cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 22 results. Next

A278990 Number of loopless linear chord diagrams with n chords.

Original entry on oeis.org

1, 0, 1, 5, 36, 329, 3655, 47844, 721315, 12310199, 234615096, 4939227215, 113836841041, 2850860253240, 77087063678521, 2238375706930349, 69466733978519340, 2294640596998068569, 80381887628910919255, 2976424482866702081004, 116160936719430292078411
Offset: 0

Views

Author

N. J. A. Sloane, Dec 07 2016

Keywords

Comments

See the signed version of these numbers, A000806, for much more information about these numbers.
From Gus Wiseman, Feb 27 2019: (Start)
Also the number of 2-uniform set partitions of {1..2n} containing no two successive vertices in the same block. For example, the a(3) = 5 set partitions are:
{{1,3},{2,5},{4,6}}
{{1,4},{2,5},{3,6}}
{{1,4},{2,6},{3,5}}
{{1,5},{2,4},{3,6}}
{{1,6},{2,4},{3,5}}
(End)
From Gus Wiseman, Jul 05 2020: (Start)
Also the number of permutations of the multiset {1,1,2,2,...,n,n} with no two consecutive terms equal and where the first i appears before the first j for i < j. For example, the a(3) = 5 permutations are the following.
(1,2,3,1,2,3)
(1,2,3,1,3,2)
(1,2,3,2,1,3)
(1,2,3,2,3,1)
(1,2,1,3,2,3)
(End)

Crossrefs

Column k=0 of A079267.
Column k=2 of A293157.
Row n=2 of A322013.
Cf. A000110, A000699 (topologically connected 2-uniform), A000806, A001147 (2-uniform), A003436 (cyclical version), A005493, A170941, A190823 (distance 3+ version), A322402, A324011, A324172.
Anti-run compositions are A003242.
Separable partitions are A325534.
Other sequences involving the multiset {1,1,2,2,...,n,n}: A001147, A007717, A020555, A094574, A316972.

Programs

  • Magma
    [n le 2 select 2-n else (2*n-3)*Self(n-1) + Self(n-2): n in [1..30]]; // G. C. Greubel, Sep 26 2023
    
  • Mathematica
    RecurrenceTable[{a[n]== (2n-1)a[n-1] +a[n-2], a[0]==1, a[1]==0}, a, {n,0,20}] (* Vaclav Kotesovec, Sep 15 2017 *)
    FullSimplify[Table[-I*(BesselI[1/2+n,-1] BesselK[3/2,1] - BesselI[3/2,-1] BesselK[1/2+ n,1]), {n,0,20}]] (* Vaclav Kotesovec, Sep 15 2017 *)
    Table[(2 n-1)!! Hypergeometric1F1[-n,-2 n,-2], {n,0,20}] (* Eric W. Weisstein, Nov 14 2018 *)
    Table[Sqrt[2/Pi]/E ((-1)^n Pi BesselI[1/2+n,1] +BesselK[1/2+n,1]), {n,0,20}] // FunctionExpand // FullSimplify (* Eric W. Weisstein, Nov 14 2018 *)
    twouniflin[{}]:={{}};twouniflin[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@twouniflin[Complement[set,s]]]/@Table[{i,j},{j,Select[set,#>i+1&]}];
    Table[Length[twouniflin[Range[n]]],{n,0,14,2}] (* Gus Wiseman, Feb 27 2019 *)
  • PARI
    seq(N) = {
      my(a = vector(N)); a[1] = 0; a[2] = 1;
      for (n = 3, N, a[n] = (2*n-1)*a[n-1] + a[n-2]);
      concat(1, a);
    };
    seq(20) \\ Gheorghe Coserea, Dec 09 2016
    
  • SageMath
    def A278990_list(prec):
        P. = PowerSeriesRing(QQ, prec)
        return P( exp(-1+sqrt(1-2*x))/sqrt(1-2*x) ).egf_to_ogf().list()
    A278990_list(30) # G. C. Greubel, Sep 26 2023

