cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A322013 Square array A(n,k), n >= 1, k >= 1, read by antidiagonals, where A(n,k) is the number of permutations of n copies of 1..k introduced in order 1..k with no element equal to another within a distance of 1.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 5, 1, 0, 1, 36, 29, 1, 0, 1, 329, 1721, 182, 1, 0, 1, 3655, 163386, 94376, 1198, 1, 0, 1, 47844, 22831355, 98371884, 5609649, 8142, 1, 0, 1, 721315, 4420321081, 182502973885, 66218360625, 351574834, 56620, 1, 0
Offset: 1

Views

Author

Seiichi Manyama, Nov 24 2018

Keywords

Examples

			Square array begins:
   1, 1,     1,         1,              1,                    1, ...
   0, 1,     5,        36,            329,                 3655, ...
   0, 1,    29,      1721,         163386,             22831355, ...
   0, 1,   182,     94376,       98371884,         182502973885, ...
   0, 1,  1198,   5609649,    66218360625,     1681287695542855, ...
   0, 1,  8142, 351574834, 47940557125969, 16985819072511102549, ...
		

Crossrefs

Main diagonal gives A321666.

Programs

  • PARI
    q(n,x) = sum(i=1, n, (-1)^(n-i) * binomial(n-1, n-i) * x^i/i!)
    T(n,k) = subst(serlaplace(q(n,x)^k), x, 1)/k! \\ Andrew Howroyd, Feb 03 2024

Formula

T(n,k) = A322093(n,k) / k!. - Andrew Howroyd, Feb 03 2024

A348818 a(n) = number of chord labeled loopless diagrams by number of K_5.

Original entry on oeis.org

0, 1, 866, 4446741, 55279816356, 1450728060971387, 72078730629785795963, 6235048155225093080061949, 879601407931825739964190440635, 192100729970218737700046212217095291, 62258393664270652226502315136978421947948, 28913744296806659870889046765907226809528931041
Offset: 1

Views

Author

Michael De Vlieger, Nov 01 2021

Keywords

Crossrefs

Extensions

a(9) onwards from Andrew Howroyd, Feb 05 2024

A348819 a(n) = number of loopless diagrams by number of K_5 up to rotational symmetry.

Original entry on oeis.org

0, 1, 60, 222477, 2211192688, 48357603758012, 2059392303708166507, 155876203880714141444480
Offset: 1

Views

Author

Michael De Vlieger, Nov 01 2021

Keywords

Crossrefs

A321666 Number of arrangements of n 1's, n 2's, ..., n n's avoiding equal consecutive terms and introduced in ascending order.

Original entry on oeis.org

1, 1, 1, 29, 94376, 66218360625, 16985819072511102549, 2421032324142610480402567434373, 271259741131895052775392614041761701799270286, 32119646666355552112999645991677870426882424139287301894021793
Offset: 0

Views

Author

Seiichi Manyama, Nov 16 2018

Keywords

Crossrefs

Programs

  • PARI
    {a(n) = sum(i=n, n^2, i!*polcoef(sum(j=1, n, (-1)^(n-j)*binomial(n-1, j-1)*x^j/j!)^n, i))/n!} \\ Seiichi Manyama, May 27 2019

Formula

a(n) = A321634(n)/n!.
a(n) ~ exp(5/12) * n^((n-1)*(2*n-1)/2) / (2*Pi)^(n/2). - Vaclav Kotesovec, Nov 24 2018

A321669 Number of permutations of 9 copies of 1..n introduced in order 1..n with no element equal to another within a distance of 1.

Original entry on oeis.org

1, 0, 1, 2872754, 104650147201049, 23575497690601916022516, 24302858067615766089801166488125, 91155245844064069307740171414201519055298, 1046031892354833895113128900608177633584652958677057, 32119646666355552112999645991677870426882424139287301894021793
Offset: 0

Views

Author

Seiichi Manyama, Nov 16 2018

Keywords

Crossrefs

Formula

a(n) ~ 9^(7*n + 1/2) * n^(8*n) / (4480^n * exp(8*(n+1))). - Vaclav Kotesovec, Nov 24 2018

A321670 Number of permutations of 10 copies of 1..n introduced in order 1..n with no element equal to another within a distance of 1.

Original entry on oeis.org

1, 0, 1, 20824778, 7279277647839552, 19672658572012343899666292, 293736218147318801678882792470437721, 18739368045280595665934917472507368174737872589, 4204427313459831775866154680419213479057724331798640498651
Offset: 0

Views

Author

Seiichi Manyama, Nov 16 2018

Keywords

Comments

In general, for r > 1, row r of A322013 is asymptotic to r^(r*n + 1/2) * n^((r-1)*n) / ((r!)^n * exp((r-1)*(n+1))). - Vaclav Kotesovec, Nov 24 2018

Crossrefs

Formula

a(n) ~ 2^(2*n + 1/2) * 5^(8*n + 1/2) * n^(9*n) / (567^n * exp(9*(n+1))). - Vaclav Kotesovec, Nov 24 2018

A348820 a(n) = number of loopless diagrams by number of K_5 up to all symmetries.

Original entry on oeis.org

0, 1, 42, 112418, 1105696796, 24178822553773, 1029696155560021174, 77938101941693076258854
Offset: 1

Views

Author

Michael De Vlieger, Nov 01 2021

Keywords

Crossrefs

A322126 Number of permutations of the multiset {1,1,1,1,1,2,2,2,2,2,3,3,3,3,3,...,n,n,n,n,n} with no two consecutive terms equal.

Original entry on oeis.org

1, 0, 2, 7188, 134631576, 7946203275000, 1210527140790855600, 411490045733601418421040, 280031356887267221923677137280, 351026687723982522494728236869341440, 758933713536173718404757245269681913222400
Offset: 0

Views

Author

Seiichi Manyama, Nov 27 2018

Keywords

Crossrefs

Row 5 of A322093.

Programs

  • Mathematica
    a[n_] := Integrate[(x - 2 * x^2 + x^3 - 1/6 * x^4 + 1/120 * x^5)^n * Exp[-x],  {x, 0, Infinity}]; Array[a, 10, 0] (* Stefano Spezia, Nov 27 2018 *)

Formula

a(n) = n! * A190833(n).
a(n) = Integral_{0..infinity} (x - 2 * x^2 + x^3 - 1/6 * x^4 + 1/120 * x^5)^n * exp(-x) dx.
Showing 1-8 of 8 results.