cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 26 results. Next

A335126 A multiset whose multiplicities are the prime indices of n is inseparable.

Original entry on oeis.org

3, 5, 7, 10, 11, 13, 14, 17, 19, 21, 22, 23, 26, 28, 29, 31, 33, 34, 37, 38, 39, 41, 43, 44, 46, 47, 51, 52, 53, 55, 57, 58, 59, 61, 62, 65, 66, 67, 68, 69, 71, 73, 74, 76, 78, 79, 82, 83, 85, 86, 87, 88, 89, 91, 92, 93, 94, 95, 97, 101, 102, 103, 104, 106
Offset: 1

Views

Author

Gus Wiseman, Jul 01 2020

Keywords

Comments

A multiset is separable if it has a permutation that is an anti-run, meaning there are no adjacent equal parts.
A multiset whose multiplicities are the prime indices of n (such as row n of A305936) is not the same as the multiset of prime indices of n. For example, the prime indices of 12 are {1,1,2}, while a multiset whose multiplicities are {1,1,2} is {1,1,2,3}.

Examples

			The sequence of terms together with the corresponding multisets begins:
   3: {1,1}
   5: {1,1,1}
   7: {1,1,1,1}
  10: {1,1,1,2}
  11: {1,1,1,1,1}
  13: {1,1,1,1,1,1}
  14: {1,1,1,1,2}
  17: {1,1,1,1,1,1,1}
  19: {1,1,1,1,1,1,1,1}
  21: {1,1,1,1,2,2}
  22: {1,1,1,1,1,2}
  23: {1,1,1,1,1,1,1,1,1}
  26: {1,1,1,1,1,1,2}
  28: {1,1,1,1,2,3}
  29: {1,1,1,1,1,1,1,1,1,1}
		

Crossrefs

The complement is A335127.
Anti-run compositions are A003242.
Anti-runs are ranked by A333489.
Separable partitions are A325534.
Inseparable partitions are A325535.
Separable factorizations are A335434.
Inseparable factorizations are A333487.
Separable partitions are ranked by A335433.
Inseparable partitions are ranked by A335448.
Anti-run permutations of prime indices are A335452.
Patterns contiguously matched by compositions are A335457.

Programs

  • Mathematica
    nrmptn[n_]:=Join@@MapIndexed[Table[#2[[1]],{#1}]&,If[n==1,{},Flatten[Cases[FactorInteger[n]//Reverse,{p_,k_}:>Table[PrimePi[p],{k}]]]]];
    Select[Range[100],Select[Permutations[nrmptn[#]],!MatchQ[#,{_,x_,x_,_}]&]=={}&]

A000806 Bessel polynomial y_n(-1).

Original entry on oeis.org

1, 0, 1, -5, 36, -329, 3655, -47844, 721315, -12310199, 234615096, -4939227215, 113836841041, -2850860253240, 77087063678521, -2238375706930349, 69466733978519340, -2294640596998068569, 80381887628910919255, -2976424482866702081004, 116160936719430292078411
Offset: 0

Views

Author

Keywords

Comments

a(n) can be seen as a subset of the unordered pairings of the first 2n integers (A001147) with forbidden pairs (i,i+1) for all i in [1,2n-1] (all adjacent integers). The circular version of this constraint is A003436. - Olivier Gérard, Feb 08 2011
|a(n)| is the number of perfect matchings in the complement of P_{2n} where P_{2n} is the path graph on 2n vertices. - Andrew Howroyd, Mar 15 2016
The unsigned version of these numbers now has its own entry: see A278990. - N. J. A. Sloane, Dec 07 2016

Examples

			For n=3, the a(3) = 5 solutions are (14) (25) (36), (14) (26) (35), (15) (24) (36), (16) (24) (35), (13) (25) (46) excluding 10 other possible pairings.
G.f. = 1 + x^2 - 5*x^3 + 36*x^4 - 329*x^5 + 3655*x^6 - 47844*x^7 + ...
		

References

  • G. Kreweras and Y. Poupard, Sur les partitions en paires d'un ensemble fini totalement ordonné, Publications de l'Institut de Statistique de l'Université de Paris, 23 (1978), 57-74.
  • J. Riordan, Combinatorial Identities, Wiley, 1968, p. 77.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Polynomial coefficients are in A001498. Cf. A003436.