Formula

From Gheorghe Coserea, Dec 09 2016: (Start)
D-finite with recurrence a(n) = (2*n-1)*a(n-1) + a(n-2), with a(0) = 1, a(1) = 0.
E.g.f. y satisfies: 0 = (1-2*x)*y'' - 3*y' - y.
a(n) - a(n-1) = A003436(n) for all n >= 2. (End)
From Vaclav Kotesovec, Sep 15 2017: (Start)
a(n) = sqrt(2)*exp(-1)*(BesselK(1/2 + n, 1)/sqrt(Pi) - i*sqrt(Pi)*BesselI(1/2 + n, -1)), where i is the imaginary unit.
a(n) ~ 2^(n+1/2) * n^n / exp(n+1). (End)
a(n) = A114938(n)/n! - Gus Wiseman, Jul 05 2020 (from Alexander Burstein's formula at A114938).
From G. C. Greubel, Sep 26 2023: (Start)
a(n) = (-1)^n * (i/e)*Sqrt(2/Pi) * BesselK(n + 1/2, -1).
G.f.: sqrt(Pi/(2*x)) * exp(-(1+x)^2/(2*x)) * Erfi((1+x)/sqrt(2*x)).
E.g.f.: exp(-1 + sqrt(1-2*x))/sqrt(1-2*x). (End)

Extensions

a(0)=1 prepended by Gheorghe Coserea, Dec 09 2016

A322093 Square array A(n,k), n >= 1, k >= 1, read by antidiagonals, where A(n,k) is the number of permutations of n copies of 1..k with no element equal to another within a distance of 1.

Original entry on oeis.org

1, 2, 0, 6, 2, 0, 24, 30, 2, 0, 120, 864, 174, 2, 0, 720, 39480, 41304, 1092, 2, 0, 5040, 2631600, 19606320, 2265024, 7188, 2, 0, 40320, 241133760, 16438575600, 11804626080, 134631576, 48852, 2, 0, 362880, 29083420800, 22278418248240, 131402141197200, 7946203275000, 8437796016, 339720, 2, 0
Offset: 1

Views

Author

Seiichi Manyama, Nov 26 2018

Keywords

Examples

			Square array begins:
   1, 2,    6,        24,           120,                 720, ...
   0, 2,   30,       864,         39480,             2631600, ...
   0, 2,  174,     41304,      19606320,         16438575600, ...
   0, 2, 1092,   2265024,   11804626080,     131402141197200, ...
   0, 2, 7188, 134631576, 7946203275000, 1210527140790855600, ...
		

Crossrefs

Columns k=3 gives A110706.
Main diagonal gives A321634.
Cf. A322013.

Programs

  • Mathematica
    Table[Table[SeriesCoefficient[1/(1 - Sum[x[i]/(1 + x[i]), {i, 1, n}]), Sequence @@ Table[{x[i], 0, k}, {i, 1, n}]],{n, 1, 6}], {k, 1, 5}] (* Zlatko Damijanic, Nov 03 2024 *)
  • PARI
    q(n,x) = sum(i=1, n, (-1)^(n-i) * binomial(n-1, n-i) * x^i/i!)
    T(n,k) = subst(serlaplace(q(n,x)^k), x, 1) \\ Andrew Howroyd, Feb 03 2024

Formula

A(n,k) = k! * A322013(n,k).
Let q_n(x) = Sum_{i=1..n} (-1)^(n-i) * binomial(n-1, n-i) * x^i/i!.
A(n,k) = Integral_{0..infinity} (q_n(x))^k * exp(-x) dx.

A190917 Number of permutations of n copies of 1..3 introduced in order 1..3 with no element equal to another within a distance of 1.

