A278990
Number of loopless linear chord diagrams with n chords.
Original entry on oeis.org
1, 0, 1, 5, 36, 329, 3655, 47844, 721315, 12310199, 234615096, 4939227215, 113836841041, 2850860253240, 77087063678521, 2238375706930349, 69466733978519340, 2294640596998068569, 80381887628910919255, 2976424482866702081004, 116160936719430292078411
Offset: 0
- Seiichi Manyama, Table of n, a(n) for n = 0..404 (terms 0..200 from Gheorghe Coserea)
- Dmitry Efimov, The hafnian of Toeplitz matrices of a special type, perfect matchings and Bessel polynomials, arXiv:1904.08651 [math.CO], 2019.
- H. Eriksson and A. Martin, Enumeration of Carlitz multipermutations, arXiv:1702.04177 [math.CO], 2017.
- E. Krasko, I. Labutin, and A. Omelchenko, Enumeration of labelled and unlabelled Hamiltonian Cycles in complete k-partite graphs, arXiv:1709.03218 [math.CO], 2017, Table 1.
- E. Krasko and A. Omelchenko, Enumeration of Chord Diagrams without Loops and Parallel Chords, arXiv:1601.05073 [math.CO], 2016.
- E. Krasko and A. Omelchenko, Enumeration of Chord Diagrams without Loops and Parallel Chords, The Electronic Journal of Combinatorics, 24(3) (2017), #P3.43.
- Gus Wiseman, The a(4) = 36 loopless linear chord diagrams.
- Donovan Young, Counting Bubbles in Linear Chord Diagrams, arXiv:2311.01569 [math.CO], 2023.
- Donovan Young, Bubbles in Linear Chord Diagrams: Bridges and Crystallized Diagrams, arXiv:2408.17232 [math.CO], 2024.
Cf.
A000110,
A000699 (topologically connected 2-uniform),
A000806,
A001147 (2-uniform),
A003436 (cyclical version),
A005493,
A170941,
A190823 (distance 3+ version),
A322402,
A324011,
A324172.
Other sequences involving the multiset {1,1,2,2,...,n,n}:
A001147,
A007717,
A020555,
A094574,
A316972.
-
[n le 2 select 2-n else (2*n-3)*Self(n-1) + Self(n-2): n in [1..30]]; // G. C. Greubel, Sep 26 2023
-
RecurrenceTable[{a[n]== (2n-1)a[n-1] +a[n-2], a[0]==1, a[1]==0}, a, {n,0,20}] (* Vaclav Kotesovec, Sep 15 2017 *)
FullSimplify[Table[-I*(BesselI[1/2+n,-1] BesselK[3/2,1] - BesselI[3/2,-1] BesselK[1/2+ n,1]), {n,0,20}]] (* Vaclav Kotesovec, Sep 15 2017 *)
Table[(2 n-1)!! Hypergeometric1F1[-n,-2 n,-2], {n,0,20}] (* Eric W. Weisstein, Nov 14 2018 *)
Table[Sqrt[2/Pi]/E ((-1)^n Pi BesselI[1/2+n,1] +BesselK[1/2+n,1]), {n,0,20}] // FunctionExpand // FullSimplify (* Eric W. Weisstein, Nov 14 2018 *)
twouniflin[{}]:={{}};twouniflin[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@twouniflin[Complement[set,s]]]/@Table[{i,j},{j,Select[set,#>i+1&]}];
Table[Length[twouniflin[Range[n]]],{n,0,14,2}] (* Gus Wiseman, Feb 27 2019 *)
-
seq(N) = {
my(a = vector(N)); a[1] = 0; a[2] = 1;
for (n = 3, N, a[n] = (2*n-1)*a[n-1] + a[n-2]);
concat(1, a);
};
seq(20) \\ Gheorghe Coserea, Dec 09 2016
-
def A278990_list(prec):
P. = PowerSeriesRing(QQ, prec)
return P( exp(-1+sqrt(1-2*x))/sqrt(1-2*x) ).egf_to_ogf().list()
A278990_list(30) # G. C. Greubel, Sep 26 2023
A322093
Square array A(n,k), n >= 1, k >= 1, read by antidiagonals, where A(n,k) is the number of permutations of n copies of 1..k with no element equal to another within a distance of 1.
Original entry on oeis.org
1, 2, 0, 6, 2, 0, 24, 30, 2, 0, 120, 864, 174, 2, 0, 720, 39480, 41304, 1092, 2, 0, 5040, 2631600, 19606320, 2265024, 7188, 2, 0, 40320, 241133760, 16438575600, 11804626080, 134631576, 48852, 2, 0, 362880, 29083420800, 22278418248240, 131402141197200, 7946203275000, 8437796016, 339720, 2, 0
Offset: 1
Square array begins:
1, 2, 6, 24, 120, 720, ...
