cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 26 results. Next

A383706 Number of ways to choose disjoint strict integer partitions, one of each prime index of n.

Original entry on oeis.org

1, 1, 1, 0, 2, 1, 2, 0, 0, 1, 3, 0, 4, 1, 1, 0, 5, 0, 6, 0, 2, 2, 8, 0, 2, 2, 0, 0, 10, 1, 12, 0, 2, 3, 2, 0, 15, 3, 2, 0, 18, 1, 22, 0, 0, 5, 27, 0, 2, 0, 3, 0, 32, 0, 3, 0, 4, 5, 38, 0, 46, 7, 0, 0, 4, 1, 54, 0, 5, 1, 64, 0, 76, 8, 0, 0, 3, 1, 89, 0, 0, 10
Offset: 1

Views

Author

Gus Wiseman, May 15 2025

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The prime indices of 25 are (3,3), for which we have choices ((3),(2,1)) and ((2,1),(3)), so a(25) = 2.
The prime indices of 91 are (4,6), for which we have choices ((4),(6)), ((4),(5,1)), ((4),(3,2,1)), ((3,1),(6)), ((3,1),(4,2)), so a(91) = 5.
The prime indices of 273 are (2,4,6), for which we have choices ((2),(4),(6)), ((2),(4),(5,1)), ((2),(3,1),(6)), so a(273) = 3.
		

Crossrefs

Adding up over all integer partitions gives A279790, strict A279375.
Without disjointness we have A357982, non-strict version A299200.
For multiplicities instead of indices we have A382525.
Positions of 0 appear to be A382912, counted by A383710, odd case A383711.
Positions of positive terms are A382913, counted by A383708, odd case A383533.
Positions of 1 are A383707, counted by A179009.
The conjugate version is A384005.
A000041 counts integer partitions, strict A000009.
A048767 is the Look-and-Say transform, fixed points A048768, counted by A217605.
A055396 gives least prime index, greatest A061395.
A056239 adds up prime indices, row sums of A112798.
A239455 counts Look-and-Say or section-sum partitions, ranks A351294 or A381432.
A351293 counts non-Look-and-Say or non-section-sum partitions, ranks A351295 or A381433.

Programs

  • Mathematica
    pof[y_]:=Select[Join@@@Tuples[IntegerPartitions/@y], UnsameQ@@#&];
    prix[n_]:=If[n==1,{}, Flatten[Cases[FactorInteger[n], {p_,k_}:>Table[PrimePi[p],{k}]]]];
    Table[Length[pof[prix[n]]],{n,100}]

A383708 Number of integer partitions of n such that it is possible to choose a family of pairwise disjoint strict integer partitions, one of each part.

Original entry on oeis.org

1, 1, 2, 2, 3, 5, 5, 7, 8, 13, 14, 18, 22, 27, 36, 41, 50, 61, 73, 86
Offset: 0

Views

Author

Gus Wiseman, May 07 2025

Keywords

Comments

Also the number of integer partitions y of n whose normal multiset (in which i appears y_i times) is a Look-and-Say partition.

Examples

			For y = (3,3) we can choose disjoint strict partitions ((2,1),(3)), so (3,3) is counted under a(6).
The a(1) = 1 through a(9) = 8 partitions:
  (1)  (2)  (3)    (4)    (5)    (6)      (7)      (8)      (9)
            (2,1)  (3,1)  (3,2)  (3,3)    (4,3)    (4,4)    (5,4)
                          (4,1)  (4,2)    (5,2)    (5,3)    (6,3)
                                 (5,1)    (6,1)    (6,2)    (7,2)
                                 (3,2,1)  (4,2,1)  (7,1)    (8,1)
                                                   (4,3,1)  (4,3,2)
                                                   (5,2,1)  (5,3,1)
                                                            (6,2,1)
		

Crossrefs

These partitions have Heinz numbers A382913.
Without ones we have A383533, complement A383711.
The number of such families for each Heinz number is A383706.
The complement is counted by A383710, ranks A382912.
A048767 is the Look-and-Say transform, fixed points A048768 (counted by A217605).
A098859 counts partitions with distinct multiplicities, compositions A242882.
A239455 counts Look-and-Say or section-sum partitions, ranks A351294 or A381432.
A351293 counts non-Look-and-Say or non-section-sum partitions, ranks A351295 or A381433.

