A007769
Number of chord diagrams with n chords; number of pairings on a necklace.
Original entry on oeis.org
1, 1, 2, 5, 18, 105, 902, 9749, 127072, 1915951, 32743182, 624999093, 13176573910, 304072048265, 7623505722158, 206342800616597, 5996837126024824, 186254702826289089, 6156752656678674792, 215810382466145354405, 7995774669504366055054
Offset: 0
Jean.Betrema(AT)labri.u-bordeaux.fr
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- D. Bar-Natan, On the Vassiliev Knot Invariants, Topology 34 (1995) 423-472.
- D. Bar-Natan, Bibliography of Vassiliev Invariants.
- W. Y.-C. Chen, D. C. Torney, Equivalence classes of matchings and lattice-square designs, Discr. Appl. Math. 145 (3) (2005) 349-357., table of C_2n.
- Combinatorial Object Server, Information on Chord Diagrams
- Étienne Ghys, A Singular Mathematical Promenade, arXiv:1612.06373 [math.GT], 2016. See p. 252.
- A. Khruzin, Enumeration of chord diagrams, arXiv:math/0008209 [math.CO], 2000.
- R. J. Mathar, Feynman diagrams of the QED vacuum polarization, vixra:1901.0148 (2019), Section V.
- Joe Sawada, A fast algorithm for generating nonisomorphic chord diagrams, SIAM J. Discrete Math, Vol. 15, No. 4, 2002, pp. 546-561.
- Alexander Stoimenow, On the number of chord diagrams, Discr. Math. 218 (2000), 209-233.
- Index entries for sequences related to necklaces
-
alpha:=proc(p, q)
local k;
if is(q, even) then
add(binomial(p, 2*k)*q^k*doublefactorial(2*k-1), k=0..p/2)
else
q^(p/2)*doublefactorial(p-1)
end if
end proc:
A007769 := proc(n)
local p;
if n = 0 then
1;
else
add(alpha(2*n/p, p)*numtheory[phi](p), p=numtheory[divisors](2*n))/2/n
end if;
end proc:
seq(A007769(n),n=0..10) ; # Robert FERREOL, Oct 10 2018
-
max = 20; alpha[p_, q_?EvenQ] := Sum[Binomial[p, 2k]*q^k*(2k-1)!!, {k, 0, max}]; alpha[p_, q_?OddQ] := q^(p/2)*(p-1)!!; a[0] = 1; a[n_] := Sum[q = 2n/p; alpha[p, q]*EulerPhi[q], {p, Divisors[2n]}]/(2n); Table[a[n], {n, 0, max}] (* Jean-François Alcover, May 07 2012, after R. J. Mathar *)
Stoimenow states that a Mma package is available from his website. - N. J. A. Sloane, Jul 26 2018
-
doublefactorial(n)={ local(resul) ; resul=1 ; forstep(i=n,2,-2, resul *= i ;) ; return(resul) ; }
alpha(n,q)={ if(q %2, return( q^(p/2)*doublefactorial(p-1)), return( sum(k=0,p/2,binomial(p,2*k)*q^k*doublefactorial(2*k-1)) ) ;) ; }
A007769(n)={ local(resul,q) ; if(n==0, return(1), resul=0 ; fordiv(2*n,p, q=2*n/p ; resul += alpha(p,q)*eulerphi(q) ;); return(resul/(2*n)) ;) ; } { for(n=0,20, print(n," ",A007769(n)) ;) ; } \\ R. J. Mathar, Oct 26 2006
Original entry on oeis.org
1, 1, 3, 11, 65, 513, 5363, 68219, 1016481, 17243105, 327431363, 6874989963, 158118876449, 3952936627361, 106729080101235, 3095142009014843, 95949394016339393, 3166329948046914369, 110821547820208233731, 4100397266856761733515
Offset: 0
a(2)=3 counts the arrangements [1122], [1212] and [1221]. - _R. J. Mathar_, Oct 18 2019
- G. C. Greubel, Table of n, a(n) for n = 0..400
- Jonathan Burns, Assembly Graph Words - Single Transverse Component (Counts).
- Jonathan Burns, Egor Dolzhenko, Natasa Jonoska, Tilahun Muche, and Masahico Saito, Four-Regular Graphs with Rigid Vertices Associated to DNA Recombination, Discrete Applied Mathematics, Volume 161, Issues 10-11, July 2013, Pages 1378-1394.