Programs

  • Magma
    I:=[0,1]; [1] cat [n le 2 select I[n] else (1-2*n)*Self(n-1)+Self(n-2): n in [1..30]]; // Vincenzo Librandi, Apr 19 2015
  • Maple
    A000806 := proc(n) option remember; if n<=1 then 1-n else (1-2*n)*procname(n-1)+procname(n-2); fi; end proc;
    a := n -> hypergeom([n+1,-n],[],1/2): seq(simplify(a(n)),n=0..20); # Peter Luschny, Nov 10 2016
  • Mathematica
    a[n_] := a[n] = (-2n+1)*a[n-1] + a[n-2]; a[0] = 1; a[1] = 0; Table[a[n], {n, 0, 19}] (* Jean-François Alcover, Nov 29 2011, after T. D. Noe *)
    Table[Sum[Binomial[n, i]*(2*n-i)!/2^(n-i)*(-1)^(n-i)/n!, {i, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Aug 07 2013 *)
    a[ n_] := With[ {m = If[ n<0, -n-1, n]}, (-1)^m (2 m - 1)!! Hypergeometric1F1[ -m, -2 m, -2] ]; (* Michael Somos, Jan 27 2014 *)
    a[ n_] := With[ {m = If[ n<0, -n-1, n]}, Sum[ (-1)^(m - i) (2 m - i)! / (2^(m - i) i! (m - i)!), {i, 0, m}] ]; (* Michael Somos, Jan 27 2014 *)
    a[ n_] := With[ {m = If[ n<0, -n-1, n]}, If[ m<1, 1, (-1)^m Numerator @ FromContinuedFraction[ Table[ (-1)^Quotient[k, 2] If[ OddQ[k], k, 1], {k, 2 m}] ] ] ]; (* Michael Somos, Jan 27 2014 *)
    Table[(-1)^n (2 n - 1)!! Hypergeometric1F1[-n, -2 n, -2], {n, 0, 20}] (* Eric W. Weisstein, Nov 14 2018 *)
  • PARI
    {a(n) = if( n<0, n = -n-1); sum(k=0, n, (2*n-k)! / (k! * (n-k)!) * (-1/2)^(n-k) )}; /* Michael Somos, Apr 02 2007 */
    
  • PARI
    {a(n) = local(A); if( n<0, n = -n-1); A = sqrt(1 + 2*x + x * O(x^n)); n! * polcoeff( exp(A-1) / A, n)}; /* Michael Somos, Apr 02 2007 */
    
  • PARI
    {a(n) = local(A); if( n<0, n = -n-1); n+=2; -(-1)^n * n! * polcoeff( serreverse( sum(k=1, n, k^(k-2)* x^k / k!, x * O(x^n))), n)}; /* Michael Somos, Apr 02 2007 */
    
  • PARI
    {a(n) = if( n<0, n=-n-1); contfracpnqn( vector( 2*n, k, (-1)^(k\2) * if( k%2, k, 1))) [1,1] }; /* Michael Somos, Jan 27 2014 */
    