Original entry on oeis.org

1, 1, 5, 29, 182, 1198, 8142, 56620, 400598, 2872754, 20824778, 152303410, 1122149800, 8319825040, 62017475600, 464452683432, 3492568119566, 26358270711370, 199565061455634, 1515311001158482, 11535716330003876, 88025068713285476, 673124069796140900
Offset: 0

Views

Author

R. H. Hardin, May 23 2011

Keywords

Examples

			All solutions for n=2:
  1    1    1    1    1
  2    2    2    2    2
  3    3    3    3    1
  1    2    2    1    3
  3    3    1    2    2
  2    1    3    3    3
		

Crossrefs

Column 3 of A322013.
Cf. A000012 (b=2), A190918 (b=4), A190920 (b=5), A190923 (b=6), A190927 (b=7), A190932 (b=8), A321987 (b=9), A322061 (b=10).

Programs

  • Magma
    [(&+[Binomial(n-1, k)*(Binomial(n-1, k)*Binomial(2*n+1-2*k, n+1) + Binomial(n-1, k+1)*Binomial(2*n-2*k, n+1)): k in [0..Floor(n/2)]])/3: n in [1..25]]; // G. C. Greubel, Nov 24 2018
    
  • Maple
    a:= proc(n) option remember; `if`(n<3, [1$2, 5][n+1],
          ((7*n-4)*a(n-1)+8*(n-2)^2*a(n-2)/(n+1))/n)
        end:
    seq(a(n), n=0..22);  # Alois P. Heinz, Sep 09 2023
  • Mathematica
    Table[(1/3)*Sum[Binomial[n-1, k]*(Binomial[n-1, k]*Binomial[2*n+1-2*k, n+1] + Binomial[n-1, k+1]*Binomial[2*n-2*k, n+1]), {k,0,Floor[n/2]}], {n,1,25}] (* G. C. Greubel, Nov 24 2018 *)
  • PARI
    A190917(n) = sum(k=0, n\2, binomial(n-1, k)*(binomial(n-1, k)*binomial(2*n+1-2*k, n+1)+binomial(n-1, k+1)*binomial(2*n-2*k, n+1))) / 3; \\ Max Alekseyev, Dec 10 2017
    
  • Sage
    [(1/3)*sum(binomial(n-1, k)*(binomial(n-1, k)*binomial(2*n+1-2*k, n+1) + binomial(n-1, k+1)*binomial(2*n-2*k, n+1))  for k in range(1+floor(n/2))) for n in (1..25)] # G. C. Greubel, Nov 24 2018

Formula

a(n) = A110706(n) / 6 for n >= 1.
n*(n+1)*a(n) - (n+1)*(7*n-4)*a(n-1) - 8*(n-2)^2*a(n-2) = 0. - R. J. Mathar, Nov 01 2015 from A110706

Extensions

a(0)=1 prepended by Alois P. Heinz, Sep 09 2023

A190826 Number of permutations of 3 copies of 1..n introduced in order 1..n with no element equal to another within a distance of 1.

Original entry on oeis.org

1, 0, 1, 29, 1721, 163386, 22831355, 4420321081, 1133879136649, 372419001449076, 152466248712342181, 76134462292157828285, 45552714996556390334921, 32173493282909179882613934, 26487410329744429030530295991, 25143126122564855343240882599761, 27260957330891104469298062949026065
Offset: 0

Views

Author

R. H. Hardin, May 21 2011

Keywords

Examples

			Some of the a(3) = 29 solutions for n=3: 123232131, 123121323, 123123213, 123212313, 123213123, 121323132, 123132312, 123123123, 123231213, 121323123, 121321323, 121312323, 121323231, 123231321, 121313232, 123132321, ...
		

Crossrefs

Row n=3 of A322013.