- R. J. Mathar, Feynman diagrams of the QED vacuum polarization, vixra:1901.0148 (2019), Section IV.
-
R:=PowerSeriesRing(Rationals(), 30);
Coefficients(R!(Laplace( (Exp(x+x^2) + 1/Sqrt(1-2*x))/2 ))); // G. C. Greubel, Jul 12 2024
-
A132101 := proc(n)
(A001147(n)+A047974(n))/2 ;
end proc:
seq(A132101(n),n=0..30) ; # R. J. Mathar, Dec 20 2020
-
Table[((2n-1)!!+I^(-n)*HermiteH[n,I/2])/2,{n,0,30}] (* Jonathan Burns, Apr 05 2016 *)
-
[(factorial(n)*binomial(2*n,n) + (-2*i)^n*hermite(n,i/2))/2^(n+1) for n in range(31)] # G. C. Greubel, Jul 12 2024
A132100
Number of distinct Tsuro tiles which are square and have n points per side.
Original entry on oeis.org
1, 2, 35, 2688, 508277, 163715822, 79059439095, 53364540054860, 47974697008198313, 55410773910104281242, 79957746695043660483467, 140965507420235075126987480, 298142048193613276717321211805, 745056978435827991570581878537478
Offset: 0
-
# A(n,m) gives the number of n-sided tiles with m points per side (cf. comments)
# B(n,m) enumerates these tiles, also allowing reflections
with(numtheory): a:=(p,r)->piecewise(p mod 2 = 1,p^(r/2)*doublefactorial(r-1), sum(p^j*binomial(r, 2*j)*doublefactorial(2*j - 1), j = 0 .. floor(r/2)));
A := (n,m)->piecewise(n*m mod 2=1,0,add(phi(p)*a(p,m*n/p),p in divisors(n))/n);
B := (n,m)->A(n,m)/2+piecewise(n*m mod 2=0,piecewise(m mod 2=0,a(2,m*n/2)*2, a(2,m*n/2)+a(2,m*n/2-1))/4,0);
A132100 := m -> A(4,m);[seq(A132100(m),m=1..15)]; # Laurent Tournier, Jul 09 2014
A132105
Number of distinct Tsuro tiles which are n-gonal in shape and have 2 points per side.
Original entry on oeis.org
1, 1, 3, 7, 30, 137, 1065, 10307, 130040, 1927853, 32809979, 625303343, 13178378742, 304081128617, 7623562484349, 206343110670031, 5996839161108904, 186254714746749377, 6156752738537004317, 215810382975655205399, 7995774673152799224930
Offset: 0
-
# B(n,m) gives the number of n-sided tiles with m points per side, allowing reflections (cf. comments and formula of A132100)
with(numtheory): a:=(p,r)->piecewise(p mod 2 = 1,p^(r/2)*doublefactorial(r-1), sum(p^j*binomial(r, 2*j)*doublefactorial(2*j - 1), j = 0 .. floor(r/2)));
B := (n,m)->piecewise(n*m mod 2=1,0,add(phi(p)*a(p,m*n/p),p in divisors(n))/(2*n)+
piecewise(m mod 2=0, a(2,m*n/2)*2, a(2,m*n/2)+a(2,m*n/2-1))/4);
A132105 := n -> B(n,2);[seq(A132105(n),n=1..20)]; # Laurent Tournier, Jul 09 2014
A132104
Number of distinct Tsuro tiles which are square and have Q points per side.
Original entry on oeis.org
1, 2, 30, 1447, 257107, 81898020, 39531524384, 26682303327353, 23987350539183237, 27705387002314059046, 39978873351170263411714, 70482753710219315731386411, 149071024096816130023228547735, 372528489217914304271725034290952, 1085920546070218942128273877774286532, 3651950796434146162433577686485443037885
Offset: 0
-
# B(n,m) gives the number of n-sided tiles with m points per side, allowing reflections (cf. comments in A132100)
with(numtheory): a:=(p,r)->piecewise(p mod 2 = 1,p^(r/2)*doublefactorial(r-1), sum(p^j*binomial(r, 2*j)*doublefactorial(2*j - 1), j = 0 .. floor(r/2)));
B := (n,m)->piecewise(n*m mod 2=1,0,add(phi(p)*a(p,m*n/p),p in divisors(n))/(2*n) + piecewise(m mod 2=0, a(2,m*n/2)*2, a(2,m*n/2)+a(2,m*n/2-1))/4);
A132104 := m -> B(4,m);[seq(A132104(m),m=1..15)]; # Laurent Tournier, Jul 09 2014
A132102
Number of distinct Tsuro tiles which are n-gonal in shape and have 2 points per side.