Formula

E.g.f.: exp(sqrt(1 + 2*x) - 1) / sqrt(1 + 2*x). - Michael Somos, Feb 16 2002
D-finite with recurrence a(n) = (-2*n+1)*a(n-1) + a(n-2). - T. D. Noe, Oct 26 2006
If y = x + Sum_{k>1} A000272(k) * x^k/k!, then y = x + Sum{k>1} a(k-2) * (-y)^k/k!. - Michael Somos, Sep 07 2005
a(-1-n) = a(n). - Michael Somos, Apr 02 2007
a(n) = Sum_{m=0..n} A001498(n,m)*(-1)^m, n>=0 (alternating row sums of Bessel triangle).
E.g.f. for unsigned version: -exp(sqrt(1-2*x)-1). - Karol A. Penson, Mar 20 2010 [gives -1, 1, 0, 1, 5, 36, 329, ... ]
E.g.f. for unsigned version: 1/(sqrt(1-2*x))*exp(sqrt(1-2*x)-1). - Sergei N. Gladkovskii, Jul 03 2012
G.f.: 1/G(0) where G(k) = 1 - x + x*(2*k+1)/(1 - x + 2*x*(k+1)/G(k+1)); (continued fraction, 2-step). - Sergei N. Gladkovskii, Jul 10 2012
G.f.: 1+x/U(0) where U(k) = 1 - x + x*(k+1)/U(k+1) ; (continued fraction, Euler's 1st kind, 1-step). - Sergei N. Gladkovskii, Oct 06 2012
a(n) = BesselK[n+1/2,-1]/BesselK[5/2,-1]. - Vaclav Kotesovec, Aug 07 2013
|a(n)| ~ 2^(n+1/2)*n^n/exp(n+1). - Vaclav Kotesovec, Aug 07 2013
0 = a(n) * (a(n+2)) + a(n+1) * (-a(n+1) + 2*a(n+2) + a(n+3)) + a(n+2) * (-a(n+2)) for all n in Z. - Michael Somos, Jan 27 2014
a(n) = -i*(BesselK[3/2,1]*BesselI[n+3/2,-1] - BesselI[3/2,-1]*BesselK[n+3/2,1]), n>=0 for unsigned version - G. C. Greubel , Apr 19 2015
a(n) = hypergeom( [n+1, -n], [], 1/2). - Peter Luschny, Nov 10 2016
From G. C. Greubel, Aug 16 2017: (Start)
a(n) = (1/2)_{n} * (-2)^n * hypergeometric1f1(-n; -2*n; -2).
G.f.: (1/(1-t))*hypergeometric2f0(1, 1/2; -; -2*t/(1-t)^2). (End)

A003436 Number of inequivalent labeled Hamiltonian circuits on n-octahedron. Interlacing chords joining 2n points on circle.

Original entry on oeis.org

1, 0, 1, 4, 31, 293, 3326, 44189, 673471, 11588884, 222304897, 4704612119, 108897613826, 2737023412199, 74236203425281, 2161288643251828, 67228358271588991, 2225173863019549229, 78087247031912850686, 2896042595237791161749, 113184512236563589997407
Offset: 0

Views

Author

Keywords

Comments

Also called the relaxed ménage problem (cf. A000179).
a(n) can be seen as a subset of the unordered pairings of the first 2n integers (A001147) with forbidden pairs (1,2n) and (i,i+1) for all i in [1,2n-1] (all adjacent integers modulo 2n). The linear version of this constraint is A000806. - Olivier Gérard, Feb 08 2011
Number of perfect matchings in the complement of C_{2n} where C_{2n} is the cycle graph on 2n vertices. - Andrew Howroyd, Mar 15 2016
Also the number of 2-uniform set partitions of {1...2n} containing no two cyclically successive vertices in the same block. - Gus Wiseman, Feb 27 2019

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A003435, A129348. A003437 gives unlabeled case.
First differences of A000806.
Column k=2 of A324428.

Programs

  • Maple
    A003436 := proc(n) local k;
          if n = 0 then 1
        elif n = 1 then 0
        else add( (-1)^k*binomial(n,k)*2*n/(2*n-k)*2^k*(2*n-k)!/2^n/n!,k=0..n) ;
        end if;
    end proc: # R. J. Mathar, Dec 11 2013
    A003436 := n-> `if`(n<2, 1-n, (-1)^n*2*hypergeom([n, -n], [], 1/2)):
    seq(simplify(A003436(n)), n=0..18); # Peter Luschny, Nov 10 2016
  • Mathematica
    a[n_] := (2*n-1)!! * Hypergeometric1F1[-n, 1-2*n, -2]; a[1] = 0;
    Table[a[n], {n, 0, 19}] (* Jean-François Alcover, Apr 05 2013 *)
    twounifll[{}]:={{}};twounifll[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@twounifll[Complement[set,s]]]/@Table[{i,j},{j,If[i==1,Select[set,2<#i+1&]]}];
    Table[Length[twounifll[Range[n]]],{n,0,14,2}] (* Gus Wiseman, Feb 27 2019 *)

Formula

a(n) = A003435(n)/(n!*2^n).
a(n) = 2*n*a(n-1)-2*(n-3)*a(n-2)-a(n-3) for n>4. [Corrected by Vasu Tewari, Apr 11 2010, and by R. J. Mathar, Oct 02 2013]
G.f.: x + ((1-x)/(1+x)) * Sum_{n>=0} A001147(n)*(x/(1+x)^2)^n. - Vladeta Jovovic, Jun 27 2007
a(n) ~ 2^(n+1/2)*n^n/exp(n+1). - Vaclav Kotesovec, Aug 13 2013
a(n) = (-1)^n*2*hypergeom([n, -n], [], 1/2) for n >= 2. - Peter Luschny, Nov 10 2016

Extensions

a(0)=1 prepended by Gus Wiseman, Feb 27 2019

A114938 Number of permutations of the multiset {1,1,2,2,...,n,n} with no two consecutive terms equal.

