Jonathan Burns has authored 7 sequences.
A271218
Number of symmetric linked diagrams with n links and no simple link.
Original entry on oeis.org
1, 0, 1, 3, 12, 39, 167, 660, 3083, 13961, 70728, 355457, 1936449, 10587960, 61539129, 361182139, 2224641540, 13880534119, 90090083047, 593246514588, 4038095508691, 27905008440273, 198401618299920, 1432253086621377, 10600146578310209, 79639887325700592, 611739960145556273
Offset: 0
For n=0 the a(0)=1 solution is { ∅ }.
For n=1 there are no solutions since the link in a diagram with one link, 11, is simple.
For n=2 the a(2)=1 solution is { 1212 }.
For n=3 the a(3)=3 solutions are { 123123, 121323, 123231 }.
For n=4 the a(4)=12 solutions are { 12123434, 12132434, 12324341, 12314234, 12341234, 12342341, 12314324, 12341324, 12343412, 12343421, 12324143, 12342143 }.
- J. Burns, Counting a Class of Signed Permutations and Chord Diagrams related to DNA Rearrangement, Preprint.
-
RecurrenceTable[{a[n]==2a[n-1]+(2n-3)a[n-2]-(2n-5)a[n-3]+2a[n-4]-a[n-5],a[0]==1,a[1]==0,a[2]==1,a[3]==3,a[4]==12},a[n],{n,20}]
-
lista(nn) = {my(va = vector(nn)); va[1] = 1; va[2] = 0; va[3] = 1; va[4] = 3; va[5] = 12; for (n=5, nn-1, va[n+1] = 2*va[n] + (2*n-3)*va[n-1] - (2*n-5)*va[n-2] + 2*va[n-3] - va[n-4];); va;} \\ Michel Marcus, Jul 28 2020
A271217
Number of symmetric reduced rearrangement maps.
Original entry on oeis.org
1, 2, 2, 6, 22, 50, 274, 598, 4486, 9570, 90914, 191398, 2201078, 4593554, 62012978, 128619510, 1993602406, 4115824322, 72026925634, 148169675590, 2889308674006
Offset: 0
For n=0 the a(0)=1 solution is { ∅ }
For n=1 the a(1)=2 solutions are { +1, -1 }
For n=2 the a(2)=2 solutions are { +2+1, -1-2 }
For n=3 the a(3)=6 solutions are { +3-2+1, -1+2-3, +3+2+1, -1-2-3, +1-2+3, -3+2-1 }
- J. Burns, Counting a Class of Signed Permutations and Chord Diagrams related to DNA Rearrangement, Preprint.
A271216
a(n) = 2^n floor(n/2)!
Original entry on oeis.org
1, 2, 4, 8, 32, 64, 384, 768, 6144, 12288, 122880, 245760, 2949120, 5898240, 82575360, 165150720, 2642411520, 5284823040, 95126814720, 190253629440, 3805072588800
Offset: 0
For n=0 the a(0)=1 solution is { ∅ }
For n=1 the a(1)=2 solutions are { +1, -1 }
For n=2 the a(2)=4 solutions are { +1+2, -2-1, +2+1, -1-2 }
For n=3 the a(3)=8 solutions are { +1+2+3, -3-2-1, +3-2+1, -1+2-3, +3+2+1, -1-2-3, +1-2+3, -3+2-1 }
- J. Burns, Counting a Class of Signed Permutations and Chord Diagrams related to DNA Rearrangement, Preprint.
A271215
Number of loop-free assembly graphs with n rigid vertices.
Original entry on oeis.org
1, 0, 1, 4, 24, 184, 1911, 24252, 362199, 6162080, 117342912, 2469791336, 56919388745, 1425435420600, 38543562608825, 1119188034056244, 34733368101580440, 1147320305439301344, 40190943859500501151, 1488212241729974297796, 58080468361734193793551
Offset: 0
For n=0 the a(0)=1 solution is { ∅ }.
For n=1, a(1)=0 since the only assembly graph with one rigid vertex is the loop 11.
For n=2, the a(2)=1 solution is { 1212 }.
For n=3, the a(3)=4 solutions are { 121323, 123123, 123231, 123132 }.
- J. Burns, Counting a Class of Signed Permutations and Chord Diagrams related to DNA Rearrangement, Preprint.