Programs

  • Mathematica
    pof[y_]:=Select[Join@@@Tuples[IntegerPartitions/@y], UnsameQ@@#&];
    Table[Length[Select[IntegerPartitions[n], pof[#]!={}&]],{n,15}]

A383710 Number of integer partitions of n such that it is not possible to choose a family of pairwise disjoint strict integer partitions, one of each part.

Original entry on oeis.org

0, 0, 1, 1, 3, 4, 6, 10, 15, 22, 29, 42, 59, 79, 108, 140, 190, 247, 324, 417, 541
Offset: 0

Views

Author

Gus Wiseman, May 07 2025

Keywords

Comments

Also the number of integer partitions of n whose normal multiset (in which i appears y_i times) is not a Look-and-Say partition.

Examples

			For y = (3,3) we can choose disjoint strict partitions ((2,1),(3)), so (3,3) is not counted under a(6).
The a(2) = 1 through a(8) = 15 partitions:
  (11)  (111)  (22)    (221)    (222)     (322)      (332)
               (211)   (311)    (411)     (331)      (422)
               (1111)  (2111)   (2211)    (511)      (611)
                       (11111)  (3111)    (2221)     (2222)
                                (21111)   (3211)     (3221)
                                (111111)  (4111)     (3311)
                                          (22111)    (4211)
                                          (31111)    (5111)
                                          (211111)   (22211)
                                          (1111111)  (32111)
                                                     (41111)
                                                     (221111)
                                                     (311111)
                                                     (2111111)
                                                     (11111111)
		

Crossrefs

These partitions have Heinz numbers A382912.
The number of such families for each Heinz number is A383706.
The complement is counted by A383708, ranks A382913.
Without ones we have A383711, complement A383533.
A048767 is the Look-and-Say transform, fixed points A048768 (counted by A217605).
A098859 counts partitions with distinct multiplicities, compositions A242882.
A239455 counts Look-and-Say or section-sum partitions, ranks A351294 or A381432.
A351293 counts non-Look-and-Say or non-section-sum partitions, ranks A351295 or A381433.

Programs

  • Mathematica
    pof[y_]:=Select[Join@@@Tuples[IntegerPartitions/@y], UnsameQ@@#&];
    Table[Length[Select[IntegerPartitions[n], pof[#]=={}&]], {n,0,15}]

A382913 Numbers k such that row k of A305936 (a multiset whose multiplicities are the prime indices of k) has a permutation with all distinct run-lengths.

Original entry on oeis.org

1, 2, 3, 5, 6, 7, 10, 11, 13, 14, 15, 17, 19, 21, 22, 23, 25, 26, 29, 30, 31, 33, 34, 35, 37, 38, 39, 41, 42, 43, 46, 47, 49, 51, 53, 55, 57, 58, 59, 61, 62, 65, 66, 67, 69, 70, 71, 73, 74, 77, 78, 79, 82, 83, 85, 86, 87, 89, 91, 93, 94, 95, 97, 101, 102, 103
Offset: 1

Views

Author

Gus Wiseman, Apr 12 2025

Keywords

Comments

This described multiset (row n of A305936, Heinz number A181821) is generally not the same as the multiset of prime indices of n (A112798). For example, the prime indices of 12 are {1,1,2}, while a multiset whose multiplicities are {1,1,2} is {1,1,2,3}.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798, sum A056239.

