cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 15 results. Next

A054499 Number of pairings on a bracelet; number of chord diagrams that can be turned over and having n chords.

Original entry on oeis.org

1, 1, 2, 5, 17, 79, 554, 5283, 65346, 966156, 16411700, 312700297, 6589356711, 152041845075, 3811786161002, 103171594789775, 2998419746654530, 93127358763431113, 3078376375601255821, 107905191542909828013, 3997887336845307589431
Offset: 0

Views

Author

Christian G. Bower, Apr 06 2000 based on a problem by Wouter Meeussen

Keywords

Comments

Place 2n points equally spaced on a circle. Draw lines to pair up all the points so that each point has exactly one partner. Allow turning over.

Examples

			For n=3, there are 5 bracelets with 3 pairs of beads. They are represented by the words aabbcc, aabcbc, aabccb, abacbc, and abcabc. All of the 6!/(2*2*2) = 90 combinations can be derived from these by some combination of relabeling the pairs, rotation, and reflection. So a(3) = 5. - _Michael B. Porter_, Jul 27 2016
		

References

  • R. C. Read, Some Enumeration Problems in Graph Theory. Ph.D. Dissertation, Department of Mathematics, Univ. London, 1958.

Crossrefs

Cf. A007769, A104256, A279207, A279208, A003437 (loopless chord diagrams), A322176 (marked chords), A362657, A362658, A362659 (three, four, five instances of each color rather than two), A371305 (Multiset Transf.), A260847 (directed chords).

Programs

  • Mathematica
    max = 19;
    alpha[p_, q_?EvenQ] := Sum[Binomial[p, 2*k]*q^k*(2*k-1)!!, {k, 0, max}];
    alpha[p_, q_?OddQ] := q^(p/2)*(p-1)!!;
    a[0] = 1;
    a[n_] := 1/4*(Abs[HermiteH[n-1, I/2]] + Abs[HermiteH[n, I/2]] + (2*Sum[Block[{q = (2*n)/p}, alpha[p, q]*EulerPhi[q]], {p, Divisors[ 2*n]}])/(2*n));
    Table[a[n], {n, 0, max}] (* Jean-François Alcover, Sep 05 2013, after R. J. Mathar; corrected by Andrey Zabolotskiy, Jul 27 2016 *)

Formula

a(n) = (2*A007769(n) + A047974(n) + A047974(n-1))/4 for n > 0.

Extensions

Corrected and extended by N. J. A. Sloane, Oct 29 2006
a(0)=1 prepended back again by Andrey Zabolotskiy, Jul 27 2016

A132101 a(n) = (A001147(n) + A047974(n))/2.

Original entry on oeis.org

1, 1, 3, 11, 65, 513, 5363, 68219, 1016481, 17243105, 327431363, 6874989963, 158118876449, 3952936627361, 106729080101235, 3095142009014843, 95949394016339393, 3166329948046914369, 110821547820208233731, 4100397266856761733515
Offset: 0

Views

Author

Keith F. Lynch, Oct 31 2007

Keywords

Comments

Also, number of distinct Tsuro tiles which are digonal in shape and have n points per side. Turning over is not allowed. See A132100 for definition and comments.
See the Burns et al. papers for another interpretation.
From Ross Drewe, Mar 16 2008: (Start)
This is also the number of arrangements of n pairs which are equivalent under the joint operation of sequence reversal and permutations of labels. Assume that the elements of n distinct pairs are labeled to show the pair of origin, e.g., [1 1], [2 2]. The number of distinguishable ways of arranging these elements falls as the conditions are made more general:
a(n) = A000680: element order is significant and the labels are distinguishable;
b(n) = A001147: element order is significant but labels are not distinguishable, i.e., all label permutations of a given sequence are equivalent;
c(n) = A132101: element order is weakened (reversal allowed) and all label permutations are equivalent;
d(n) = A047974: reversal allowed, all label permutations are equivalent and equivalence class maps to itself under joint operation.
Those classes that do not map to themselves form reciprocal pairs of classes under the joint operation and their number is r(n). Then c = b - r/2 = b - (b - d)/2 = (b+d)/2. A formula for r(n) is not available, but formulas are available for b(n) = A001147 and d(n) = A047974, allowing an explicit formula for this sequence.
c(n) is useful in extracting structure information without regard to pair ordering (see example). c(n) terms also appear in formulas related to binary operators, e.g., the number of binary operators in a k-valued logic that are invertible in 1 operation.
a(n) = (b(n) + c(n))/2, where b(n) = (2n)!/(2^n * n!) = A001147(n), c(n) = Sum_{k=0..floor(n/2)} n!/((n-2*k)! * k!) = A047974(n).
For 3 pairs, the arrangement A = [112323] is the same as B = [212133] under the permutation of the labels [123] -> [312] plus reversal of the elements, or vice versa. The unique structure common to A and B is {1 intact pair + 2 interleaved pairs}, where the order is not significant (contrast A001147). (End)