Programs

  • Magma
    B:=Binomial;
    f:= func< n,j | (&+[B(n,k)*B(2*k,j)*(-3)^(k-j): k in [Ceiling(j/2)..n]]) >;
    A190826:= func< n | (-1/2)^n*(&+[Factorial(j)*B(n+j,j)*f(n,j): j in [0..2*n]]) >;
    [A190826(n): n in [0..30]]; // G. C. Greubel, Sep 22 2023
    
  • Mathematica
    a[n_]:= 1/(6^n*n!)*Sum[(n+j)! Sum[Binomial[n,k] Binomial[2k,j] (-3)^(n+k-j), {k, Ceiling[j/2], n}], {j,0,2n}]; Array[a, 16, 0] (* Jean-François Alcover, Jul 22 2017, after Tani Akinari's code for A193638 *)
  • SageMath
    b=binomial;
    def f(j,n): return sum(b(n,k)*b(2*k,j)*(-3)^(k-j) for k in range((j//2),n+1))
    def A190826(n): return (-1/2)^n*sum(factorial(j)*b(n+j,j)*f(j,n) for j in range(2*n+1))
    [A190826(n) for n in range(31)] # G. C. Greubel, Sep 22 2023

Formula

a(n) = A193624(n)/(6^n * n!), for n >= 1.
a(n) = A193638(n)/n!, for n >= 1.
a(n) = A192990(binomial(n+2,3)) / (6^n * n!), for n >= 1.
2*a(n) -3*(3*n^2-3*n+4)*a(n-1) +2*(9*n^2-42*n+47)*a(n-2) +8*(3*n-7)*a(n-3) -8*a(n-4) = 0. - R. J. Mathar, May 23 2014
a(n) = (1/(6^n * n!)) * Sum_{j=0..2*n} Sum_{k=ceiling(j/2)..n} (n+j)! * binomial(2*k, j) * binomial(n, k) * (-3)^(n+k-j). - Jean-François Alcover, Jul 22 2017
a(n) ~ 3^(2*n + 1/2) * n^(2*n) / (2^n * exp(2*n + 2)). - Vaclav Kotesovec, Nov 24 2018

Extensions

a(0)=1 prepended by Alois P. Heinz, Jul 22 2017

A190830 Number of permutations of 4 copies of 1..n introduced in order 1..n with no element equal to another within a distance of 1.

Original entry on oeis.org

1, 0, 1, 182, 94376, 98371884, 182502973885, 551248360550999, 2536823683737613858, 16904301142107043464659, 156690501089429126239232946, 1955972150994131850032960933480, 32016987304767134806200915633253966, 672058204939482014438623912695190927357
Offset: 0

Views

Author

R. H. Hardin, May 21 2011

Keywords

Examples

			Some solutions for n=3:
  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1
  2  2  2  2  2  2  2  2  2  2  2  2  2  2  2  2
  3  1  3  3  1  3  3  3  3  3  3  1  1  3  1  1
  1  2  2  2  2  2  2  1  1  2  1  3  3  1  3  2
  2  3  3  3  1  1  3  2  2  3  2  1  2  3  1  1
  3  2  1  2  3  2  1  3  1  1  3  2  3  2  2  3
  1  3  2  3  2  3  3  1  3  2  2  3  2  1  3  1
  3  2  3  1  3  1  2  3  1  1  1  2  1  3  2  3
  1  1  1  3  1  3  1  2  2  3  3  3  2  2  3  2
  2  3  2  1  3  2  3  1  3  1  1  2  3  3  1  3
  3  1  1  2  2  3  1  3  2  2  2  3  1  1  3  2
  2  3  3  1  3  1  2  2  3  3  3  1  3  2  2  3
		

Crossrefs

Row n=4 of A322013.

Formula

From Vaclav Kotesovec, Nov 24 2018: (Start)
Recurrence: 3*(64*n^3 - 280*n^2 + 414*n - 245)*a(n) = (2048*n^6 - 12032*n^5 + 30400*n^4 - 42608*n^3 + 32484*n^2 - 14624*n + 1731)*a(n-1) + 3*(3840*n^5 - 20640*n^4 + 40104*n^3 - 36340*n^2 + 23378*n - 13429)*a(n-2) - 18*(384*n^4 - 1488*n^3 + 1556*n^2 - 986*n + 649)*a(n-3) - 27*(64*n^3 - 88*n^2 + 46*n - 47)*a(n-4).
a(n) ~ 2^(5*n+1) * n^(3*n) / (3^n * exp(3*n + 3)). (End)

Extensions

a(0)=1 prepended by Seiichi Manyama, Nov 16 2018

A190833 Number of permutations of 5 copies of 1..n introduced in order 1..n with no element equal to another within a distance of 1.

