cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A271214 Number of reduced rearrangement patterns with n blocks.

Original entry on oeis.org

1, 1, 2, 10, 71, 653, 7638, 104958, 1664083, 29740057, 591645738, 12959409010, 309898317151, 8032551265957, 224316415082750, 6714021923017318, 214415538303362411, 7277133405318569009, 261560966377901961810, 9925178291099012783322, 396498148141095399675511
Offset: 0

Views

Author

Jonathan Burns, Apr 13 2016

Keywords

Comments

a(n) is the number of reduced rearrangement patterns, i.e., the number of reduced rearrangement map equivalence classes formed from the two rotation involutions.

Examples

			For n=0 the a(0)=1 solution is { ∅ }
For n=1 the a(1)=1 solution is { +1 }
For n=2 the a(2)=2 solutions are { +2+1, +1-2 }
For n=3 the a(3)=10 solutions are { +3-2+1, +1+3-2, +2-3+1, +1+3+2, +2+1-3, +3+1-2, +1-3+2, +3+2+1, +3+2-1, +1-2+3 }
		

References

  • J. Burns, Counting a Class of Signed Permutations and Chord Diagrams related to DNA Rearrangement, Preprint.

Crossrefs

Programs

  • Mathematica
    Table[(Round[2^n*Exp[-1/2]*(n + 1/2)*(n - 1)!] + Round[2^n*Exp[ -1/4]*(1 - (1 + (-1)^n)/(4 n))*Floor[n/2]!])/4, {n,  1, 20}]

Formula

a(n) = ( round( 2^n e^(-1/2) (n+1/2) (n-1)! ) + round( 2^n e^(-1/4) (1-(1+(-1)^n)/4n)) floor(n/2)! ) / 4.
a(n) ~ sqrt( Pi*n / 8*e) * (2n / e)^n.
a(n) = (A271212(n) + A271217(n)) / 4.

A271213 a(n) = 2^(n-2) * (n! + floor(n/2)!).

Original entry on oeis.org

1, 1, 3, 14, 104, 976, 11616, 161472, 2582016, 46451712, 929003520, 20437463040, 490498375680, 12752940072960, 357082301399040, 10712468463943680, 342798990185594880, 11655165645170933760, 419585963202371911680, 15944266600833991311360, 637770664032408384307200
Offset: 0

Views

Author

Jonathan Burns, Apr 02 2016

Keywords

Comments

a(n) is the number of rearrangement patterns, i.e., the number of rearrangement map equivalence classes.

Examples

			For n=1 the a(1)=1 solution is the equivalence class  {+1,-1}.For n=2 the a(2)=3 solutions are the equivalence classes {+1+2, -2-1}, {+1-2, +2-1, -2+1, -1+2}, and {+2+1, -1-2}
		

References

  • J. Burns, Counting a Class of Signed Permutations and Chord Diagrams related to DNA Rearrangement, Preprint.

Crossrefs

Partition of A000165 into equivalence classes.

Programs

  • Mathematica
    Table[2^(n-2)*(n!+Floor[n/2]!),{n,10}]

Formula

a(n)=2^(n-2)*(n!+floor(n/2)!)
a(n)~(pi*n/8)^(1/2) (2n/e)^n
Showing 1-2 of 2 results.