Examples

			The terms, prime indices, and corresponding multisets begin:
   1:    {} {}
   2:   {1} {1}
   3:   {2} {1,1}
   5:   {3} {1,1,1}
   6: {1,2} {1,1,2}
   7:   {4} {1,1,1,1}
  10: {1,3} {1,1,1,2}
  11:   {5} {1,1,1,1,1}
  13:   {6} {1,1,1,1,1,1}
  14: {1,4} {1,1,1,1,2}
  15: {2,3} {1,1,1,2,2}
  17:   {7} {1,1,1,1,1,1,1}
  19:   {8} {1,1,1,1,1,1,1,1}
  21: {2,4} {1,1,1,1,2,2}
  22: {1,5} {1,1,1,1,1,2}
  23:   {9} {1,1,1,1,1,1,1,1,1}
  25: {3,3} {1,1,1,2,2,2}
  26: {1,6} {1,1,1,1,1,1,2}
		

Crossrefs

Look-and-Say partitions are counted by A239455, ranks A351294.
Non-Look-and-Say partitions are counted by A351293, ranks A351295.
For prime indices instead of signature we have A351294, conjugate A381432.
The Look-and-Say partition of n is listed by A381440, rank A048767.
The complement is A382912.
For equal run-lengths we have the complement of A382914, see A382858, A382879, A382915.
A044813 lists numbers whose binary expansion has distinct run-lengths.
A055396 gives least prime index, greatest A061395.
A056239 adds up prime indices, row sums of A112798.
A329739 counts compositions with distinct run-lengths, ranks A351596.
A381431 ranks section-sum partition, listed by A381436.

Programs

  • Mathematica
    nrmptn[n_]:=Join@@MapIndexed[Table[#2[[1]],{#1}]&, If[n==1,{},Flatten[Cases[FactorInteger[n]//Reverse,{p_,k_} :> Table[PrimePi[p],{k}]]]]];
    lasQ[y_]:=Select[Permutations[y], UnsameQ@@Length/@Split[#]&]!={};
    Select[Range[100],lasQ@*nrmptn]

A383533 Number of integer partitions of n with no ones such that it is possible to choose a family of pairwise disjoint strict integer partitions, one of each part.

Original entry on oeis.org

1, 0, 1, 1, 1, 2, 3, 3, 4, 5, 8, 8, 11, 13, 17, 22, 25, 30, 37, 44, 53, 69, 77, 93, 111, 130, 153, 181, 220, 249, 295
Offset: 0

Views

Author

Gus Wiseman, May 07 2025

Keywords

Comments

The Heinz numbers of these partitions are the odd terms of A382913.
Also the number of integer partitions y of n with no ones such that the normal multiset (in which i appears y_i times) is a Look-and-Say partition.

Examples

			For y = (3,3) we can choose disjoint strict partitions ((2,1),(3)), so (3,3) is counted under a(6).
The a(2) = 1 through a(10) = 8 partitions:
  (2)  (3)  (4)  (5)    (6)    (7)    (8)    (9)      (10)
                 (3,2)  (3,3)  (4,3)  (4,4)  (5,4)    (5,5)
                        (4,2)  (5,2)  (5,3)  (6,3)    (6,4)
                                      (6,2)  (7,2)    (7,3)
                                             (4,3,2)  (8,2)
                                                      (4,3,3)
                                                      (4,4,2)
                                                      (5,3,2)
		

Crossrefs

The number of such families is A383706.
Allowing ones gives A383708 (ranks A382913), complement A383710 (ranks A382912).
The complement is counted by A383711.
A048767 is the Look-and-Say transform, fixed points A048768 (counted by A217605).
A098859 counts partitions with distinct multiplicities, compositions A242882.
A239455 counts Look-and-Say or section-sum partitions, ranks A351294 or A381432.
A351293 counts non-Look-and-Say or non-section-sum partitions, ranks A351295 or A381433.

