisstein, Feb 20 2025 *)
  • Python
    from math import factorial as fact
    def a(n):
       # Using formula found in Horak et al.
       return sum(sum(sum(sum(
           fact(2*n-i-j-1)*pow(2,2*i)*pow(3,j)*pow(fact(n),4)//fact(j) *
           fact(3*n-3*i-3*j-2*d)//(fact(2*i+j-n+d)*fact(n-j-d)*fact(2*n-3*i-2*j-d)) *
           fact(2*n-2*i-2*j-2*e)//(fact(e)*fact(d-e)*fact(2*n-2*i-2*j-d-e)*fact(n-i-j-d+e)*pow(fact(n-i-j-e),2))
           for e in range(max(0,i+j-n+d), min(d,2*n-2*i-2*j-d)+1))
           for d in range(max(0,n-j-2*i), min(n-j,2*n-3*i-2*j)+1))
           for i in range(int(2*(n-j)/3)+1))
           for j in range(n+1))
    print([a(n) for n in range(1,11)])

Formula

a(n) = 3!*(n-1)!*(n!)^3*A369923(n,4). - Andrew Howroyd, Nov 20 2024
a(n) = 2*A381326(n). - Eric W. Weisstein, Feb 20 2025
Showing 1-7 of 7 results.