A003436
Number of inequivalent labeled Hamiltonian circuits on n-octahedron. Interlacing chords joining 2n points on circle.
Original entry on oeis.org
1, 0, 1, 4, 31, 293, 3326, 44189, 673471, 11588884, 222304897, 4704612119, 108897613826, 2737023412199, 74236203425281, 2161288643251828, 67228358271588991, 2225173863019549229, 78087247031912850686, 2896042595237791161749, 113184512236563589997407
Offset: 0
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- F. R. Bernhart & N. J. A. Sloane, Emails, April-May 1994
- Kenneth P. Bogart and Peter G. Doyle, Nonsexist solution of the menage problem, Amer. Math. Monthly 93:7 (1986), 514-519.
- Robert Cori and G. Hetyei, Counting partitions of a fixed genus, arXiv preprint arXiv:1710.09992 [math.CO], 2017.
- M. Hazewinkel and V. V. Kalashnikov, Counting Interlacing Pairs on the Circle, CWI report AM-R9508 (1995)
- Evgeniy Krasko, Igor Labutin, and Alexander Omelchenko, Enumeration of Labelled and Unlabelled Hamiltonian Cycles in Complete k-partite Graphs, arXiv:1709.03218 [math.CO], 2017.
- E. Krasko and A. Omelchenko, Enumeration of Chord Diagrams without Loops and Parallel Chords, arXiv preprint arXiv:1601.05073 [math.CO], 2016.
- E. Krasko and A. Omelchenko, Enumeration of Chord Diagrams without Loops and Parallel Chords, The Electronic Journal of Combinatorics, 24(3) (2017), #P3.43.
- D. Singmaster, Hamiltonian circuits on the n-dimensional octahedron, J. Combinatorial Theory Ser. B 19 (1975), no. 1, 1-4.
- Gus Wiseman, The a(5) = 293 interlacing chord diagrams.
Cf.
A000179,
A000296,
A000699,
A001147,
A005493,
A170941,
A190823,
A278990,
A306386,
A306419,
A322402,
A324011,
A324172,
A324173.
-
A003436 := proc(n) local k;
if n = 0 then 1
elif n = 1 then 0
else add( (-1)^k*binomial(n,k)*2*n/(2*n-k)*2^k*(2*n-k)!/2^n/n!,k=0..n) ;
end if;
end proc: # R. J. Mathar, Dec 11 2013
A003436 := n-> `if`(n<2, 1-n, (-1)^n*2*hypergeom([n, -n], [], 1/2)):
seq(simplify(A003436(n)), n=0..18); # Peter Luschny, Nov 10 2016
-
a[n_] := (2*n-1)!! * Hypergeometric1F1[-n, 1-2*n, -2]; a[1] = 0;
Table[a[n], {n, 0, 19}] (* Jean-François Alcover, Apr 05 2013 *)
twounifll[{}]:={{}};twounifll[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@twounifll[Complement[set,s]]]/@Table[{i,j},{j,If[i==1,Select[set,2<#i+1&]]}];
Table[Length[twounifll[Range[n]]],{n,0,14,2}] (* Gus Wiseman, Feb 27 2019 *)
A054499
Number of pairings on a bracelet; number of chord diagrams that can be turned over and having n chords.
Original entry on oeis.org
1, 1, 2, 5, 17, 79, 554, 5283, 65346, 966156, 16411700, 312700297, 6589356711, 152041845075, 3811786161002, 103171594789775, 2998419746654530, 93127358763431113, 3078376375601255821, 107905191542909828013, 3997887336845307589431
Offset: 0
For n=3, there are 5 bracelets with 3 pairs of beads. They are represented by the words aabbcc, aabcbc, aabccb, abacbc, and abcabc. All of the 6!/(2*2*2) = 90 combinations can be derived from these by some combination of relabeling the pairs, rotation, and reflection. So a(3) = 5. - _Michael B. Porter_, Jul 27 2016
- R. C. Read, Some Enumeration Problems in Graph Theory. Ph.D. Dissertation, Department of Mathematics, Univ. London, 1958.
- W. Y.-C. Chen, D. C. Torney, Equivalence classes of matchings and lattice-square designs, Discr. Appl. Math. 145 (3) (2005) 349-357.
- Étienne Ghys, A Singular Mathematical Promenade, arXiv:1612.06373 [math.GT], 2016-2017. See p. 252.
- A. Khruzin, Enumeration of chord diagrams, arXiv:math/0008209 [math.CO], 2000.
