cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 22 results. Next

A335434 Number of separable factorizations of n into factors > 1.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 2, 1, 2, 1, 4, 1, 2, 2, 3, 1, 4, 1, 4, 2, 2, 1, 6, 1, 2, 2, 4, 1, 5, 1, 5, 2, 2, 2, 8, 1, 2, 2, 6, 1, 5, 1, 4, 4, 2, 1, 10, 1, 4, 2, 4, 1, 6, 2, 6, 2, 2, 1, 11, 1, 2, 4, 6, 2, 5, 1, 4, 2, 5, 1, 15, 1, 2, 4, 4, 2, 5, 1, 10, 3, 2, 1, 11, 2
Offset: 1

Views

Author

Gus Wiseman, Jul 03 2020

Keywords

Comments

A multiset is separable if it has a permutation that is an anti-run, meaning there are no adjacent equal parts.

Examples

			The a(n) factorizations for n = 2, 6, 16, 12, 30, 24, 36, 48, 60:
  2  6    16     12     30     24     36       48       60
     2*3  2*8    2*6    5*6    3*8    4*9      6*8      2*30
          2*2*4  3*4    2*15   4*6    2*18     2*24     3*20
                 2*2*3  3*10   2*12   3*12     3*16     4*15
                        2*3*5  2*2*6  2*2*9    4*12     5*12
                               2*3*4  2*3*6    2*3*8    6*10
                                      3*3*4    2*4*6    2*5*6
                                      2*2*3*3  3*4*4    3*4*5
                                               2*2*12   2*2*15
                                               2*2*3*4  2*3*10
                                                        2*2*3*5
		

Crossrefs

The version for partitions is A325534.
The inseparable version is A333487.
The version for multisets with prescribed multiplicities is A335127.
Factorizations are A001055.
Anti-run compositions are A003242.
Inseparable partitions are A325535.
Anti-runs are ranked by A333489.
Separable partitions are ranked by A335433.
Inseparable partitions are ranked by A335448.
Anti-run permutations of prime indices are A335452.

Programs

  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    Table[Length[Select[facs[n],Select[Permutations[#],!MatchQ[#,{_,x_,x_,_}]&]!={}&]],{n,100}]

Formula

A333487(n) + a(n) = A001055(n).

A382912 Numbers k such that row k of A305936 (a multiset whose multiplicities are the prime indices of k) has no permutation with all distinct run-lengths.

Original entry on oeis.org

4, 8, 9, 12, 16, 18, 20, 24, 27, 28, 32, 36, 40, 44, 45, 48, 50, 52, 54, 56, 60, 63, 64, 68, 72, 75, 76, 80, 81, 84, 88, 90, 92, 96, 98, 99, 100, 104, 108, 112, 116, 117, 120, 124, 125, 126, 128, 132, 135, 136, 140, 144, 148, 150, 152, 153, 156, 160, 162, 164
Offset: 1

Views

Author

Gus Wiseman, Apr 12 2025

Keywords

Comments

This described multiset (row n of A305936, Heinz number A181821) is generally not the same as the multiset of prime indices of n (A112798). For example, the prime indices of 12 are {1,1,2}, while a multiset whose multiplicities are {1,1,2} is {1,1,2,3}.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798, sum A056239.

Examples

			The terms, prime indices, and corresponding multisets begin:
   4:       {1,1} {1,2}
   8:     {1,1,1} {1,2,3}
   9:       {2,2} {1,1,2,2}
  12:     {1,1,2} {1,1,2,3}
  16:   {1,1,1,1} {1,2,3,4}
  18:     {1,2,2} {1,1,2,2,3}
  20:     {1,1,3} {1,1,1,2,3}
  24:   {1,1,1,2} {1,1,2,3,4}
  27:     {2,2,2} {1,1,2,2,3,3}
  28:     {1,1,4} {1,1,1,1,2,3}
  32: {1,1,1,1,1} {1,2,3,4,5}
  36:   {1,1,2,2} {1,1,2,2,3,4}
  40:   {1,1,1,3} {1,1,1,2,3,4}
  44:     {1,1,5} {1,1,1,1,1,2,3}
  45:     {2,2,3} {1,1,1,2,2,3,3}
  48: {1,1,1,1,2} {1,1,2,3,4,5}
  50:     {1,3,3} {1,1,1,2,2,2,3}
  52:     {1,1,6} {1,1,1,1,1,1,2,3}
		