Programs

  • Mathematica
    pof[y_]:=Select[Join@@@Tuples[IntegerPartitions/@y], UnsameQ@@#&];
    Table[Length[Select[IntegerPartitions[n], FreeQ[#,1]&&!pof[#]=={}&]],{n,0,15}]

A383711 Number of integer partitions of n with no ones such that it is not possible to choose a family of pairwise disjoint strict integer partitions, one of each part.

Original entry on oeis.org

0, 0, 0, 0, 1, 0, 1, 1, 3, 3, 4, 6, 10, 11, 17, 19, 30, 36, 51, 61, 84, 96, 133, 160, 209, 253, 325, 393, 488, 598, 744
Offset: 0

Views

Author

Gus Wiseman, May 07 2025

Keywords

Comments

The Heinz numbers of these partitions are the odd terms of A382912.
Also the number of integer partitions of n with no ones whose normal multiset (in which i appears y_i times) is not a Look-and-Say partition.

Examples

			For y = (3,3) we can choose disjoint strict partitions ((2,1),(3)), so (3,3) is not counted under a(6).
The a(4) = 1 through a(12) = 10 partitions:
  (22)  .  (222)  (322)  (332)   (333)   (622)    (443)    (444)
                         (422)   (522)   (3322)   (722)    (822)
                         (2222)  (3222)  (4222)   (3332)   (3333)
                                         (22222)  (4322)   (4332)
                                                  (5222)   (4422)
                                                  (32222)  (5322)
                                                           (6222)
                                                           (33222)
                                                           (42222)
                                                           (222222)
		

Crossrefs

The complement without ones is counted by A383533.
The number of these families is A383706.
Allowing ones gives A383710 (ranks A382912), complement A383708 (ranks A382913).
A048767 is the Look-and-Say transform, fixed points A048768 (counted by A217605).
A098859 counts partitions with distinct multiplicities, compositions A242882.
A239455 counts Look-and-Say or section-sum partitions, ranks A351294 or A381432.
A351293 counts non-Look-and-Say or non-section-sum partitions, ranks A351295 or A381433.

Programs

  • Mathematica
    pof[y_]:=Select[Join@@@Tuples[IntegerPartitions/@y],UnsameQ@@#&];
    Table[Length[Select[IntegerPartitions[n],FreeQ[#,1]&&pof[#]=={}&]],{n,0,15}]

A384317 Number of integer partitions of n with more than one possible way to choose disjoint strict partitions of each part.

Original entry on oeis.org

0, 0, 0, 1, 1, 1, 4, 4, 5, 5, 12, 12, 16, 19, 22, 35, 38, 48, 58, 68, 79, 110, 121, 149, 175, 207, 242, 281, 352, 397, 473
Offset: 0

Views

Author

Gus Wiseman, May 28 2025

Keywords

Comments

The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.

Examples

			There are two possibilities for (4,3), namely ((4),(3)) and ((4),(2,1)), so (4,3) is counted under a(7).
The a(3) = 1 through a(11) = 12 partitions:
  (3)  (4)  (5)  (6)    (7)    (8)    (9)    (10)     (11)
                 (3,3)  (4,3)  (4,4)  (5,4)  (5,5)    (6,5)
                 (4,2)  (5,2)  (5,3)  (6,3)  (6,4)    (7,4)
                 (5,1)  (6,1)  (6,2)  (7,2)  (7,3)    (8,3)
                               (7,1)  (8,1)  (8,2)    (9,2)
                                             (9,1)    (10,1)
                                             (4,3,3)  (5,3,3)
                                             (4,4,2)  (5,4,2)
                                             (5,3,2)  (5,5,1)
                                             (5,4,1)  (6,3,2)
                                             (6,3,1)  (7,3,1)
                                             (7,2,1)  (8,2,1)
		

Crossrefs

The case of a unique choice is A179009, ranks A383707.
The case of at least one choice is A383708, ranks A382913.
The case of no choices is A383710, ranks A382912.
The strict case is A384318, ranks A384322.
These partitions are ranked by A384321, positions of terms > 1 in A383706.
The case of a unique proper choice is A384323, ranks A384347, strict A384319.
A239455 counts Look-and-Say or section-sum partitions, ranks A351294 or A381432.
A351293 counts non-Look-and-Say or non-section-sum partitions, ranks A351295 or A381433.
A357982 counts choices of strict partitions of prime indices, non-strict A299200.