Original entry on oeis.org

1, 0, 2, 30, 864, 39480, 2631600, 241133760, 29083420800, 4467125013120, 851371260364800, 197158144895712000, 54528028997584665600, 17752366094818747392000, 6720318485119046923315200, 2927066537906697348594432000, 1453437879238150456164433920000
Offset: 0

Views

Author

Hugo Pfoertner, Jan 08 2006

Keywords

Comments

a(n) is also the number of (0,1)-matrices A=(a_ij) of size n X 2n such that each row has exactly two 1's and each column has exactly one 1 and with the restriction that no 1 stands on the line from a_11 to a_22. - Shanzhen Gao, Feb 24 2010
a(n) is the number of permutations of the multiset {1,1,2,2,...,n,n} with no fixed points. - Alexander Burstein, May 16 2020
Also the number of 2-uniform ordered set partitions of {1...2n} containing no two successive vertices in the same block. - Gus Wiseman, Jul 04 2020

Examples

			a(2) = 2 because there are two permutations of {1,1,2,2} avoiding equal consecutive terms: 1212 and 2121.
		

References

  • R. P. Stanley, Enumerative Combinatorics Volume I, Cambridge University Press, 1997. Chapter 2, Sieve Methods, Example 2.2.3, page 68.

Crossrefs

Cf. A114939 = preferred seating arrangements of n couples.
Cf. A007060 = arrangements of n couples with no adjacent spouses; A007060(n) = 2^n * A114938(n) (this sequence).
Cf. A278990 = number of loopless linear chord diagrams with n chords.
Cf. A000806 = Bessel polynomial y_n(-1).
The version for multisets with prescribed multiplicities is A335125.
The version for prime indices is A335452.
Anti-run compositions are counted by A003242.
Anti-run compositions are ranked by A333489.
Inseparable partitions are counted by A325535.
Inseparable partitions are ranked by A335448.
Separable partitions are counted by A325534.
Separable partitions are ranked by A335433.
Other sequences involving the multiset {1,1,2,2,...,n,n}: A001147, A007717, A020555, A094574, A316972.
Row n=2 of A322093.

Programs

  • Magma
    [1] cat [n le 2 select 2*(n-1) else n*(2*n-1)*Self(n-1) + (n-1)*n*Self(n-2): n in [1..20]]; // Vincenzo Librandi, Aug 10 2015
    
  • Mathematica
    Table[Sum[Binomial[n,i](2n-i)!/2^(n-i) (-1)^i,{i,0,n}],{n,0,20}]  (* Geoffrey Critzer, Jan 02 2013, and adapted to the extension by Stefano Spezia, Nov 15 2018 *)
    Table[Length[Select[Permutations[Join[Range[n],Range[n]]],!MatchQ[#,{_,x_,x_,_}]&]],{n,0,5}] (* Gus Wiseman, Jul 04 2020 *)
    A114938[n_] := ((2 n)! Hypergeometric1F1[-n, -2 n, -2]) / 2^n;
    Array[A114938, 17, 0]  (* Peter Luschny, Sep 04 2025 *)
  • PARI
    A114938(n)=sum(k=0, n, binomial(n, k)*(-1)^(n-k)*(n+k)!/2^k);
    vector(20, n, A114938(n-1)) \\ Michel Marcus, Aug 10 2015
    
  • SageMath
    def A114938(n): return (-1)^n*sum(binomial(n,k)*factorial(n+k)//(-2)^k for k in range(n+1))
    [A114938(n) for n in range(31)] # G. C. Greubel, Sep 26 2023