Crossrefs

The Look-and-Say partition is ranked by A048767, listed by A381440.
Look-and-Say partitions are counted by A239455, ranks A351294.
Non-Look-and-Say partitions are counted by A351293.
For prime indices instead of signature we have A351295, conjugate A381433.
The complement is A382913.
For equal instead of distinct run-lengths we have A382914, see A382858, A382879, A382915.
A056239 adds up prime indices, row sums of A112798.
A329739 counts compositions with distinct run-lengths, ranks A351596, complement A351291.
A381431 lists the section-sum partition of n, ranks A381436, union A381432.

Programs

  • Mathematica
    nrmptn[n_]:=Join@@MapIndexed[Table[#2[[1]],{#1}]&,If[n==1,{}, Flatten[Cases[FactorInteger[n]//Reverse,{p_,k_} :> Table[PrimePi[p],{k}]]]]];
    lasQ[y_]:=Select[Permutations[y], UnsameQ@@Length/@Split[#]&]!={};
    Select[Range[100],Not@*lasQ@*nrmptn]

A382913 Numbers k such that row k of A305936 (a multiset whose multiplicities are the prime indices of k) has a permutation with all distinct run-lengths.

Original entry on oeis.org

1, 2, 3, 5, 6, 7, 10, 11, 13, 14, 15, 17, 19, 21, 22, 23, 25, 26, 29, 30, 31, 33, 34, 35, 37, 38, 39, 41, 42, 43, 46, 47, 49, 51, 53, 55, 57, 58, 59, 61, 62, 65, 66, 67, 69, 70, 71, 73, 74, 77, 78, 79, 82, 83, 85, 86, 87, 89, 91, 93, 94, 95, 97, 101, 102, 103
Offset: 1

Views

Author

Gus Wiseman, Apr 12 2025

Keywords

Comments

This described multiset (row n of A305936, Heinz number A181821) is generally not the same as the multiset of prime indices of n (A112798). For example, the prime indices of 12 are {1,1,2}, while a multiset whose multiplicities are {1,1,2} is {1,1,2,3}.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798, sum A056239.

Examples

			The terms, prime indices, and corresponding multisets begin:
   1:    {} {}
   2:   {1} {1}
   3:   {2} {1,1}
   5:   {3} {1,1,1}
   6: {1,2} {1,1,2}
   7:   {4} {1,1,1,1}
  10: {1,3} {1,1,1,2}
  11:   {5} {1,1,1,1,1}
  13:   {6} {1,1,1,1,1,1}
  14: {1,4} {1,1,1,1,2}
  15: {2,3} {1,1,1,2,2}
  17:   {7} {1,1,1,1,1,1,1}
  19:   {8} {1,1,1,1,1,1,1,1}
  21: {2,4} {1,1,1,1,2,2}
  22: {1,5} {1,1,1,1,1,2}
  23:   {9} {1,1,1,1,1,1,1,1,1}
  25: {3,3} {1,1,1,2,2,2}
  26: {1,6} {1,1,1,1,1,1,2}
		

Crossrefs

Look-and-Say partitions are counted by A239455, ranks A351294.
Non-Look-and-Say partitions are counted by A351293, ranks A351295.
For prime indices instead of signature we have A351294, conjugate A381432.
The Look-and-Say partition of n is listed by A381440, rank A048767.
The complement is A382912.
For equal run-lengths we have the complement of A382914, see A382858, A382879, A382915.
A044813 lists numbers whose binary expansion has distinct run-lengths.
A055396 gives least prime index, greatest A061395.
A056239 adds up prime indices, row sums of A112798.
A329739 counts compositions with distinct run-lengths, ranks A351596.
A381431 ranks section-sum partition, listed by A381436.