Original entry on oeis.org

1, 0, 1, 1198, 5609649, 66218360625, 1681287695542855, 81644850343968535401, 6945222145021508480249929, 967335448974819561548523580438, 209141786137614009701487336108267723
Offset: 0

Views

Author

R. H. Hardin, May 21 2011

Keywords

Examples

			Some solutions for n=3
..1....1....1....1....1....1....1....1....1....1....1....1....1....1....1....1
..2....2....2....2....2....2....2....2....2....2....2....2....2....2....2....2
..3....1....3....3....3....3....3....3....3....3....1....1....3....3....1....3
..2....2....2....2....1....2....2....2....1....1....2....3....2....2....3....2
..3....3....3....3....2....1....3....1....2....3....3....2....1....1....2....3
..1....2....1....2....3....2....1....3....3....1....1....1....3....2....3....2
..2....3....3....3....1....3....3....2....2....3....2....3....1....1....1....1
..1....1....1....1....3....1....1....3....1....2....3....2....3....3....2....2
..3....2....2....3....2....3....3....2....3....3....2....3....2....2....3....3
..1....3....1....1....3....1....2....3....2....1....3....1....3....1....1....1
..3....1....3....2....2....2....3....1....3....2....1....3....2....3....2....2
..1....3....2....1....3....3....2....3....1....3....3....2....1....2....3....3
..2....2....1....2....1....1....1....1....2....2....1....3....3....3....1....1
..3....1....2....1....2....2....2....2....1....1....3....2....2....1....2....3
..2....3....3....3....1....3....1....1....3....2....2....1....1....3....3....1
		

Crossrefs

Row n=5 of A322013.

Formula

From Vaclav Kotesovec, Nov 24 2018: (Start)
Recurrence: 72*(2562500*n^6 - 28700000*n^5 + 132339375*n^4 - 325827750*n^3 + 454176325*n^2 - 335170330*n + 94842168)*a(n) = 3*(1601562500*n^10 - 21140625000*n^9 + 123391796875*n^8 - 423007187500*n^7 + 944775218750*n^6 - 1434958662500*n^5 + 1501190434375*n^4 - 1066734651000*n^3 + 489294264300*n^2 - 138373925520*n + 5253272832)*a(n-1) + 40*(2946875000*n^9 - 37425312500*n^8 + 202210281250*n^7 - 613007709375*n^6 + 1158238267500*n^5 - 1429774838250*n^4 + 1130386059700*n^3 - 439029380875*n^2 - 90639409450*n + 124751567448)*a(n-2) - 1440*(166562500*n^8 - 1865500000*n^7 + 8477778125*n^6 - 20572469375*n^5 + 30057234250*n^4 - 27819019325*n^3 + 13875953795*n^2 + 328927290*n - 3329053712)*a(n-3) - 5760*(15375000*n^7 - 133762500*n^6 + 442461250*n^5 - 764293375*n^4 + 806629450*n^3 - 482585405*n^2 + 27997588*n + 122388456)*a(n-4) + 6912*(2562500*n^6 - 13325000*n^5 + 27276875*n^4 - 32220250*n^3 + 22166825*n^2 - 3068430*n - 5777712)*a(n-5).
a(n) ~ 5^(4*n + 1/2) * n^(4*n) / (24^n * exp(4*n + 4)). (End)

Extensions

a(0)=1 prepended by Seiichi Manyama, Nov 16 2018

A190835 Number of permutations of 6 copies of 1..n introduced in order 1..n with no element equal to another within a distance of 1.