Formula

a(n) = Sum_{k=0..n} ((binomial(n, k)*(-1)^(n-k)*(n+k)!)/2^k).
a(n) = (-1)^n * n! * A000806(n), n>0. - Vladeta Jovovic, Nov 19 2009
a(n) = n*(2*n-1)*a(n-1) + (n-1)*n*a(n-2). - Vaclav Kotesovec, Aug 07 2013
a(n) ~ 2^(n+1)*n^(2*n)*sqrt(Pi*n)/exp(2*n+1). - Vaclav Kotesovec, Aug 07 2013
a(n) = n! * A278990(n). - Alexander Burstein, May 16 2020
From G. C. Greubel, Sep 26 2023: (Start)
a(n) = (-1)^n * (i/e)*sqrt(2/Pi) * n! * BesselK(n+1/2, -1).
a(n) = [n! * (1/x) * p_{n+1}(x)]|A104548%20for%20p">{x= -1} (See A104548 for p{n}(x)).
E.g.f.: sqrt(Pi/(2*x)) * exp(-(1+x)^2/(2*x)) * erfi((1+x)/sqrt(2*x)).
Sum_{n >= 0} a(n)*x^n/(n!)^2 = exp(sqrt(1-2*x))/sqrt(1-2*x).
Sum_{n >= 0} a(n)*x^n/(n!*(n+1)!) = ( 1 - exp(-1 + sqrt(1-2*x)) )/x. (End)
a(n) = ((2*n)!/2^n) * hypergeom([-n], [-2*n], -2]) = A007060(n) / 2^n. - Peter Luschny, Sep 04 2025

Extensions

a(0)=1 prepended by Seiichi Manyama, Nov 15 2018

A322013 Square array A(n,k), n >= 1, k >= 1, read by antidiagonals, where A(n,k) is the number of permutations of n copies of 1..k introduced in order 1..k with no element equal to another within a distance of 1.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 5, 1, 0, 1, 36, 29, 1, 0, 1, 329, 1721, 182, 1, 0, 1, 3655, 163386, 94376, 1198, 1, 0, 1, 47844, 22831355, 98371884, 5609649, 8142, 1, 0, 1, 721315, 4420321081, 182502973885, 66218360625, 351574834, 56620, 1, 0
Offset: 1

Views

Author

Seiichi Manyama, Nov 24 2018

Keywords

Examples

			Square array begins:
   1, 1,     1,         1,              1,                    1, ...
   0, 1,     5,        36,            329,                 3655, ...
   0, 1,    29,      1721,         163386,             22831355, ...
   0, 1,   182,     94376,       98371884,         182502973885, ...
   0, 1,  1198,   5609649,    66218360625,     1681287695542855, ...
   0, 1,  8142, 351574834, 47940557125969, 16985819072511102549, ...
		

Crossrefs

Main diagonal gives A321666.

Programs

  • PARI
    q(n,x) = sum(i=1, n, (-1)^(n-i) * binomial(n-1, n-i) * x^i/i!)
    T(n,k) = subst(serlaplace(q(n,x)^k), x, 1)/k! \\ Andrew Howroyd, Feb 03 2024

Formula

T(n,k) = A322093(n,k) / k!. - Andrew Howroyd, Feb 03 2024

A335125 Number of anti-run permutations of a multiset whose multiplicities are the prime indices of n.

Original entry on oeis.org

1, 1, 0, 2, 0, 1, 0, 6, 2, 0, 0, 6, 0, 0, 1, 24, 0, 12, 0, 2, 0, 0, 0, 36, 2, 0, 30, 0, 0, 10, 0, 120, 0, 0, 1, 84, 0, 0, 0, 24, 0, 3, 0, 0, 38, 0, 0, 240, 2, 18, 0, 0, 0, 246, 0, 6, 0, 0, 0, 96, 0, 0, 24, 720, 0, 0, 0, 0, 0, 14, 0, 660, 0, 0, 74, 0, 1, 0, 0
Offset: 1

Views

Author

Gus Wiseman, Jul 01 2020

Keywords

Comments

A multiset whose multiplicities are the prime indices of n (such as row n of A305936) is not the same as the multiset of prime indices of n. For example, the prime indices of 12 are {1,1,2}, while a multiset whose multiplicities are {1,1,2} is {1,1,2,3}.
An anti-run is a sequence with no adjacent equal parts.