Programs

  • Mathematica
    nrmptn[n_]:=Join@@MapIndexed[Table[#2[[1]],{#1}]&, If[n==1,{},Flatten[Cases[FactorInteger[n]//Reverse,{p_,k_} :> Table[PrimePi[p],{k}]]]]];
    lasQ[y_]:=Select[Permutations[y], UnsameQ@@Length/@Split[#]&]!={};
    Select[Range[100],lasQ@*nrmptn]

A114938 Number of permutations of the multiset {1,1,2,2,...,n,n} with no two consecutive terms equal.

Original entry on oeis.org

1, 0, 2, 30, 864, 39480, 2631600, 241133760, 29083420800, 4467125013120, 851371260364800, 197158144895712000, 54528028997584665600, 17752366094818747392000, 6720318485119046923315200, 2927066537906697348594432000, 1453437879238150456164433920000
Offset: 0

Views

Author

Hugo Pfoertner, Jan 08 2006

Keywords

Comments

a(n) is also the number of (0,1)-matrices A=(a_ij) of size n X 2n such that each row has exactly two 1's and each column has exactly one 1 and with the restriction that no 1 stands on the line from a_11 to a_22. - Shanzhen Gao, Feb 24 2010
a(n) is the number of permutations of the multiset {1,1,2,2,...,n,n} with no fixed points. - Alexander Burstein, May 16 2020
Also the number of 2-uniform ordered set partitions of {1...2n} containing no two successive vertices in the same block. - Gus Wiseman, Jul 04 2020

Examples

			a(2) = 2 because there are two permutations of {1,1,2,2} avoiding equal consecutive terms: 1212 and 2121.
		

References

  • R. P. Stanley, Enumerative Combinatorics Volume I, Cambridge University Press, 1997. Chapter 2, Sieve Methods, Example 2.2.3, page 68.

Crossrefs

Cf. A114939 = preferred seating arrangements of n couples.
Cf. A007060 = arrangements of n couples with no adjacent spouses; A007060(n) = 2^n * A114938(n) (this sequence).
Cf. A278990 = number of loopless linear chord diagrams with n chords.
Cf. A000806 = Bessel polynomial y_n(-1).
The version for multisets with prescribed multiplicities is A335125.
The version for prime indices is A335452.
Anti-run compositions are counted by A003242.
Anti-run compositions are ranked by A333489.
Inseparable partitions are counted by A325535.
Inseparable partitions are ranked by A335448.
Separable partitions are counted by A325534.
Separable partitions are ranked by A335433.
Other sequences involving the multiset {1,1,2,2,...,n,n}: A001147, A007717, A020555, A094574, A316972.
Row n=2 of A322093.

Programs

  • Magma
    [1] cat [n le 2 select 2*(n-1) else n*(2*n-1)*Self(n-1) + (n-1)*n*Self(n-2): n in [1..20]]; // Vincenzo Librandi, Aug 10 2015
    
  • Mathematica
    Table[Sum[Binomial[n,i](2n-i)!/2^(n-i) (-1)^i,{i,0,n}],{n,0,20}]  (* Geoffrey Critzer, Jan 02 2013, and adapted to the extension by Stefano Spezia, Nov 15 2018 *)
    Table[Length[Select[Permutations[Join[Range[n],Range[n]]],!MatchQ[#,{_,x_,x_,_}]&]],{n,0,5}] (* Gus Wiseman, Jul 04 2020 *)
    A114938[n_] := ((2 n)! Hypergeometric1F1[-n, -2 n, -2]) / 2^n;
    Array[A114938, 17, 0]  (* Peter Luschny, Sep 04 2025 *)
  • PARI
    A114938(n)=sum(k=0, n, binomial(n, k)*(-1)^(n-k)*(n+k)!/2^k);
    vector(20, n, A114938(n-1)) \\ Michel Marcus, Aug 10 2015
    