Original entry on oeis.org

1, 0, 1, 8142, 351574834, 47940557125969, 16985819072511102549, 13519747358522016160671387, 21671513613423101256198918372909, 64311863997340571475504065539218471107, 330586922756304429697714946501284146322953006
Offset: 0

Views

Author

R. H. Hardin, May 21 2011

Keywords

Examples

			Some solutions for n=3
..1....1....1....1....1....1....1....1....1....1....1....1....1....1....1....1
..2....2....2....2....2....2....2....2....2....2....2....2....2....2....2....2
..3....3....1....3....1....3....3....3....1....1....3....3....3....3....3....3
..2....2....3....2....3....2....2....1....2....3....1....1....2....2....2....1
..1....3....2....3....2....1....3....3....1....2....3....3....3....3....1....2
..2....1....3....1....3....3....1....2....3....3....2....2....2....1....3....1
..3....2....1....2....1....2....3....3....1....2....3....3....1....2....2....2
..2....1....3....3....3....1....2....2....3....3....1....1....3....3....3....3
..3....2....2....1....2....2....1....3....2....2....2....3....1....2....2....2
..1....3....3....3....3....3....2....1....3....1....1....1....3....1....1....1
..3....1....2....2....2....1....1....3....2....3....2....2....2....3....3....3
..1....2....1....3....1....3....2....1....3....1....1....3....1....2....1....1
..3....3....2....2....3....1....1....2....2....2....3....2....2....1....2....2
..1....1....3....1....2....3....3....3....1....3....2....3....1....3....1....3
..2....3....2....3....1....2....1....1....2....1....1....2....3....1....2....2
..3....1....1....1....2....1....3....2....3....3....3....1....1....2....3....3
..1....3....3....2....3....2....2....1....1....2....2....2....2....1....1....1
..2....2....1....1....1....3....3....2....3....1....3....1....3....3....3....3
		

Crossrefs

Row n=6 of A322013.

Formula

a(n) ~ sqrt(6) * 324^n * n^(5*n) / (5^n * exp(5*n + 5)). - Vaclav Kotesovec, Nov 24 2018

Extensions

a(0)=1 prepended by Seiichi Manyama, Nov 16 2018

A190918 Number of permutations of n copies of 1..4 introduced in order 1..4 with no element equal to another within a distance of 1.

Original entry on oeis.org

1, 36, 1721, 94376, 5609649, 351574834, 22875971289, 1530622143864, 104650147201049, 7279277647839552, 513492654638478897, 36647810215955194122, 2641438793287744496337, 191996676519223794534702, 14057702378132873242943289, 1035863834231020871413190808
Offset: 1

Views

Author

R. H. Hardin, May 23 2011

Keywords

Examples

			Some solutions for n=2:
..1....1....1....1....1....1....1....1....1....1....1....1....1....1....1....1
..2....2....2....2....2....2....2....2....2....2....2....2....2....2....2....2
..3....3....3....3....3....3....3....1....3....3....1....3....3....3....1....3
..4....1....4....2....4....1....2....3....4....4....3....4....1....2....2....4
..2....4....1....4....1....4....4....4....2....2....4....3....4....4....3....2
..4....2....2....3....3....2....1....3....3....1....2....1....3....1....4....4
..3....3....4....1....4....4....3....4....4....4....3....4....4....4....3....1
..1....4....3....4....2....3....4....2....1....3....4....2....2....3....4....3
		

Crossrefs

Column k=4 of A322013.
Cf. A000012 (b=2), A190917 (b=3), A190920 (b=5), A190923 (b=6), A190927 (b=7), A190932 (b=8), A321987 (b=9).