Programs

  • Mathematica
    pof[y_]:=Select[Join@@@Tuples[IntegerPartitions/@y],UnsameQ@@#&];
    Table[Length[Select[IntegerPartitions[n],Length[pof[#]]>1&]],{n,0,30}]

Formula

a(n) = A383708(n) - A179009(n).

A384322 Heinz numbers of strict integer partitions with more than one possible way to choose disjoint strict partitions of each part, i.e., strict partitions that can be properly refined.

Original entry on oeis.org

5, 7, 11, 13, 17, 19, 21, 22, 23, 26, 29, 31, 33, 34, 35, 37, 38, 39, 41, 43, 46, 47, 51, 53, 55, 57, 58, 59, 61, 62, 65, 67, 69, 71, 73, 74, 77, 79, 82, 83, 85, 86, 87, 89, 91, 93, 94, 95, 97, 101, 102, 103, 106, 107, 109, 111, 113, 114, 115, 118, 119, 122
Offset: 1

Views

Author

Gus Wiseman, Jun 01 2025

Keywords

Examples

			The strict partition (7,2,1) with Heinz number 102 can be properly refined into (4,3,2,1), so 102 is in the sequence.
The terms together with their prime indices begin:
     5: {3}      46: {1,9}      85: {3,7}
     7: {4}      47: {15}       86: {1,14}
    11: {5}      51: {2,7}      87: {2,10}
    13: {6}      53: {16}       89: {24}
    17: {7}      55: {3,5}      91: {4,6}
    19: {8}      57: {2,8}      93: {2,11}
    21: {2,4}    58: {1,10}     94: {1,15}
    22: {1,5}    59: {17}       95: {3,8}
    23: {9}      61: {18}       97: {25}
    26: {1,6}    62: {1,11}    101: {26}
    29: {10}     65: {3,6}     102: {1,2,7}
    31: {11}     67: {19}      103: {27}
    33: {2,5}    69: {2,9}     106: {1,16}
    34: {1,7}    71: {20}      107: {28}
    35: {3,4}    73: {21}      109: {29}
    37: {12}     74: {1,12}    111: {2,12}
    38: {1,8}    77: {4,5}     113: {30}
    39: {2,6}    79: {22}      114: {1,2,8}
    41: {13}     82: {1,13}    115: {3,9}
    43: {14}     83: {23}      118: {1,17}
		

Crossrefs

The non-strict version for no choices appears to be A382912, count A383710, odd A383711.
The non-strict version for > 0 choice appears to be A382913, count A383708, odd A383533.
These are the squarefree positions of terms > 1 in A383706, see A357982, A299200.
The case of a unique choice is A383707, counted by A179009.
Partitions of this type are counted by A384318.
This is the strict/squarefree case of A384321, counted by A384317.
The case of a unique proper choice is A384390, counted by A384319, non-strict A384323.
A048767 is the Look-and-Say transform, fixed points A048768, counted by A217605.
A055396 gives least prime index, greatest A061395.
A056239 adds up prime indices, row sums of A112798.
A239455 counts Look-and-Say partitions, ranks A351294 or A381432.
A279790 and A279375 count ways to choose disjoint strict partitions of prime indices.
A351293 counts non-Look-and-Say partitions, ranks A351295 or A381433.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    pof[y_]:=Select[Join@@@Tuples[IntegerPartitions/@y],UnsameQ@@#&];
    Select[Range[100],UnsameQ@@prix[#]&&Length[pof[prix[#]]]>1&]

A384390 Heinz numbers of integer partitions with a unique proper way to choose disjoint strict partitions of each part.