  • SageMath
    def A114938(n): return (-1)^n*sum(binomial(n,k)*factorial(n+k)//(-2)^k for k in range(n+1))
    [A114938(n) for n in range(31)] # G. C. Greubel, Sep 26 2023

Formula

a(n) = Sum_{k=0..n} ((binomial(n, k)*(-1)^(n-k)*(n+k)!)/2^k).
a(n) = (-1)^n * n! * A000806(n), n>0. - Vladeta Jovovic, Nov 19 2009
a(n) = n*(2*n-1)*a(n-1) + (n-1)*n*a(n-2). - Vaclav Kotesovec, Aug 07 2013
a(n) ~ 2^(n+1)*n^(2*n)*sqrt(Pi*n)/exp(2*n+1). - Vaclav Kotesovec, Aug 07 2013
a(n) = n! * A278990(n). - Alexander Burstein, May 16 2020
From G. C. Greubel, Sep 26 2023: (Start)
a(n) = (-1)^n * (i/e)*sqrt(2/Pi) * n! * BesselK(n+1/2, -1).
a(n) = [n! * (1/x) * p_{n+1}(x)]|A104548%20for%20p">{x= -1} (See A104548 for p{n}(x)).
E.g.f.: sqrt(Pi/(2*x)) * exp(-(1+x)^2/(2*x)) * erfi((1+x)/sqrt(2*x)).
Sum_{n >= 0} a(n)*x^n/(n!)^2 = exp(sqrt(1-2*x))/sqrt(1-2*x).
Sum_{n >= 0} a(n)*x^n/(n!*(n+1)!) = ( 1 - exp(-1 + sqrt(1-2*x)) )/x. (End)
a(n) = ((2*n)!/2^n) * hypergeom([-n], [-2*n], -2]) = A007060(n) / 2^n. - Peter Luschny, Sep 04 2025

Extensions

a(0)=1 prepended by Seiichi Manyama, Nov 15 2018

A333487 Number of inseparable factorizations of n into factors > 1.

Original entry on oeis.org

0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 2, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 2, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 5, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 2, 2, 0, 0, 0, 0, 0, 0
Offset: 1

Views

Author

Gus Wiseman, Jul 01 2020

Keywords

Comments

A multiset is separable if it has a permutation that is an anti-run, meaning there are no adjacent equal parts.

Examples

			The a(n) factorizations for n = 4, 16, 96, 144, 64, 192:
  2*2  4*4      2*2*2*12     12*12        8*8          3*4*4*4
       2*2*2*2  2*2*2*2*6    2*2*2*18     4*4*4        2*2*2*24
                2*2*2*2*2*3  2*2*2*2*9    2*2*2*8      2*2*2*2*12
                             2*2*2*2*3*3  2*2*2*2*4    2*2*2*2*2*6
                                          2*2*2*2*2*2  2*2*2*2*3*4
                                                       2*2*2*2*2*2*3
		

Crossrefs

The version for partitions is A325535.
The version for multisets with prescribed multiplicities is A335126.
The separable version is A335434.
Anti-run compositions are A003242.
Anti-runs are ranked by A333489.
Separable partitions are ranked by A335433.
Inseparable partitions are ranked by A335448.
Anti-run permutations of prime indices are A335452.
Patterns contiguously matched by compositions are A335457.

Programs

  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    Table[Length[Select[facs[n],Select[Permutations[#],!MatchQ[#,{_,x_,x_,_}]&]=={}&]],{n,100}]

Formula

a(n) + A335434(n) = A001055(n).

A349050 Number of multisets of size n that have no alternating permutations and cover an initial interval of positive integers.