- V. A. Liskovets, Some easily derivable sequences, J. Integer Sequences, 3 (2000), #00.2.2.
- R. J. Mathar, Chord Diagrams A054499 (2018)
- R. J. Mathar, Feynman diagrams of the QED vacuum polarization, vixra:1901.0148 (2019)
- R. C. Read, Letter to N. J. A. Sloane, Feb 04 1971 (gives initial terms of this sequence)
- Alexander Stoimenow, On the number of chord diagrams, Discr. Math. 218 (2000), 209-233.
- Index entries for sequences related to bracelets
Cf.
A007769,
A104256,
A279207,
A279208,
A003437 (loopless chord diagrams),
A322176 (marked chords),
A362657,
A362658,
A362659 (three, four, five instances of each color rather than two),
A371305 (Multiset Transf.),
A260847 (directed chords).
-
max = 19;
alpha[p_, q_?EvenQ] := Sum[Binomial[p, 2*k]*q^k*(2*k-1)!!, {k, 0, max}];
alpha[p_, q_?OddQ] := q^(p/2)*(p-1)!!;
a[0] = 1;
a[n_] := 1/4*(Abs[HermiteH[n-1, I/2]] + Abs[HermiteH[n, I/2]] + (2*Sum[Block[{q = (2*n)/p}, alpha[p, q]*EulerPhi[q]], {p, Divisors[ 2*n]}])/(2*n));
Table[a[n], {n, 0, max}] (* Jean-François Alcover, Sep 05 2013, after R. J. Mathar; corrected by Andrey Zabolotskiy, Jul 27 2016 *)
A129348
Number of (directed) Hamiltonian circuits in the cocktail party graph of order n.
Original entry on oeis.org
0, 2, 32, 1488, 112512, 12771840, 2036229120, 434469611520, 119619533537280, 41303040523960320, 17481826772405452800, 8902337068174698086400, 5370014079716477003366400, 3786918976243761421064601600, 3087031512410698159166482022400, 2880726660365605475506018320384000
Offset: 1
-
a:= proc(n) option remember; `if`(n<3, n*(n-1),
((136*n^3-608*n^2+762*n-470) *a(n-1)
+4*(n-2)*(14*n^2+29*n-193) *a(n-2)
-80*(n-2)*(n-3)*(n-4) *a(n-3)) /(34*n-101))
end:
seq(a(n), n=0..20); # Alois P. Heinz, Feb 09 2014
-
Prepend[Table[Sum[(-1)^i Binomial[n, i] (2n - 1 - i)! 2^i, {i, 0, n}], {n, 2, 16}], 0] (* Geoffrey Critzer, Feb 09 2014 *)
Table[Piecewise[{{(-1 + 2 n)! Hypergeometric1F1[-n, 1 - 2 n, -2],
n > 1}}], {n, 16}] (* Eric W. Weisstein, Mar 29 2014 *)
-
{ A129348(n) = sum(m=0,n-1, sum(k=1,n-m, (-1)^k * binomial(n-1,m) * binomial(n-m-1,k-1) * 2^(k-1) * ([0,k-1,2*(n-m-k);1,k-2,2*(n-m-k);1,k-1,2*(n-m-k-1)]^(2*n))[1,1] ) + sum(k=0,n-m, (-1)^k * binomial(n-1,m) * binomial(n-m-1,k) * 2^(k-1) * ([0,k,2*(n-m-k-1);2,k-1,2*(n-m-k-1);2,k,2*(n-m-k-2)]^(2*n))[1,1] ) ) } \\ Max Alekseyev, Dec 22 2013
A278991
a(n) is the number of simple linear diagrams with n+1 chords.
Original entry on oeis.org
0, 1, 3, 24, 211, 2325, 30198, 452809, 7695777, 146193678, 3069668575, 70595504859, 1764755571192, 47645601726541, 1381657584006399, 42829752879449400, 1413337528735664887, 49465522112961344241, 1830184115528550306438, 71375848864779552073957
Offset: 0
-
a[0] = 0; a[1] = 1; a[2] = 3; a[n_] := a[n] = (2 n - 1) a[n - 1] + (4 n - 3) a[n - 2] + (2 n - 4) a[n - 3]; Table[a@ n, {n, 0, 19}] (* Michael De Vlieger, Dec 10 2016 *)
-
seq(N) = {
my(a = vector(N)); a[1]=1; a[2]=3; a[3]=24;
for (n=4, N, a[n] = (2*n-1)*a[n-1] + (4*n-3)*a[n-2] + (2*n-4)*a[n-3]);
concat(0, a);
};
seq(20) \\ Gheorghe Coserea, Dec 10 2016
-
N = 20; x = 'x + O('x^N);
concat(0, Vec(serlaplace((1-sqrt(1-2*x))*(1-2*x)^(-3/2)*exp(-1-x+sqrt(1-2*x))))) \\ Gheorghe Coserea, Dec 10 2016
A348817
a(n) = number of loopless diagrams by number of K_4 up to all symmetries.