Original entry on oeis.org
1, 1, 3, 7, 35, 193, 1799, 19311, 254143, 3828921, 65486307, 1249937335, 26353147811, 608142583137, 15247011443103, 412685556939751, 11993674252049647, 372509404162520641, 12313505313357313047, 431620764875678503143, 15991549339008732109899
Offset: 0
-
with(numtheory): a:=(p,q)->piecewise(p mod 2 = 1, p^q*doublefactorial(2*q - 1), sum(p^j*binomial(2*q, 2*j)*doublefactorial(2*j - 1), j = 0 .. q));
A132102 := n->add(phi(p)*a(p,n/p),p in divisors(n))/n;
[seq(A132102(n),n=1..20)]; # Laurent Tournier, Jul 09 2014
-
a(n)={if(n<1, n==0, sumdiv(n, d, my(m=n/d); eulerphi(d)*sum(j=0, m, (d%2==0 || m-j==0) * binomial(2*m, 2*j) * d^j * (2*j)! / (j!*2^j) ))/n)} \\ Andrew Howroyd, Jan 26 2020
a(9) and a(10) corrected, and addition of more terms using formula given above by
Laurent Tournier, Jul 09 2014
A362657
Number of bracelets consisting of three instances each of n swappable colors.
Original entry on oeis.org
1, 1, 3, 25, 713, 47283, 5301453, 862284559, 190869905951, 55139769554236, 20148062989955675, 9084944524391553737, 4955080153387098326546, 3215465859346835309769199, 2448347575754387175150096999, 2161727686219210764644850060171
Offset: 0
- F. Harary and E. Palmer, Graphical Enumeration, Academic Press, 1973, page 143.
A362658
Number of bracelets consisting of four instances each of n swappable colors.
Original entry on oeis.org
1, 1, 7, 297, 83488, 63698215, 93945180662, 235528677557853, 926363255677856473, 5389375509102629522572, 44328152493384890722579175, 497321572654372894502827791849, 7392063525541285464935001208117037, 142098205771751298697282911028204773107
Offset: 0
- F. Harary and E. Palmer, Graphical Enumeration, Academic Press, 1973, page 143.
A362659
Number of bracelets consisting of five instances each of n swappable colors.
Original entry on oeis.org
1, 1, 13, 4378, 12233517, 103894521686, 2056311437607449, 81740134830144396361, 5882806848658078687971208, 709863922231677860752825092507, 135362815548082376882965035235017478, 38916932527178726512080491324045688954141, 16236098847251016325260957735961487958183209730
Offset: 0
- F. Harary and E. Palmer, Graphical Enumeration, Academic Press, 1973, page 143.
A380616
Triangle read by rows: T(n,k) is the number of unsensed combinatorial maps with n edges and k vertices, 1 <= k <= n + 1.
Original entry on oeis.org
1, 1, 1, 2, 2, 1, 5, 8, 5, 2, 17, 33, 30, 13, 3, 79, 198, 208, 118, 35, 6, 554, 1571, 1894, 1232, 472, 104, 12, 5283, 16431, 21440, 15545, 6879, 1914, 315, 27, 65346, 213831, 296952, 233027, 115134, 37311, 7881, 1021, 65, 966156, 3288821, 4799336, 4019360, 2163112, 787065, 196267, 32857, 3407, 175
Offset: 0
Triangle begins:
n\k | 1 2 3 4 5 6 7 8 9
----+--------------------------------------------------------------
0 | 1;
1 | 1, 1;
2 | 2, 2, 1;
3 | 5, 8, 5, 2;
4 | 17, 33, 30, 13, 3;
5 | 79, 198, 208, 118, 35, 6;
6 | 554, 1571, 1894, 1232, 472, 104, 12;
7 | 5283, 16431, 21440, 15545, 6879, 1914, 315, 27;
8 | 65346, 213831, 296952, 233027, 115134, 37311, 7881, 1021, 65;
...
Showing 1-10 of 20 results.
Comments