Original entry on oeis.org

0, 0, 1, 1, 3, 4, 8, 12, 20, 32, 48, 80, 112, 192, 256, 448, 576, 1024, 1280, 2304, 2816, 5120, 6144, 11264, 13312, 24576, 28672, 53248, 61440, 114688, 131072, 245760, 278528, 524288, 589824, 1114112, 1245184, 2359296, 2621440, 4980736, 5505024
Offset: 0

Views

Author

Gus Wiseman, Dec 12 2021

Keywords

Comments

A sequence is alternating if it is alternately strictly increasing and strictly decreasing, starting with either. For example, the partition (3,2,2,2,1) has no alternating permutations, even though it does have the anti-run permutations (2,3,2,1,2) and (2,1,2,3,2). Alternating permutations of multisets are a generalization of alternating or up-down permutations of {1..n}.

Examples

			The multiset {1,2,2,2,2,3,3} has no alternating permutations, even though it does have the three anti-run permutations (2,1,2,3,2,3,2), (2,3,2,1,2,3,2), (2,3,2,3,2,1,2), so is counted under a(7).
The a(2) = 1 through a(7) = 12 multisets:
  {11}  {111}  {1111}  {11111}  {111111}  {1111111}
               {1112}  {11112}  {111112}  {1111112}
               {1222}  {12222}  {111122}  {1111122}
                       {12223}  {111123}  {1111123}
                                {112222}  {1122222}
                                {122222}  {1122223}
                                {122223}  {1222222}
                                {123333}  {1222223}
                                          {1222233}
                                          {1222234}
                                          {1233333}
                                          {1233334}
As compositions:
  (2)  (3)  (4)    (5)      (6)      (7)
            (1,3)  (1,4)    (1,5)    (1,6)
            (3,1)  (4,1)    (2,4)    (2,5)
                   (1,3,1)  (4,2)    (5,2)
                            (5,1)    (6,1)
                            (1,1,4)  (1,1,5)
                            (1,4,1)  (1,4,2)
                            (4,1,1)  (1,5,1)
                                     (2,4,1)
                                     (5,1,1)
                                     (1,1,4,1)
                                     (1,4,1,1)
		

Crossrefs

The case of weakly decreasing multiplicities is A025065.
The inseparable case is A336102.
A separable instead of alternating version is A336103.
The version for partitions is A345165.
The version for factorizations is A348380, complement A348379.
The complement (still covering an initial interval) is counted by A349055.
A000670 counts sequences covering an initial interval, anti-run A005649.
A001250 counts alternating permutations, complement A348615.
A003242 counts Carlitz (anti-run) compositions, ranked by A333489.
A025047 = alternating compositions, ranked by A345167, also A025048/A025049.
A049774 counts permutations avoiding the consecutive pattern (1,2,3).
A325534 counts separable partitions, ranked by A335433.
A325535 counts inseparable partitions, ranked by A335448.
A345170 counts partitions w/ an alternating permutation, ranked by A345172.
A344654 counts partitions w/o an alternating permutation, ranked by A344653.

Programs

  • Mathematica
    allnorm[n_]:=If[n<=0,{{}},Function[s,Array[Count[s,y_/;y<=#]+1&,n]]/@Subsets[Range[n-1]+1]];
    wigQ[y_]:=Or[Length[y]==0,Length[Split[y]]== Length[y]&&Length[Split[Sign[Differences[y]]]]==Length[y]-1];
    Table[Length[Select[allnorm[n],Select[Permutations[#],wigQ]=={}&]],{n,0,7}]
  • PARI
    a(n) = if(n==0, 0, if(n%2==0, (n+2)*2^(n/2-3), (n-1)*2^((n-1)/2-2))) \\ Andrew Howroyd, Jan 13 2024

Formula

a(n) = A011782(n) - A349055(n).
a(n) = (n+2)*2^(n/2-3) for even n > 0; a(n) = (n-1)*2^((n-5)/2) for odd n. - Andrew Howroyd, Jan 13 2024

Extensions

Terms a(10) and beyond from Andrew Howroyd, Jan 13 2024

A349055 Number of multisets of size n that have an alternating permutation and cover an initial interval of positive integers.