Examples

			The a(n) permutations for n = 2, 4, 42, 8, 30, 18:
  (1)  (12)  (1212131)  (123)  (121213)  (12123)
       (21)  (1213121)  (132)  (121231)  (12132)
             (1312121)  (213)  (121312)  (12312)
                        (231)  (121321)  (12321)
                        (312)  (123121)  (13212)
                        (321)  (131212)  (21213)
                               (132121)  (21231)
                               (212131)  (21312)
                               (213121)  (21321)
                               (312121)  (23121)
                                         (31212)
                                         (32121)
		

Crossrefs

Positions of zeros are A335126.
Positions of nonzeros are A335127.
The version for the prime indices themselves is A335452.
Anti-run compositions are A003242.
Anti-runs are ranked by A333489.
Separable partitions are ranked by A335433.
Separable factorizations are A335434.
Inseparable partitions are ranked by A335448.
Patterns contiguously matched by compositions are A335457.
Strict permutations of prime indices are A335489.

Programs

  • Mathematica
    nrmptn[n_]:=Join@@MapIndexed[Table[#2[[1]],{#1}]&,If[n==1,{},Flatten[Cases[FactorInteger[n]//Reverse,{p_,k_}:>Table[PrimePi[p],{k}]]]]];
    Table[Length[Select[Permutations[nrmptn[n]],!MatchQ[#,{_,x_,x_,_}]&]],{n,100}]

A079267 d(n,s) = number of perfect matchings on {1, 2, ..., n} with s short pairs.

Original entry on oeis.org

1, 0, 1, 1, 1, 1, 5, 6, 3, 1, 36, 41, 21, 6, 1, 329, 365, 185, 55, 10, 1, 3655, 3984, 2010, 610, 120, 15, 1, 47844, 51499, 25914, 7980, 1645, 231, 21, 1, 721315, 769159, 386407, 120274, 25585, 3850, 406, 28, 1, 12310199, 13031514, 6539679, 2052309, 446544, 70371, 8106, 666, 36, 1
Offset: 0

Views

Author

Jeremy Martin (martin(AT)math.umn.edu), Feb 05 2003

Keywords

Comments

Read backwards, the n-th row of the triangle gives the Hilbert series of the variety of slopes determined by n points in the plane.
From Paul Barry, Nov 25 2009: (Start)
Reversal of coefficient array for the polynomials P(n,x) = Sum_{k=0..n} (C(n+k,2k)*(2k)!/(2^k*k!))*x^k*(1-x)^(n-k).
Note that P(n,x) = Sum_{k=0..n} A001498(n,k)*x^k*(1-x)^(n-k). (End)
Equivalent to the original definition: Triangle of fixed-point free involutions on [1..2n] (=A001147) by number of cycles with adjacent integers. - Olivier Gérard, Mar 23 2011
Conjecture: Asymptotically, the n-th row has a Poisson distribution with mean 1. - David Callan, Nov 11 2012
This is also the number of configurations of n indistinguishable pairs placed on the vertices of the ladder graph P_1 X P_2n (i.e., a path of length 2n) such that s such pairs are joined by an edge; equivalently the number of "s-domino" configurations in the game of memory played on a 1 X 2n rectangular array, see [Young]. - Donovan Young, Oct 23 2018

Examples

			Triangle begins:
   1
   0  1
   1  1  1
   5  6  3 1
  36 41 21 6 1
From _Paul Barry_, Nov 25 2009: (Start)
Production matrix begins
       0,      1,
       1,      1,      1,
       4,      4,      2,     1,
      18,     18,      9,     3,     1,
      96,     96,     48,    16,     4,    1,
     600,    600,    300,   100,    25,    5,   1,
    4320,   4320,   2160,   720,   180,   36,   6,  1,
   35280,  35280,  17640,  5880,  1470,  294,  49,  7, 1,
  322560, 322560, 161280, 53760, 13440, 2688, 448, 64, 8, 1
Complete this by adding top row (1,0,0,0,...) and take inverse: we obtain
   1,
   0,  1,
  -1, -1,  1,
  -2, -2, -2,  1,
  -3, -3, -3, -3,  1,
  -4, -4, -4, -4, -4,  1,
  -5, -5, -5, -5, -5, -5,  1,
  -6, -6, -6, -6, -6, -6, -6,  1,
  -7, -7, -7, -7, -7, -7, -7, -7,  1,
  -8, -8, -8, -8, -8, -8, -8, -8, -8,  1 (End)
The 6 involutions with no fixed point on [1..6] with only one 2-cycle with adjacent integers are ((1, 2), (3, 5), (4, 6)), ((1, 3), (2, 4), (5, 6)), ((1, 3), (2, 6), (4, 5)), ((1, 5), (2, 3), (4, 6)), ((1, 5), (2, 6), (3, 4)), and ((1, 6), (2, 5), (3, 4)).
		