Original entry on oeis.org
0, 1, 13, 2576, 2081393, 3309962320, 8755277273334, 35815698613833466, 214713439275724149414, 1808298469877117320495867
Offset: 1
A348820
a(n) = number of loopless diagrams by number of K_5 up to all symmetries.
Original entry on oeis.org
0, 1, 42, 112418, 1105696796, 24178822553773, 1029696155560021174, 77938101941693076258854
Offset: 1
A348823
a(n) = number of loopless diagrams by number of K_6 up to all symmetries.
Original entry on oeis.org
0, 1, 203, 5765385, 662305416760, 202380163158922023, 141390361908351519807928
Offset: 1
A003435
Number of directed Hamiltonian circuits on n-octahedron with a marked starting node.
Original entry on oeis.org
8, 192, 11904, 1125120, 153262080, 28507207680, 6951513784320, 2153151603671040, 826060810479206400, 384600188992919961600, 213656089636192754073600, 139620366072628402087526400, 106033731334825319789808844800
Offset: 2
n=2: label vertices of a square 1,2,3,4. Then the 8 Hamiltonian circuits are 1234, 1432, 2341, 2143, 3412, 3214, 4123, 4321; so a(2) = 8.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Vincenzo Librandi, Table of n, a(n) for n = 2..100
- Kenneth P. Bogart and Peter G. Doyle, Nonsexist solution of the menage problem, Amer. Math. Monthly 93 (1986), no. 7, 514-519.
- D. Singmaster, Enumerating unlabeled Hamiltonian circuts, Preprint (1974).
- D. Singmaster, Hamiltonian circuits on the n-dimensional octahedron, J. Combinatorial Theory Ser. B 19 (1975), no. 1, 1-4.
- D. Singmaster, Letter to N. J. A. Sloane, May 1975
- Eric Weisstein's World of Mathematics, Cocktail Party Graph
-
[(&+[ (-1)^k*2^(k+1)*n*Binomial(n, k)*Factorial(2*n-k-1): k in [0..n]]) : n in [2..20]]; // G. C. Greubel, Nov 17 2022
-
A003435 := n->add((-1)^k*binomial(n,k)*((2*n)/(2*n-k))*2^k*(2*n-k)!,k=0..n);
-
a[n_] := 2^n*n!*(2n-1)!!*Hypergeometric1F1[-n, 1-2n, -2]; Table[ a[n], {n, 2, 14}] (* Jean-François Alcover, Nov 04 2011 *)
-
a(n)=sum(k=0,n,(-1)^k*binomial(n,k)*((2*n)/(2*n-k))*2^k*(2*n-k)!) \\ Charles R Greathouse IV, Nov 04 2011
-
[sum( (-1)^k*2^(k+1)*n*binomial(n, k)*factorial(2*n-k-1) for k in (0..n)) for n in (2..20)] # G. C. Greubel, Nov 17 2022
A278992
Number of simple chord-labeled chord diagrams with n chords.
Original entry on oeis.org
0, 1, 1, 21, 168, 1968, 26094, 398653, 6872377, 132050271, 2798695656, 64866063276, 1632224748984, 44316286165297, 1291392786926821, 40202651019430461, 1331640833909877144, 46762037794122159492, 1735328399106396110310, 67858430028772637693845
Offset: 1
-
terms = 20;
CoefficientList[(Sqrt[1 - 2t]+1)(1/Sqrt[1 - 2t])*E^(Sqrt[1 - 2t] - t - 1) - (2-t)/E^t + O[t]^(terms+1), t]*Range[0, terms]! // Rest (* Jean-François Alcover, Sep 14 2018 *)
A278993
Number of simple chord diagrams with n chords, up to rotation.
Original entry on oeis.org
0, 1, 1, 4, 21, 176, 1893, 25030, 382272, 6604535, 127222636, 2702798537, 62778105236, 1582725739329, 43046433007765, 1256332883208474, 39165907107963273, 1298945495674093932, 45666536827274985585, 1696460750775267473762
Offset: 1
Showing 1-10 of 11 results.
Comments