Original entry on oeis.org

1, 1, 1, 3, 5, 12, 24, 52, 108, 224, 464, 944, 1936, 3904, 7936, 15936, 32192, 64512, 129792, 259840, 521472, 1043456, 2091008, 4183040, 8375296, 16752640, 33525760, 67055616, 134156288, 268320768, 536739840, 1073496064, 2147205120, 4294443008, 8589344768
Offset: 0

Views

Author

Gus Wiseman, Dec 12 2021

Keywords

Comments

A sequence is alternating if it is alternately strictly increasing and strictly decreasing, starting with either. For example, the partition (3,2,2,2,1) has no alternating permutations, even though it does have the anti-run permutations (2,3,2,1,2) and (2,1,2,3,2). Alternating permutations of multisets are a generalization of alternating or up-down permutations of {1..n}.
The multisets that have an alternating permutation are those which have no part with multiplicity greater than floor(n/2) except for odd n when either the smallest or largest part can have multiplicity ceiling(n/2). - Andrew Howroyd, Jan 13 2024

Examples

			The multiset {1,2,2,3} has alternating permutations (2,1,3,2), (2,3,1,2), so is counted under a(4).
The a(1) = 1 through a(5) = 12 multisets:
  {1}  {1,2}  {1,1,2}  {1,1,2,2}  {1,1,1,2,2}
              {1,2,2}  {1,1,2,3}  {1,1,1,2,3}
              {1,2,3}  {1,2,2,3}  {1,1,2,2,2}
                       {1,2,3,3}  {1,1,2,2,3}
                       {1,2,3,4}  {1,1,2,3,3}
                                  {1,1,2,3,4}
                                  {1,2,2,3,3}
                                  {1,2,2,3,4}
                                  {1,2,3,3,3}
                                  {1,2,3,3,4}
                                  {1,2,3,4,4}
                                  {1,2,3,4,5}
As compositions:
  (1)  (1,1)  (1,2)    (2,2)      (2,3)
              (2,1)    (1,1,2)    (3,2)
              (1,1,1)  (1,2,1)    (1,1,3)
                       (2,1,1)    (1,2,2)
                       (1,1,1,1)  (2,1,2)
                                  (2,2,1)
                                  (3,1,1)
                                  (1,1,1,2)
                                  (1,1,2,1)
                                  (1,2,1,1)
                                  (2,1,1,1)
                                  (1,1,1,1,1)
		

Crossrefs

The strong inseparable case is A025065.
A separable instead of alternating version is A336103, complement A336102.
The case of weakly decreasing multiplicities is A336106.
The version for non-twin partitions is A344654, ranked by A344653.
The complement for non-twin partitions is A344740, ranked by A344742.
The complement for partitions is A345165, ranked by A345171.
The version for partitions is A345170, ranked by A345172.
The version for factorizations is A348379, complement A348380.
The complement (still covering an initial interval) is counted by A349050.
A000670 counts sequences covering an initial interval, anti-run A005649.
A001250 counts alternating permutations, complement A348615.
A003242 counts Carlitz (anti-run) compositions, ranked by A333489.
A025047 = alternating compositions, ranked by A345167, also A025048/A025049.
A049774 counts permutations avoiding the consecutive pattern (1,2,3).
A325534 counts separable partitions, ranked by A335433.
A325535 counts inseparable partitions, ranked by A335448.

Programs

  • Mathematica
    allnorm[n_]:=If[n<=0,{{}},Function[s, Array[Count[s,y_/;y<=#]+1&,n]]/@Subsets[Range[n-1]+1]];
    wigQ[y_]:=Or[Length[y]==0, Length[Split[y]]==Length[y]&&Length[Split[Sign[Differences[y]]]]==Length[y]-1];
    Table[Length[Select[allnorm[n], Select[Permutations[#],wigQ]!={}&]],{n,0,7}]
  • PARI
    a(n) = if(n==0, 1, 2^(n-1) - if(n%2==0, (n+2)*2^(n/2-3), (n-1)*2^((n-5)/2))) \\ Andrew Howroyd, Jan 13 2024

Formula

a(n) = A011782(n) - A349050(n).
a(n) = 2^(n-1) - (n+2)*2^(n/2-3) for even n > 0; a(n) = 2^(n-1) - (n-1)*2^((n-5)/2) for odd n. - Andrew Howroyd, Jan 13 2024

Extensions

Terms a(10) and beyond from Andrew Howroyd, Jan 13 2024

A386634 Number of inseparable type set partitions of {1..n}.