-
(Table[Sum[Binomial[n,i]*(2*n-i)!/2^(n-i)*(-1)^(i)/n!,{i,0,n}],{n,0,20}]+RecurrenceTable[{a[n]==2a[n-1]+(2n-3)a[n-2]-(2n-5)a[n-3]+2a[n-4]-a[n-5],a[0]==1,a[1]==0,a[2]==1,a[3]==3,a[4]==12},a[n],{n,0,20}])/2
-
f(n) = sum(k=0, n, (2*n-k)! / (k! * (n-k)!) * (-1/2)^(n-k) ); \\ A000806
lista(nn) = {my(va = vector(nn)); va[1] = 1; va[2] = 0; va[3] = 1; va[4] = 3; va[5] = 12; for (n=5, nn-1, va[n+1] = 2*va[n] + (2*n-3)*va[n-1] - (2*n-5)*va[n-2] + 2*va[n-3] - va[n-4];); vector(nn-1, n, (va[n] + abs(f(n-1)))/2);} \\ Michel Marcus, Jul 28 2020
A271214
Number of reduced rearrangement patterns with n blocks.
Original entry on oeis.org
1, 1, 2, 10, 71, 653, 7638, 104958, 1664083, 29740057, 591645738, 12959409010, 309898317151, 8032551265957, 224316415082750, 6714021923017318, 214415538303362411, 7277133405318569009, 261560966377901961810, 9925178291099012783322, 396498148141095399675511
Offset: 0
For n=0 the a(0)=1 solution is { ∅ }
For n=1 the a(1)=1 solution is { +1 }
For n=2 the a(2)=2 solutions are { +2+1, +1-2 }
For n=3 the a(3)=10 solutions are { +3-2+1, +1+3-2, +2-3+1, +1+3+2, +2+1-3, +3+1-2, +1-3+2, +3+2+1, +3+2-1, +1-2+3 }
- J. Burns, Counting a Class of Signed Permutations and Chord Diagrams related to DNA Rearrangement, Preprint.
-
Table[(Round[2^n*Exp[-1/2]*(n + 1/2)*(n - 1)!] + Round[2^n*Exp[ -1/4]*(1 - (1 + (-1)^n)/(4 n))*Floor[n/2]!])/4, {n, 1, 20}]
A271213
a(n) = 2^(n-2) * (n! + floor(n/2)!).
Original entry on oeis.org
1, 1, 3, 14, 104, 976, 11616, 161472, 2582016, 46451712, 929003520, 20437463040, 490498375680, 12752940072960, 357082301399040, 10712468463943680, 342798990185594880, 11655165645170933760, 419585963202371911680, 15944266600833991311360, 637770664032408384307200
Offset: 0
For n=1 the a(1)=1 solution is the equivalence class {+1,-1}.For n=2 the a(2)=3 solutions are the equivalence classes {+1+2, -2-1}, {+1-2, +2-1, -2+1, -1+2}, and {+2+1, -1-2}
- J. Burns, Counting a Class of Signed Permutations and Chord Diagrams related to DNA Rearrangement, Preprint.
Partition of
A000165 into equivalence classes.
A271212
a(n) = (2n-1)*a(n-1) + 2*(n-2)*a(n-2).
Original entry on oeis.org
1, 2, 6, 34, 262, 2562, 30278, 419234, 6651846, 118950658, 2366492038, 51837444642, 1239591067526, 32130200470274, 897265598318022, 26856087563449762, 857662151219847238, 29108533617158451714, 1046243865439580921606, 39700713164247881457698, 1585992592561492290028038
Offset: 0
For n=1 the a(1)=2 solutions are {+1,-1}.
For n=2 the a(2)=6 solutions are {+1-2,-1+2,-1-2,+2+1,+2-1,-2+1}. Note that {+1+2,-2-1} are not reduced rearrangement maps.
- J. Burns, Counting a Class of Signed Permutations and Rigid Vertex Graphs related to Patterns of DNA Rearrangement, Preprint.
-
RecurrenceTable[{a[n]==(2n-1)*a[n-1]+2(n-2)*a[n-2],a[0]==1,a[1]==2},a[n],{n,0,10}]
Table[Round[Exp[-1/2]*(2n+1)*2^(n-1)*(n-1)!],{n,10}]
Comments