References

  • G. Kreweras and Y. Poupard, Sur les partitions en paires d'un ensemble fini totalement ordonné, Publications de l'Institut de Statistique de l'Université de Paris, 23 (1978), 57-74.

Crossrefs

Row sums are A001147.
d(2n,n) gives A365744.

Programs

  • Maple
    d := (n,s) -> 1/s! * sum('((-1)^(h-s)*(2*n-h)!/(2^(n-h)*(n-h)!*(h-s)!))','h'=s..n):
    # alternative by R. J. Mathar, Aug 19 2022
    A079267 := proc(n,k)
        option remember ;
        if n =0 and k =0 then
            1;
        elif k > n or k < 0 then
            0;
        else
            procname(n-1,k-1)+(2*n-2-k)*procname(n-1,k)+(k+1)*procname(n-1,k+1) ;
        end if;
    end proc:
    seq(seq( A079267(n,k),k=0..n),n=0..13) ;
  • Mathematica
    nmax = 9; d[n_, s_] := (2^(s-n)*(2n-s)!* Hypergeometric1F1[s-n, s-2n, -2])/ (s!*(n-s)!); Flatten[ Table[d[n, s], {n, 0, nmax}, {s, 0, n}]] (* Jean-François Alcover, Oct 19 2011, after Maple *)
  • PARI
    {T(n, k) = 2^(k-n)*binomial(n,k)*hyperu(k-n, k-2*n, -2)};
    for(n=0,10, for(k=0,n, print1(round(T(n,k)), ", "))) \\ G. C. Greubel, Apr 10 2019
    
  • Sage
    [[2^(k-n)*binomial(n,k)*hypergeometric_U(k-n,k-2*n,-2).simplify_hypergeometric() for k in (0..n)] for n in (0..10)] # G. C. Greubel, Apr 10 2019

Formula

d(n, s) = (1/s!) * Sum_{h=s..n} (((-1)^(h-s)*(2*n-h)!/(2^(n-h)*(n-h)!*(h-s)!))).
E.g.f.: exp((x-1)*(1-sqrt(1-2*y)))/sqrt(1-2*y). - Vladeta Jovovic, Dec 15 2008

Extensions

Extra terms added by Paul Barry, Nov 25 2009

A335407 Number of anti-run permutations of the prime indices of n!.

Original entry on oeis.org

1, 1, 1, 2, 0, 2, 3, 54, 0, 30, 105, 6090, 1512, 133056, 816480, 127209600, 0, 10090080, 562161600, 69864795000, 49989139200, 29593652088000, 382147120555200, 41810689605484800, 4359985823793600, 3025062801079038720, 49052072750637116160, 25835971971637227375360
Offset: 0

Views

Author

Gus Wiseman, Jul 01 2020

Keywords

Comments

An anti-run is a sequence with no adjacent equal parts.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
Conjecture: Only vanishes at n = 4 and n = 8.
a(16) = 0. Proof: 16! = 2^15 * m where bigomega(m) = A001222(m) = 13. We can't separate 15 1's with 13 other numbers. - David A. Corneth, Jul 04 2020

Examples

			The a(0) = 1 through a(6) = 3 anti-run permutations:
  ()  ()  (1)  (1,2)  .  (1,2,1,3,1)  (1,2,1,2,1,3,1)
               (2,1)     (1,3,1,2,1)  (1,2,1,3,1,2,1)
                                      (1,3,1,2,1,2,1)
		

Crossrefs

The version for Mersenne numbers is A335432.
Anti-run compositions are A003242.
Anti-run patterns are counted by A005649.
Permutations of prime indices are A008480.
Anti-runs are ranked by A333489.
Separable partitions are ranked by A335433.
Inseparable partitions are ranked by A335448.
Anti-run permutations of prime indices are A335452.
Strict permutations of prime indices are A335489.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Table[Length[Select[Permutations[primeMS[n!]],!MatchQ[#,{_,x_,x_,_}]&]],{n,0,10}]
  • PARI
    \\ See A335452 for count.
    a(n)={count(factor(n!)[,2])} \\ Andrew Howroyd, Feb 03 2021

Formula

a(n) = A335452(A000142(n)). - Andrew Howroyd, Feb 03 2021

Extensions

Terms a(14) and beyond from Andrew Howroyd, Feb 03 2021

A003437 Number of unlabeled Hamiltonian circuits on n-octahedron (cross polytope); also number of circular chord diagrams with n chords, modulo symmetries.