Original entry on oeis.org

0, 0, 1, 1, 5, 6, 37, 50, 345, 502, 3851, 5897, 49854, 79249, 730745, 1195147, 11915997, 19929390, 213332101, 363275555, 4150104224, 7172334477, 87003759195, 152231458128, 1952292972199, 3451893361661, 46625594567852, 83183249675125, 1179506183956655, 2120758970878892
Offset: 0

Views

Author

Gus Wiseman, Aug 09 2025

Keywords

Comments

A set partition is of inseparable type iff the underlying set has no permutation whose adjacent elements always belong to different blocks. Note that this only depends on the sizes of the blocks.
A set partition is also of inseparable type iff its greatest block size is at least 2 more than the sum of its other block sizes.
This is different from inseparable partitions (A325535) and partitions of inseparable type (A386638 or A025065).

Examples

			The a(2) = 1 through a(5) = 6 set partitions:
  {{1,2}}  {{1,2,3}}  {{1,2,3,4}}    {{1,2,3,4,5}}
                      {{1},{2,3,4}}  {{1},{2,3,4,5}}
                      {{1,2,3},{4}}  {{1,2,3,4},{5}}
                      {{1,2,4},{3}}  {{1,2,3,5},{4}}
                      {{1,3,4},{2}}  {{1,2,4,5},{3}}
                                     {{1,3,4,5},{2}}
		

Crossrefs

For separable partitions we have A386583, sums A325534, ranks A335433.
For inseparable partitions we have A386584, sums A325535, ranks A335448.
For separable type partitions we have A386585, sums A336106, ranks A335127.
For inseparable type partitions we have A386586, sums A386638 or A025065, ranks A335126.
The complement is counted by A386633, sums of A386635.
Row sums of A386636.
A000110 counts set partitions, row sums of A048993.
A000670 counts ordered set partitions.
A003242 and A335452 count anti-runs, ranks A333489, patterns A005649.
A279790 counts disjoint families on strongly normal multisets.
A335434 counts separable factorizations, inseparable A333487.
A336103 counts normal separable multisets, inseparable A336102.
A386587 counts disjoint families of strict partitions of each prime exponent.

Programs

  • Mathematica
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    stnseps[stn_]:=Select[Permutations[Union@@stn],And@@Table[Position[stn,#[[i]]][[1,1]]!=Position[stn,#[[i+1]]][[1,1]],{i,Length[#]-1}]&]
    Table[Length[Select[sps[Range[n]],stnseps[#]=={}&]],{n,0,5}]

Extensions

a(12)-a(29) from Alois P. Heinz, Aug 10 2025

A335407 Number of anti-run permutations of the prime indices of n!.

Original entry on oeis.org

1, 1, 1, 2, 0, 2, 3, 54, 0, 30, 105, 6090, 1512, 133056, 816480, 127209600, 0, 10090080, 562161600, 69864795000, 49989139200, 29593652088000, 382147120555200, 41810689605484800, 4359985823793600, 3025062801079038720, 49052072750637116160, 25835971971637227375360
Offset: 0

Views

Author

Gus Wiseman, Jul 01 2020

Keywords

Comments

An anti-run is a sequence with no adjacent equal parts.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
Conjecture: Only vanishes at n = 4 and n = 8.
a(16) = 0. Proof: 16! = 2^15 * m where bigomega(m) = A001222(m) = 13. We can't separate 15 1's with 13 other numbers. - David A. Corneth, Jul 04 2020

