cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Jonathan Burns

Jonathan Burns's wiki page.

Jonathan Burns has authored 7 sequences.

A271218 Number of symmetric linked diagrams with n links and no simple link.

Original entry on oeis.org

1, 0, 1, 3, 12, 39, 167, 660, 3083, 13961, 70728, 355457, 1936449, 10587960, 61539129, 361182139, 2224641540, 13880534119, 90090083047, 593246514588, 4038095508691, 27905008440273, 198401618299920, 1432253086621377, 10600146578310209, 79639887325700592, 611739960145556273
Offset: 0

Author

Jonathan Burns, Apr 13 2016

Keywords

Comments

Number of symmetric chord diagrams (where reflection is equivalent) with n chords and no simple chords.
Number of symmetric assembly words that do not contain the subword aa.

Examples

			For n=0 the a(0)=1 solution is { ∅ }.
For n=1 there are no solutions since the link in a diagram with one link, 11, is simple.
For n=2 the a(2)=1 solution is { 1212 }.
For n=3 the a(3)=3 solutions are { 123123, 121323, 123231 }.
For n=4 the a(4)=12 solutions are { 12123434, 12132434, 12324341, 12314234, 12341234, 12342341, 12314324, 12341324, 12343412, 12343421, 12324143, 12342143 }.
		

References

  • J. Burns, Counting a Class of Signed Permutations and Chord Diagrams related to DNA Rearrangement, Preprint.

Crossrefs

Programs

  • Mathematica
    RecurrenceTable[{a[n]==2a[n-1]+(2n-3)a[n-2]-(2n-5)a[n-3]+2a[n-4]-a[n-5],a[0]==1,a[1]==0,a[2]==1,a[3]==3,a[4]==12},a[n],{n,20}]
  • PARI
    lista(nn) = {my(va = vector(nn)); va[1] = 1; va[2] = 0; va[3] = 1; va[4] = 3; va[5] = 12; for (n=5, nn-1, va[n+1] = 2*va[n] + (2*n-3)*va[n-1] - (2*n-5)*va[n-2] + 2*va[n-3] - va[n-4];); va;} \\ Michel Marcus, Jul 28 2020

Formula

a(n) = 2*a(n-1) + (2n-3)*a(n-2) - (2n-5)*a(n-3) + 2*a(n-4) - a(n-5).
a(n) = a(n-1) + 2*(n-1)*a(n-2) + a(n-3) + a(n-4) + 2*sum( k=0..n-4, a(k) ).
a(n) ~ 2^(-1/2) * e^(-5/8) * (2n/e)^(n/2) * e^( sqrt(n/2) ) (conjectured).
a(n)/a(n-1) ~ sqrt(2n) (conjectured).
a(n)/A047974(n) ~ 1/sqrt(e) (conjectured).

Extensions

More terms from Michel Marcus, Jul 28 2020

A271217 Number of symmetric reduced rearrangement maps.

Original entry on oeis.org

1, 2, 2, 6, 22, 50, 274, 598, 4486, 9570, 90914, 191398, 2201078, 4593554, 62012978, 128619510, 1993602406, 4115824322, 72026925634, 148169675590, 2889308674006
Offset: 0

Author

Jonathan Burns, Apr 13 2016

Keywords

Comments

a(n) is the number of reduced rearrangement maps on n blocks. A rearrangement map is a signed permutation, e.g., +2 -1 -3. If the permutation contains (i)(i+1) or -(i+1)-(i) for any i, then it is not reduced. The map a is symmetric if a=a^(AI) and a^A = a^I where A and I are the rotation involutions.

Examples

			For n=0 the a(0)=1 solution is { ∅ }
For n=1 the a(1)=2 solutions are { +1, -1 }
For n=2 the a(2)=2 solutions are { +2+1, -1-2 }
For n=3 the a(3)=6 solutions are { +3-2+1, -1+2-3, +3+2+1, -1-2-3, +1-2+3, -3+2-1 }
		

References

  • J. Burns, Counting a Class of Signed Permutations and Chord Diagrams related to DNA Rearrangement, Preprint.

Crossrefs

A271217 / A271216 ~ e^(-1/4).

Programs

  • Mathematica
    Table[Round[2^n*Exp[-1/4]*(1-(1+(-1)^n)/(4 n))*Floor[n/2]!],{n,1,20}]

Formula

a(n) = round( 2^n * e^(-1/4) * ( 1 - (1 + (-1)^n)/(4n) ) * floor(n/2)! )
a(2k+1) = 2*a(2k) + a(2k-1) and a(2k) = (2k-1)*a(2k-1)+(2k-2)*a(2k-3)
a(n) ~ e^(-1/4) * 2^n * floor(n/2)!.
Conjecture: (-2*n+9)*a(n) -4*a(n-1) +(2*n-3)*(2*n-7)*a(n-2) -4*a(n-3) +2*(2*n-5)*(n-4)*a(n-4)=0. - R. J. Mathar, Jan 04 2017

A271216 a(n) = 2^n floor(n/2)!