0, 2, 30, 864, 39480, 2631600, ...
0, 2, 174, 41304, 19606320, 16438575600, ...
0, 2, 1092, 2265024, 11804626080, 131402141197200, ...
0, 2, 7188, 134631576, 7946203275000, 1210527140790855600, ...
-
Table[Table[SeriesCoefficient[1/(1 - Sum[x[i]/(1 + x[i]), {i, 1, n}]), Sequence @@ Table[{x[i], 0, k}, {i, 1, n}]],{n, 1, 6}], {k, 1, 5}] (* Zlatko Damijanic, Nov 03 2024 *)
-
q(n,x) = sum(i=1, n, (-1)^(n-i) * binomial(n-1, n-i) * x^i/i!)
T(n,k) = subst(serlaplace(q(n,x)^k), x, 1) \\ Andrew Howroyd, Feb 03 2024
A190917
Number of permutations of n copies of 1..3 introduced in order 1..3 with no element equal to another within a distance of 1.
Original entry on oeis.org
1, 1, 5, 29, 182, 1198, 8142, 56620, 400598, 2872754, 20824778, 152303410, 1122149800, 8319825040, 62017475600, 464452683432, 3492568119566, 26358270711370, 199565061455634, 1515311001158482, 11535716330003876, 88025068713285476, 673124069796140900
Offset: 0
All solutions for n=2:
1 1 1 1 1
2 2 2 2 2
3 3 3 3 1
1 2 2 1 3
3 3 1 2 2
2 1 3 3 3
-
[(&+[Binomial(n-1, k)*(Binomial(n-1, k)*Binomial(2*n+1-2*k, n+1) + Binomial(n-1, k+1)*Binomial(2*n-2*k, n+1)): k in [0..Floor(n/2)]])/3: n in [1..25]]; // G. C. Greubel, Nov 24 2018
-
a:= proc(n) option remember; `if`(n<3, [1$2, 5][n+1],
((7*n-4)*a(n-1)+8*(n-2)^2*a(n-2)/(n+1))/n)
end:
seq(a(n), n=0..22); # Alois P. Heinz, Sep 09 2023
-
Table[(1/3)*Sum[Binomial[n-1, k]*(Binomial[n-1, k]*Binomial[2*n+1-2*k, n+1] + Binomial[n-1, k+1]*Binomial[2*n-2*k, n+1]), {k,0,Floor[n/2]}], {n,1,25}] (* G. C. Greubel, Nov 24 2018 *)
-
A190917(n) = sum(k=0, n\2, binomial(n-1, k)*(binomial(n-1, k)*binomial(2*n+1-2*k, n+1)+binomial(n-1, k+1)*binomial(2*n-2*k, n+1))) / 3; \\ Max Alekseyev, Dec 10 2017
-
[(1/3)*sum(binomial(n-1, k)*(binomial(n-1, k)*binomial(2*n+1-2*k, n+1) + binomial(n-1, k+1)*binomial(2*n-2*k, n+1)) for k in range(1+floor(n/2))) for n in (1..25)] # G. C. Greubel, Nov 24 2018
A190826
Number of permutations of 3 copies of 1..n introduced in order 1..n with no element equal to another within a distance of 1.
Original entry on oeis.org
1, 0, 1, 29, 1721, 163386, 22831355, 4420321081, 1133879136649, 372419001449076, 152466248712342181, 76134462292157828285, 45552714996556390334921, 32173493282909179882613934, 26487410329744429030530295991, 25143126122564855343240882599761, 27260957330891104469298062949026065
Offset: 0
Some of the a(3) = 29 solutions for n=3: 123232131, 123121323, 123123213, 123212313, 123213123, 121323132, 123132312, 123123123, 123231213, 121323123, 121321323, 121312323, 121323231, 123231321, 121313232, 123132321, ...