Original entry on oeis.org

5, 7, 21, 22, 26, 33, 35, 39, 102, 114, 130, 154, 165, 170, 190, 195, 231, 238, 255, 285
Offset: 1

Views

Author

Gus Wiseman, Jun 02 2025

Keywords

Comments

By "proper" we exclude the case of all singletons, which is disjoint in the strict case.
The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.

Examples

			The strict partition (7,2,1) with Heinz number 102 can only be properly refined as ((4,3),(2),(1)), so 102 is in the sequence. The other refinement ((7),(2),(1)) is not proper.
The terms together with their prime indices begin:
    5: {3}
    7: {4}
   21: {2,4}
   22: {1,5}
   26: {1,6}
   33: {2,5}
   35: {3,4}
   39: {2,6}
  102: {1,2,7}
  114: {1,2,8}
  130: {1,3,6}
  154: {1,4,5}
  165: {2,3,5}
  170: {1,3,7}
  190: {1,3,8}
  195: {2,3,6}
  231: {2,4,5}
  238: {1,4,7}
  255: {2,3,7}
  285: {2,3,8}
		

Crossrefs

The non-proper version is A383707, counted by A179009.
Partitions of this type are counted by A384319, non-strict A384323 (ranks A384347).
This is the unique case of A384321, counted by A384317.
This is the case of a unique proper choice in A384322.
The complement is A384349 \/ A384393.
These are positions of 1 in A384389.
A048767 is the Look-and-Say transform, fixed points A048768, counted by A217605.
A055396 gives least prime index, greatest A061395.
A056239 adds up prime indices, row sums of A112798.
A239455 counts Look-and-Say or section-sum partitions, ranks A351294 or A381432.
A351293 counts non-Look-and-Say or non-section-sum partitions, ranks A351295 or A381433.
A357982 counts strict partitions of each prime index, non-strict A299200.
Cf. A382912, counted by A383710, odd case A383711.
Cf. A382913, counted by A383708, odd case A383533.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    pofprop[y_]:=Select[DeleteCases[Join@@@Tuples[IntegerPartitions/@y],y],UnsameQ@@#&];
    Select[Range[100],Length[pofprop[prix[#]]]==1&]

A384319 Number of strict integer partitions of n with exactly two possible ways to choose disjoint strict partitions of each part.

Original entry on oeis.org

0, 0, 0, 1, 1, 0, 2, 3, 1, 0, 4, 4, 4, 2, 0, 6, 7, 8, 8, 3, 2, 9, 9, 14, 13, 6, 7, 3, 15, 13, 20
Offset: 0

Views

Author

Gus Wiseman, May 28 2025

Keywords

Examples

			For y = (5,4,2) we have choices ((5),(4),(2)) and ((5),(3,1),(2)), so y is counted under a(11).
The a(3) = 1 through a(11) = 4 partitions:
  (3)  (4)  .  (4,2)  (4,3)  (6,2)  .  (5,3,2)  (5,4,2)
               (5,1)  (5,2)            (5,4,1)  (6,3,2)
                      (6,1)            (6,3,1)  (7,3,1)
                                       (7,2,1)  (8,2,1)
		

Crossrefs

The case of a unique choice is A179009, ranks A383707.
Choices of this type for each prime index are counted by A383706.
The non-strict version for at least one choice is A383708, ranks A382913.
The non-strict version for no choices is A383710, ranks A382912.
The non-strict version for more than one choice is A384317, ranks A384321.
The version for at least one choice is A384322, counted by A384318.
The non-strict version is A384323, ranks A384347.
These partitions are ranked by A384390.
A239455 counts Look-and-Say or section-sum partitions, ranks A351294 or A381432.
A351293 counts non Look-and-Say or non section-sum partitions, ranks A351295 or A381433.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],UnsameQ@@#&&Length[pof[#]]==2&]],{n,0,30}]
Showing 1-10 of 26 results. Next