Original entry on oeis.org

1, 2, 4, 8, 32, 64, 384, 768, 6144, 12288, 122880, 245760, 2949120, 5898240, 82575360, 165150720, 2642411520, 5284823040, 95126814720, 190253629440, 3805072588800
Offset: 0

Author

Jonathan Burns, Apr 13 2016

Keywords

Comments

Number of symmetric rearrangement maps, i.e., rearrangement maps which satisfy a=a^(AI) and a^A = a^I.

Examples

			For n=0 the a(0)=1 solution is { ∅ }
For n=1 the a(1)=2 solutions are { +1, -1 }
For n=2 the a(2)=4 solutions are { +1+2, -2-1, +2+1, -1-2 }
For n=3 the a(3)=8 solutions are { +1+2+3, -3-2-1, +3-2+1, -1+2-3, +3+2+1, -1-2-3, +1-2+3, -3+2-1 }
		

References

  • J. Burns, Counting a Class of Signed Permutations and Chord Diagrams related to DNA Rearrangement, Preprint.

Crossrefs

Programs

  • Mathematica
    Table[2^n*Floor[n/2]!,{n,0,20}]

Formula

a(n) = 2^n floor(n/2)!

A271215 Number of loop-free assembly graphs with n rigid vertices.

Original entry on oeis.org

1, 0, 1, 4, 24, 184, 1911, 24252, 362199, 6162080, 117342912, 2469791336, 56919388745, 1425435420600, 38543562608825, 1119188034056244, 34733368101580440, 1147320305439301344, 40190943859500501151, 1488212241729974297796, 58080468361734193793551
Offset: 0

Author

Jonathan Burns, Apr 13 2016

Keywords

Comments

Number of chord diagrams (equivalent up to reflection) that do not contain any simple chords, e.g., 121332 contains the simple chord 33.

Examples

			For n=0 the a(0)=1 solution is { ∅ }.
For n=1, a(1)=0 since the only assembly graph with one rigid vertex is the loop 11.
For n=2, the a(2)=1 solution is { 1212 }.
For n=3, the a(3)=4 solutions are { 121323, 123123, 123231, 123132 }.
		

References

  • J. Burns, Counting a Class of Signed Permutations and Chord Diagrams related to DNA Rearrangement, Preprint.

Crossrefs

Programs

  • Mathematica
    (Table[Sum[Binomial[n,i]*(2*n-i)!/2^(n-i)*(-1)^(i)/n!,{i,0,n}],{n,0,20}]+RecurrenceTable[{a[n]==2a[n-1]+(2n-3)a[n-2]-(2n-5)a[n-3]+2a[n-4]-a[n-5],a[0]==1,a[1]==0,a[2]==1,a[3]==3,a[4]==12},a[n],{n,0,20}])/2
  • PARI
    f(n) = sum(k=0, n, (2*n-k)! / (k! * (n-k)!) * (-1/2)^(n-k) ); \\ A000806
    lista(nn) = {my(va = vector(nn)); va[1] = 1; va[2] = 0; va[3] = 1; va[4] = 3; va[5] = 12; for (n=5, nn-1, va[n+1] = 2*va[n] + (2*n-3)*va[n-1] - (2*n-5)*va[n-2] + 2*va[n-3] - va[n-4];); vector(nn-1, n, (va[n] + abs(f(n-1)))/2);} \\ Michel Marcus, Jul 28 2020

Formula

a(n) ~ (2n/e)^n / (e * sqrt(2)).
a(n) = (|A000806(n)| + A271218(n)) / 2.
a(n)/A132101(n) ~ 1/e.

A271214 Number of reduced rearrangement patterns with n blocks.

Original entry on oeis.org

1, 1, 2, 10, 71, 653, 7638, 104958, 1664083, 29740057, 591645738, 12959409010, 309898317151, 8032551265957, 224316415082750, 6714021923017318, 214415538303362411, 7277133405318569009, 261560966377901961810, 9925178291099012783322, 396498148141095399675511
Offset: 0

Author

Jonathan Burns, Apr 13 2016

Keywords

Comments

a(n) is the number of reduced rearrangement patterns, i.e., the number of reduced rearrangement map equivalence classes formed from the two rotation involutions.

Examples

			For n=0 the a(0)=1 solution is { ∅ }
For n=1 the a(1)=1 solution is { +1 }
For n=2 the a(2)=2 solutions are { +2+1, +1-2 }
For n=3 the a(3)=10 solutions are { +3-2+1, +1+3-2, +2-3+1, +1+3+2, +2+1-3, +3+1-2, +1-3+2, +3+2+1, +3+2-1, +1-2+3 }
		

References

  • J. Burns, Counting a Class of Signed Permutations and Chord Diagrams related to DNA Rearrangement, Preprint.