Original entry on oeis.org

0, 1, 2, 7, 29, 196, 1788, 21994, 326115, 5578431, 107026037, 2269254616, 52638064494, 1325663757897, 36021577975918, 1050443713185782, 32723148860301935, 1084545122297249077, 38105823782987999742, 1414806404051118314077
Offset: 1

Views

Author

Keywords

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

See A003436 for labeled case.
See also A278990, A007474.

Programs

  • Mathematica
    nn = 20; M = Array[0&, {2nn, 2nn}];
    Mget[n_, k_] := Which[n < 0, 0, n==0, 1, n==1, 1-Mod[k, 2], n==2, k - Mod[k, 2], True, M[[n, k]]];
    Mset[n_, k_, v_] := (M[[n, k]] = v);
    Minit = Module[{tmp = 0}, For[n = 3, n <= 2nn, n++, For[k = 1, k <= 2nn, k++, tmp = If[OddQ[k], k(n-1) Mget[n-2, k] + Mget[n-4, k], Mget[n-1, k] + k(n-1) Mget[n-2, k] - Mget[n-3, k] + Mget[n-4, k]]; Mset[n, k, tmp]]]];
    A007474[n_] := Sum[EulerPhi[d] (Mget[2n/d, d] - Mget[2n/d - 2, d]), {d, Divisors[2n]}]/(2n);
    a[n_] := A007474[n]/2 + (Mget[n, 2] - Mget[n-1, 2] + Mget[n-2, 2])/4;
    Array[a, nn] (* Jean-François Alcover, Aug 12 2018, after Gheorghe Coserea *)
  • PARI
    N = 20; M = matrix(2*N, 2*N);
    Mget(n,k) = { if (n<0, 0, n==0, 1, n==1, 1-(k%2), n==2, k-(k%2), M[n,k]) };
    Mset(n,k,v) = { M[n,k] = v;};
    Minit() = {
      my(tmp = 0);
      for (n=3, 2*N, for(k=1, 2*N,
        tmp = if (k%2, k*(n-1) * Mget(n-2, k) + Mget(n-4, k),
        Mget(n-1, k) + k*(n-1) * Mget(n-2, k) - Mget(n-3, k) + Mget(n-4, k));
        Mset(n, k, tmp)));
    };
    Minit();
    A007474(n) = sumdiv(2*n, d, eulerphi(d) * (Mget(2*n/d, d) - Mget(2*n/d-2, d)))/(2*n);
    a(n) = A007474(n)/2 + (Mget(n,2) - Mget(n-1,2) + Mget(n-2,2))/4;
    vector(N, n, a(n))  \\ Gheorghe Coserea, Dec 10 2016

Formula

a(n) ~ 2^(n-3/2) * n^(n-1) / exp(n+1). - Vaclav Kotesovec, Dec 10 2016

A293157 Triangle read by rows: T(n,k) = number of linear chord diagrams with n chords such that every chord has length at least k (1 <= k <= n).

Original entry on oeis.org

1, 3, 1, 15, 5, 1, 105, 36, 10, 1, 945, 329, 99, 20, 1, 10395, 3655, 1146, 292, 40, 1, 135135, 47844, 15422, 4317, 876, 80, 1, 2027025, 721315, 237135, 69862, 16924, 2628, 160, 1, 34459425, 12310199, 4106680, 1251584, 332507, 67404, 7884, 320, 1, 654729075, 234615096, 79154927, 24728326, 6944594, 1627252, 269616, 23652, 640, 1
Offset: 1

Views

Author

N. J. A. Sloane, Oct 10 2017

Keywords

Comments

There is a surprising change in notation in Sullivan (2016) between Definition 1 and Table 1.
The first 11 columns are given in the reference.

Examples

			Triangle begins:
      1;
      3,    1;
     15,    5,    1;
    105,   36,   10,    1;
    945,  329,   99,   20,    1;
  10395, 3655, 1146,  292,   40,    1;
  ...
		

Crossrefs

Extensions

More terms from Alois P. Heinz, Oct 17 2017
Showing 1-10 of 26 results. Next