A322013
Square array A(n,k), n >= 1, k >= 1, read by antidiagonals, where A(n,k) is the number of permutations of n copies of 1..k introduced in order 1..k with no element equal to another within a distance of 1.
Original entry on oeis.org
1, 1, 0, 1, 1, 0, 1, 5, 1, 0, 1, 36, 29, 1, 0, 1, 329, 1721, 182, 1, 0, 1, 3655, 163386, 94376, 1198, 1, 0, 1, 47844, 22831355, 98371884, 5609649, 8142, 1, 0, 1, 721315, 4420321081, 182502973885, 66218360625, 351574834, 56620, 1, 0
Offset: 1
Square array begins:
1, 1, 1, 1, 1, 1, ...
0, 1, 5, 36, 329, 3655, ...
0, 1, 29, 1721, 163386, 22831355, ...
0, 1, 182, 94376, 98371884, 182502973885, ...
0, 1, 1198, 5609649, 66218360625, 1681287695542855, ...
0, 1, 8142, 351574834, 47940557125969, 16985819072511102549, ...
- Seiichi Manyama, Antidiagonals n = 1..53, flattened
- Evgeniy Krasko, Igor Labutin, and Alexander Omelchenko, Enumeration of Labelled and Unlabelled Hamiltonian Cycles in Complete k-partite Graphs, arXiv:1709.03218 [math.CO], 2017.
- Mathematics.StackExchange, Find the number of k 1's, k 2's, ... , k n's - total kn cards, Apr 08 2012.
-
q(n,x) = sum(i=1, n, (-1)^(n-i) * binomial(n-1, n-i) * x^i/i!)
T(n,k) = subst(serlaplace(q(n,x)^k), x, 1)/k! \\ Andrew Howroyd, Feb 03 2024
A348821
a(n) = number of chord labeled loopless diagrams by number of K_6.
Original entry on oeis.org
0, 1, 5812, 276154969, 39738077935264, 14571371516350429940, 11876790400066163254723167, 19372051918038657958659363247949, 58256941603805590330534264712744407687, 302616041649108508974263266688425815263488561, 2575195630881373033515248134269171034879932771154311
Offset: 1
A348822
a(n) = number of loopless diagrams by number of K_6 up to rotational symmetry.
Original entry on oeis.org
0, 1, 335, 11508322, 1324603148183, 404760320241653655, 282780723811372935744420
Offset: 1
A321666
Number of arrangements of n 1's, n 2's, ..., n n's avoiding equal consecutive terms and introduced in ascending order.
Original entry on oeis.org
1, 1, 1, 29, 94376, 66218360625, 16985819072511102549, 2421032324142610480402567434373, 271259741131895052775392614041761701799270286, 32119646666355552112999645991677870426882424139287301894021793
Offset: 0
-
{a(n) = sum(i=n, n^2, i!*polcoef(sum(j=1, n, (-1)^(n-j)*binomial(n-1, j-1)*x^j/j!)^n, i))/n!} \\ Seiichi Manyama, May 27 2019
A321669
Number of permutations of 9 copies of 1..n introduced in order 1..n with no element equal to another within a distance of 1.
Original entry on oeis.org
1, 0, 1, 2872754, 104650147201049, 23575497690601916022516, 24302858067615766089801166488125, 91155245844064069307740171414201519055298, 1046031892354833895113128900608177633584652958677057, 32119646666355552112999645991677870426882424139287301894021793
Offset: 0
A321670
Number of permutations of 10 copies of 1..n introduced in order 1..n with no element equal to another within a distance of 1.
Original entry on oeis.org
1, 0, 1, 20824778, 7279277647839552, 19672658572012343899666292, 293736218147318801678882792470437721, 18739368045280595665934917472507368174737872589, 4204427313459831775866154680419213479057724331798640498651
Offset: 0
A348823
a(n) = number of loopless diagrams by number of K_6 up to all symmetries.
Original entry on oeis.org
0, 1, 203, 5765385, 662305416760, 202380163158922023, 141390361908351519807928
Offset: 1
A321382
Number of permutations of 6 copies of 1..n with no element equal to another within a distance of 1.
Original entry on oeis.org
1, 0, 2, 48852, 8437796016, 5752866855116280, 12229789732207993835280, 68139526686950961449783790480, 873795428893219442649940388795690880, 23337489207354946577030915302871598795308160
Offset: 0
Showing 1-8 of 8 results.
Comments