Crossrefs

Programs

  • Mathematica
    Table[(Round[2^n*Exp[-1/2]*(n + 1/2)*(n - 1)!] + Round[2^n*Exp[ -1/4]*(1 - (1 + (-1)^n)/(4 n))*Floor[n/2]!])/4, {n,  1, 20}]

Formula

a(n) = ( round( 2^n e^(-1/2) (n+1/2) (n-1)! ) + round( 2^n e^(-1/4) (1-(1+(-1)^n)/4n)) floor(n/2)! ) / 4.
a(n) ~ sqrt( Pi*n / 8*e) * (2n / e)^n.
a(n) = (A271212(n) + A271217(n)) / 4.

A271213 a(n) = 2^(n-2) * (n! + floor(n/2)!).

Original entry on oeis.org

1, 1, 3, 14, 104, 976, 11616, 161472, 2582016, 46451712, 929003520, 20437463040, 490498375680, 12752940072960, 357082301399040, 10712468463943680, 342798990185594880, 11655165645170933760, 419585963202371911680, 15944266600833991311360, 637770664032408384307200
Offset: 0

Author

Jonathan Burns, Apr 02 2016

Keywords

Comments

a(n) is the number of rearrangement patterns, i.e., the number of rearrangement map equivalence classes.

Examples

			For n=1 the a(1)=1 solution is the equivalence class  {+1,-1}.For n=2 the a(2)=3 solutions are the equivalence classes {+1+2, -2-1}, {+1-2, +2-1, -2+1, -1+2}, and {+2+1, -1-2}
		

References

  • J. Burns, Counting a Class of Signed Permutations and Chord Diagrams related to DNA Rearrangement, Preprint.

Crossrefs

Partition of A000165 into equivalence classes.

Programs

  • Mathematica
    Table[2^(n-2)*(n!+Floor[n/2]!),{n,10}]

Formula

a(n)=2^(n-2)*(n!+floor(n/2)!)
a(n)~(pi*n/8)^(1/2) (2n/e)^n

A271212 a(n) = (2n-1)*a(n-1) + 2*(n-2)*a(n-2).

Original entry on oeis.org

1, 2, 6, 34, 262, 2562, 30278, 419234, 6651846, 118950658, 2366492038, 51837444642, 1239591067526, 32130200470274, 897265598318022, 26856087563449762, 857662151219847238, 29108533617158451714, 1046243865439580921606, 39700713164247881457698, 1585992592561492290028038
Offset: 0

Author

Jonathan Burns, Apr 02 2016

Keywords

Comments

a(n) is the number of reduced rearrangement maps on n blocks. A rearrangement map is a signed permutation, e.g., +2 -1 -3. If the permutation contains (i)(i+1) or -(i+1)-(i) for any i, then it is not reduced.
Number of permutations p of [2n] such that each element in p has exactly one neighbor whose value is smaller or larger by one. a(2) = 6: 1243, 2134, 2143, 3412, 3421, 4312. - Alois P. Heinz, May 24 2023

Examples

			For n=1 the a(1)=2 solutions are {+1,-1}.
For n=2 the a(2)=6 solutions are {+1-2,-1+2,-1-2,+2+1,+2-1,-2+1}. Note that {+1+2,-2-1} are not reduced rearrangement maps.
		

References

  • J. Burns, Counting a Class of Signed Permutations and Rigid Vertex Graphs related to Patterns of DNA Rearrangement, Preprint.

Crossrefs

Programs

  • Mathematica
    RecurrenceTable[{a[n]==(2n-1)*a[n-1]+2(n-2)*a[n-2],a[0]==1,a[1]==2},a[n],{n,0,10}]
    Table[Round[Exp[-1/2]*(2n+1)*2^(n-1)*(n-1)!],{n,10}]

Formula

a(n) = (2n-1)*a(n-1) + 2*(n-2)*a(n-2); a(0)=1; a(1)=2;
a(n) = e^(-1/2)*(2n+1)*Gamma(n,-1/2)+(-1)^n
a(n) = e^(-1/2)*(2n+1)*2^(n-1)*(n-1)! + (-1)^(n+1)*(2n^2 + 3n)^(-1)* 2_F_2(1, n+1/2; n+1, n+5/2; -1/2)
a(n) = round( e^(-1/2)*(2n+1)*2^(n-1)*(n-1)! )
a(n) ~ (Pi*2n/e)^(1/2) * (2n/e)^n
From Peter Bala, May 29 2022: (Start)
a(n) = Sum_{k = 0..n-1} (-1)^(n-1+k)*2^(k+1)*(k+1)!*binomial(n-1,k) for n >= 1.
2*exp(-x)/(1 - 2*x)^2 = 2 + 6*x + 34*x^2/2! + 262*x^3/3! + 2562*x^4/4! + ... = Sum_{n >= 0} a(n+1)*x^n/n! is an e.g.f. for the sequence (a(n+1))n>=0.
a(n) = A000354(n) + A000354(n-1) for n >= 1. (End)