Formula

Conjecture: n^3 *(n-1) *(2*n+1) *(5*n-7) *a(n) -2*(n-1) *(415*n^5 -1026*n^4 +727*n^3 -90*n^2 -98*n +36)*a(n-1) +(1630*n^4 -6387*n^3 +7388*n^2 +111*n -3510) *(n-2)^2 *a(n-2) -162*(3+5*n) *(n-2)^2 *(n-3)^3 *a(n-3)=0. - R. J. Mathar, Nov 01 2015
a(n) ~ 3^(4*n-2) / (Pi*n)^(3/2). - Vaclav Kotesovec, Nov 24 2018

A190920 Number of permutations of n copies of 1..5 introduced in order 1..5 with no element equal to another within a distance of 1.

Original entry on oeis.org

1, 329, 163386, 98371884, 66218360625, 47940557125969, 36533294879349056, 28920026907938624194, 23575497690601916022516, 19672658572012343899666292, 16730974132035148942028759656, 14455459908454408519322566567054
Offset: 1

Views

Author

R. H. Hardin, May 23 2011

Keywords

Examples

			Some solutions for n=2
..1....1....1....1....1....1....1....1....1....1....1....1....1....1....1....1
..2....2....2....2....2....2....2....2....2....2....2....2....2....2....2....2
..3....3....3....3....3....3....3....3....1....3....3....3....3....3....3....3
..4....4....2....1....4....4....4....4....3....4....4....4....1....4....4....4
..1....5....4....4....1....5....3....5....4....5....3....5....4....3....2....5
..5....3....5....2....5....2....4....4....5....2....2....3....5....2....3....2
..2....2....4....3....4....1....5....5....2....4....5....5....4....5....5....5
..5....1....3....5....2....3....1....1....4....3....1....4....2....1....4....4
..3....4....5....4....3....4....5....3....5....5....5....1....5....4....1....3
..4....5....1....5....5....5....2....2....3....1....4....2....3....5....5....1
		

Crossrefs

Column k=5 of A322013.
Cf. A000012 (b=2), A190917 (b=3), A190918 (b=4), A190923 (b=6), A190927 (b=7), A190932 (b=8), A321987 (b=9).

Formula

a(n) ~ 25 * sqrt(5) * 2^(10*n-7) / (27 * Pi^2 * n^2). - Vaclav Kotesovec, Nov 24 2018

A190923 Number of permutations of n copies of 1..6 introduced in order 1..6 with no element equal to another within a distance of 1.

Original entry on oeis.org

1, 3655, 22831355, 182502973885, 1681287695542855, 16985819072511102549, 183095824753841610373405, 2070756746775910218326948065, 24302858067615766089801166488125, 293736218147318801678882792470437721
Offset: 1

Views

Author

R. H. Hardin, May 23 2011

Keywords

Examples

			Some solutions for n=2
..1....1....1....1....1....1....1....1....1....1....1....1....1....1....1....1
..2....2....2....2....2....2....2....2....2....2....2....2....2....2....2....2
..3....3....3....3....3....3....3....3....3....3....3....3....3....3....3....3
..4....2....4....4....4....2....4....4....4....4....4....4....4....4....4....4
..5....4....5....5....5....4....1....5....5....2....5....1....5....5....1....3
..1....5....4....3....3....1....3....4....2....5....6....4....6....6....5....4
..4....6....2....2....6....4....5....5....4....6....1....5....3....2....2....2
..5....3....1....6....5....5....6....1....5....5....5....6....2....6....6....5
..2....5....6....5....6....3....5....6....3....3....3....2....6....3....3....1
..6....6....5....6....2....6....4....3....6....4....6....5....4....1....6....6
..3....1....6....1....1....5....2....6....1....1....2....6....5....4....5....5
..6....4....3....4....4....6....6....2....6....6....4....3....1....5....4....6
		

Crossrefs

Column k=6 of A322013.
Cf. A000012 (b=2), A190917 (b=3), A190918 (b=4), A190920 (b=5), A190927 (b=7), A190932 (b=8), A321987 (b=9).

Formula

a(n) ~ 9 * 5^(6*n-2) / (128 * sqrt(2) * Pi^(5/2) * n^(5/2)). - Vaclav Kotesovec, Nov 24 2018
Showing 1-10 of 22 results. Next