-
B:=Binomial;
f:= func< n,j | (&+[B(n,k)*B(2*k,j)*(-3)^(k-j): k in [Ceiling(j/2)..n]]) >;
A190826:= func< n | (-1/2)^n*(&+[Factorial(j)*B(n+j,j)*f(n,j): j in [0..2*n]]) >;
[A190826(n): n in [0..30]]; // G. C. Greubel, Sep 22 2023
-
a[n_]:= 1/(6^n*n!)*Sum[(n+j)! Sum[Binomial[n,k] Binomial[2k,j] (-3)^(n+k-j), {k, Ceiling[j/2], n}], {j,0,2n}]; Array[a, 16, 0] (* Jean-François Alcover, Jul 22 2017, after Tani Akinari's code for A193638 *)
-
b=binomial;
def f(j,n): return sum(b(n,k)*b(2*k,j)*(-3)^(k-j) for k in range((j//2),n+1))
def A190826(n): return (-1/2)^n*sum(factorial(j)*b(n+j,j)*f(j,n) for j in range(2*n+1))
[A190826(n) for n in range(31)] # G. C. Greubel, Sep 22 2023
A190830
Number of permutations of 4 copies of 1..n introduced in order 1..n with no element equal to another within a distance of 1.
Original entry on oeis.org
1, 0, 1, 182, 94376, 98371884, 182502973885, 551248360550999, 2536823683737613858, 16904301142107043464659, 156690501089429126239232946, 1955972150994131850032960933480, 32016987304767134806200915633253966, 672058204939482014438623912695190927357
Offset: 0
Some solutions for n=3:
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
3 1 3 3 1 3 3 3 3 3 3 1 1 3 1 1
1 2 2 2 2 2 2 1 1 2 1 3 3 1 3 2
2 3 3 3 1 1 3 2 2 3 2 1 2 3 1 1
3 2 1 2 3 2 1 3 1 1 3 2 3 2 2 3
1 3 2 3 2 3 3 1 3 2 2 3 2 1 3 1
3 2 3 1 3 1 2 3 1 1 1 2 1 3 2 3
1 1 1 3 1 3 1 2 2 3 3 3 2 2 3 2
2 3 2 1 3 2 3 1 3 1 1 2 3 3 1 3
3 1 1 2 2 3 1 3 2 2 2 3 1 1 3 2
2 3 3 1 3 1 2 2 3 3 3 1 3 2 2 3
A190833
Number of permutations of 5 copies of 1..n introduced in order 1..n with no element equal to another within a distance of 1.
Original entry on oeis.org
1, 0, 1, 1198, 5609649, 66218360625, 1681287695542855, 81644850343968535401, 6945222145021508480249929, 967335448974819561548523580438, 209141786137614009701487336108267723
Offset: 0
Some solutions for n=3
..1....1....1....1....1....1....1....1....1....1....1....1....1....1....1....1
..2....2....2....2....2....2....2....2....2....2....2....2....2....2....2....2
..3....1....3....3....3....3....3....3....3....3....1....1....3....3....1....3
..2....2....2....2....1....2....2....2....1....1....2....3....2....2....3....2
..3....3....3....3....2....1....3....1....2....3....3....2....1....1....2....3
..1....2....1....2....3....2....1....3....3....1....1....1....3....2....3....2
..2....3....3....3....1....3....3....2....2....3....2....3....1....1....1....1
..1....1....1....1....3....1....1....3....1....2....3....2....3....3....2....2
..3....2....2....3....2....3....3....2....3....3....2....3....2....2....3....3
..1....3....1....1....3....1....2....3....2....1....3....1....3....1....1....1
..3....1....3....2....2....2....3....1....3....2....1....3....2....3....2....2
..1....3....2....1....3....3....2....3....1....3....3....2....1....2....3....3
..2....2....1....2....1....1....1....1....2....2....1....3....3....3....1....1
..3....1....2....1....2....2....2....2....1....1....3....2....2....1....2....3
..2....3....3....3....1....3....1....1....3....2....2....1....1....3....3....1
A190835
Number of permutations of 6 copies of 1..n introduced in order 1..n with no element equal to another within a distance of 1.
Original entry on oeis.org
1, 0, 1, 8142, 351574834, 47940557125969, 16985819072511102549, 13519747358522016160671387, 21671513613423101256198918372909, 64311863997340571475504065539218471107, 330586922756304429697714946501284146322953006
Offset: 0
Some solutions for n=3
..1....1....1....1....1....1....1....1....1....1....1....1....1....1....1....1
..2....2....2....2....2....2....2....2....2....2....2....2....2....2....2....2
..3....3....1....3....1....3....3....3....1....1....3....3....3....3....3....3
..2....2....3....2....3....2....2....1....2....3....1....1....2....2....2....1
..1....3....2....3....2....1....3....3....1....2....3....3....3....3....1....2
..2....1....3....1....3....3....1....2....3....3....2....2....2....1....3....1
..3....2....1....2....1....2....3....3....1....2....3....3....1....2....2....2
..2....1....3....3....3....1....2....2....3....3....1....1....3....3....3....3
..3....2....2....1....2....2....1....3....2....2....2....3....1....2....2....2
..1....3....3....3....3....3....2....1....3....1....1....1....3....1....1....1
..3....1....2....2....2....1....1....3....2....3....2....2....2....3....3....3
..1....2....1....3....1....3....2....1....3....1....1....3....1....2....1....1
..3....3....2....2....3....1....1....2....2....2....3....2....2....1....2....2
..1....1....3....1....2....3....3....3....1....3....2....3....1....3....1....3
..2....3....2....3....1....2....1....1....2....1....1....2....3....1....2....2
..3....1....1....1....2....1....3....2....3....3....3....1....1....2....3....3
..1....3....3....2....3....2....2....1....1....2....2....2....2....1....1....1
..2....2....1....1....1....3....3....2....3....1....3....1....3....3....3....3
A190918
Number of permutations of n copies of 1..4 introduced in order 1..4 with no element equal to another within a distance of 1.