Examples

			The a(0) = 1 through a(6) = 3 anti-run permutations:
  ()  ()  (1)  (1,2)  .  (1,2,1,3,1)  (1,2,1,2,1,3,1)
               (2,1)     (1,3,1,2,1)  (1,2,1,3,1,2,1)
                                      (1,3,1,2,1,2,1)
		

Crossrefs

The version for Mersenne numbers is A335432.
Anti-run compositions are A003242.
Anti-run patterns are counted by A005649.
Permutations of prime indices are A008480.
Anti-runs are ranked by A333489.
Separable partitions are ranked by A335433.
Inseparable partitions are ranked by A335448.
Anti-run permutations of prime indices are A335452.
Strict permutations of prime indices are A335489.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Table[Length[Select[Permutations[primeMS[n!]],!MatchQ[#,{_,x_,x_,_}]&]],{n,0,10}]
  • PARI
    \\ See A335452 for count.
    a(n)={count(factor(n!)[,2])} \\ Andrew Howroyd, Feb 03 2021

Formula

a(n) = A335452(A000142(n)). - Andrew Howroyd, Feb 03 2021

Extensions

Terms a(14) and beyond from Andrew Howroyd, Feb 03 2021

A386633 Number of separable type set partitions of {1..n}.

Original entry on oeis.org

1, 1, 1, 4, 10, 46, 166, 827, 3795, 20645, 112124, 672673, 4163743, 27565188, 190168577, 1381763398, 10468226150, 82844940414, 681863474058, 5832378929502, 51720008131148, 474862643822274, 4506628734688128, 44151853623626218, 445956917001833090, 4638586880336637692
Offset: 0

Views

Author

Gus Wiseman, Aug 09 2025

Keywords

Comments

A set partition is of separable type iff the underlying set has a permutation whose adjacent elements always belong to different blocks. Note that this only depends on the sizes of the blocks.
A set partition is also of separable type iff its greatest block size is at most one more than the sum of all its other block sizes.
This is different from separable partitions (A325534) and partitions of separable type (A336106).

Examples

			The a(1) = 1 through a(4) = 10 set partitions:
  {{1}}  {{1},{2}}  {{1},{2,3}}    {{1,2},{3,4}}
                    {{1,2},{3}}    {{1,3},{2,4}}
                    {{1,3},{2}}    {{1,4},{2,3}}
                    {{1},{2},{3}}  {{1},{2},{3,4}}
                                   {{1},{2,3},{4}}
                                   {{1,2},{3},{4}}
                                   {{1},{2,4},{3}}
                                   {{1,3},{2},{4}}
                                   {{1,4},{2},{3}}
                                   {{1},{2},{3},{4}}
		

Crossrefs

For separable partitions see A386583, sums A325534, ranks A335433.
For inseparable partitions see A386584, sums A325535, ranks A335448.
For separable type partitions see A386585, sums A336106, ranks A335127.
For inseparable type partitions see A386586, sums A386638 or A025065, ranks A335126.
The complement is counted by A386634, sums of A386636.
Row sums of A386635.
A000110 counts set partitions, row sums of A048993.
A000670 counts ordered set partitions.
A003242 and A335452 count anti-runs, ranks A333489, patterns A005649.
A279790 counts disjoint families on strongly normal multisets.
A335434 counts separable factorizations, inseparable A333487.
A336103 counts normal separable multisets, inseparable A336102.

Programs

  • Mathematica
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    stnseps[stn_]:=Select[Permutations[Union@@stn],And@@Table[Position[stn,#[[i]]][[1,1]]!=Position[stn,#[[i+1]]][[1,1]],{i,Length[#]-1}]&]
    Table[Length[Select[sps[Range[n]],stnseps[#]!={}&]],{n,0,5}]

Extensions

a(12)-a(25) from Alois P. Heinz, Aug 10 2025
Showing 1-10 of 22 results. Next