Original entry on oeis.org
1, 36, 1721, 94376, 5609649, 351574834, 22875971289, 1530622143864, 104650147201049, 7279277647839552, 513492654638478897, 36647810215955194122, 2641438793287744496337, 191996676519223794534702, 14057702378132873242943289, 1035863834231020871413190808
Offset: 1
Some solutions for n=2:
..1....1....1....1....1....1....1....1....1....1....1....1....1....1....1....1
..2....2....2....2....2....2....2....2....2....2....2....2....2....2....2....2
..3....3....3....3....3....3....3....1....3....3....1....3....3....3....1....3
..4....1....4....2....4....1....2....3....4....4....3....4....1....2....2....4
..2....4....1....4....1....4....4....4....2....2....4....3....4....4....3....2
..4....2....2....3....3....2....1....3....3....1....2....1....3....1....4....4
..3....3....4....1....4....4....3....4....4....4....3....4....4....4....3....1
..1....4....3....4....2....3....4....2....1....3....4....2....2....3....4....3
A190920
Number of permutations of n copies of 1..5 introduced in order 1..5 with no element equal to another within a distance of 1.
Original entry on oeis.org
1, 329, 163386, 98371884, 66218360625, 47940557125969, 36533294879349056, 28920026907938624194, 23575497690601916022516, 19672658572012343899666292, 16730974132035148942028759656, 14455459908454408519322566567054
Offset: 1
Some solutions for n=2
..1....1....1....1....1....1....1....1....1....1....1....1....1....1....1....1
..2....2....2....2....2....2....2....2....2....2....2....2....2....2....2....2
..3....3....3....3....3....3....3....3....1....3....3....3....3....3....3....3
..4....4....2....1....4....4....4....4....3....4....4....4....1....4....4....4
..1....5....4....4....1....5....3....5....4....5....3....5....4....3....2....5
..5....3....5....2....5....2....4....4....5....2....2....3....5....2....3....2
..2....2....4....3....4....1....5....5....2....4....5....5....4....5....5....5
..5....1....3....5....2....3....1....1....4....3....1....4....2....1....4....4
..3....4....5....4....3....4....5....3....5....5....5....1....5....4....1....3
..4....5....1....5....5....5....2....2....3....1....4....2....3....5....5....1
A190923
Number of permutations of n copies of 1..6 introduced in order 1..6 with no element equal to another within a distance of 1.
Original entry on oeis.org
1, 3655, 22831355, 182502973885, 1681287695542855, 16985819072511102549, 183095824753841610373405, 2070756746775910218326948065, 24302858067615766089801166488125, 293736218147318801678882792470437721
Offset: 1
Some solutions for n=2
..1....1....1....1....1....1....1....1....1....1....1....1....1....1....1....1
..2....2....2....2....2....2....2....2....2....2....2....2....2....2....2....2
..3....3....3....3....3....3....3....3....3....3....3....3....3....3....3....3
..4....2....4....4....4....2....4....4....4....4....4....4....4....4....4....4
..5....4....5....5....5....4....1....5....5....2....5....1....5....5....1....3
..1....5....4....3....3....1....3....4....2....5....6....4....6....6....5....4
..4....6....2....2....6....4....5....5....4....6....1....5....3....2....2....2
..5....3....1....6....5....5....6....1....5....5....5....6....2....6....6....5
..2....5....6....5....6....3....5....6....3....3....3....2....6....3....3....1
..6....6....5....6....2....6....4....3....6....4....6....5....4....1....6....6
..3....1....6....1....1....5....2....6....1....1....2....6....5....4....5....5
..6....4....3....4....4....6....6....2....6....6....4....3....1....5....4....6
Showing 1-10 of 22 results.
Comments