Examples

			a(2)=3 counts the arrangements [1122], [1212] and [1221]. - _R. J. Mathar_, Oct 18 2019
		

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Rationals(), 30);
    Coefficients(R!(Laplace( (Exp(x+x^2) + 1/Sqrt(1-2*x))/2 ))); // G. C. Greubel, Jul 12 2024
    
  • Maple
    A132101 := proc(n)
        (A001147(n)+A047974(n))/2 ;
    end proc:
    seq(A132101(n),n=0..30) ; # R. J. Mathar, Dec 20 2020
  • Mathematica
    Table[((2n-1)!!+I^(-n)*HermiteH[n,I/2])/2,{n,0,30}] (* Jonathan Burns, Apr 05 2016 *)
  • SageMath
    [(factorial(n)*binomial(2*n,n) + (-2*i)^n*hermite(n,i/2))/2^(n+1) for n in range(31)] # G. C. Greubel, Jul 12 2024

Formula

D-finite with recurrence -(n-3)*a(n) +2*(n^2-3*n+1)*a(n-1) -(n-1)*a(n-2) -2*(2*n-5)*(n-1)*(n-2)*a(n-3) = 0. - R. J. Mathar, Dec 20 2020
E.g.f.: (1/2)*( exp(x+x^2) + 1/sqrt(1-2*x) ). - G. C. Greubel, Jul 12 2024

Extensions

Entry revised by N. J. A. Sloane, Nov 04 2011

A132100 Number of distinct Tsuro tiles which are square and have n points per side.

Original entry on oeis.org

1, 2, 35, 2688, 508277, 163715822, 79059439095, 53364540054860, 47974697008198313, 55410773910104281242, 79957746695043660483467, 140965507420235075126987480, 298142048193613276717321211805, 745056978435827991570581878537478
Offset: 0

Views

Author

Keith F. Lynch, Oct 31 2007

Keywords

Comments

Turning over is not allowed, but rotation of the tile is allowed.
In the original Tsuro game the tiles are square and have two points on each side, one third and two thirds of the way along the side and arcs connecting these eight points in various ways.
The shapes of the arcs aren't significant, only which two points they connect is.
Each point is connected to exactly one other point.
There are 35 tiles, agreeing with the entry a(4) = 35 here.
If we vary the shape of the tile and the number of points per side (pps), we get the following table.
....pps:..0....1......2......3......4......5......6......7......8......9.....10
-------------------------------------------------------------------------------
circle....1....0......1......0......2......0......5......0.....18......0....105 (A007769)
monogon...1....0......1......0......3......0.....15......0....105......0....945 (A001147)
digon.....1....1......3.....11.....65....513...5363..68219 .................... (A132101)
triangle..1....0......7......0...3483......0.............0.............0
square....1....2.....35...2688.508277 ......................................... (this entry)
pentagon..1....0....193......0.............0.............0.............0
hexagon...1....5...1799
heptagon..1....0..19311......0.............0.............0.............0
octagon...1...18.254143
9-gon.....1....0.............0.............0.............0.............0
10-gon....1..105
The pps = 2 column is A132102. Blank entries all represent numbers greater than one million.
A monogon is distinct from a circle in that a monogon has not just one side, but also one vertex. Monogons and digons can't exist with straight sides, of course, at least not on a flat plane, but there's no rule that says these tiles have to have straight sides.
If we allow reflections the numbers are smaller (this would be appropriate for a game where the tiles were transparent and could be flipped over):
....pps:..0....1......2......3......4......5......6......7......8......9.....10
-------------------------------------------------------------------------------
circle....1....0......1......0......2......0......5......0.....17......0.....79 (A054499)
monogon...1....0......1......0......3......0.....11......0.....65......0....513 (A132101)
digon.....1....1......3......8.....45....283...2847..34518.511209 ............. (A132103)
triangle..1....0......7......0...1907......0.............0.............0
square....1....2.....30...1447.257107 ......................................... (A132104)
pentagon..1....0....137......0.............0.............0.............0
hexagon...1....5...1065
heptagon..1....0..10307......0.............0.............0.............0
octagon...1...17.130040
9-gon.....1....0.............0.............0.............0.............0
10-gon....1...79
The pps = 2 column is A132105.

Crossrefs

Programs

  • Maple
    # A(n,m) gives the number of n-sided tiles with m points per side (cf. comments)
    # B(n,m) enumerates these tiles, also allowing reflections
    with(numtheory): a:=(p,r)->piecewise(p mod 2 = 1,p^(r/2)*doublefactorial(r-1), sum(p^j*binomial(r, 2*j)*doublefactorial(2*j - 1), j = 0 .. floor(r/2)));
    A := (n,m)->piecewise(n*m mod 2=1,0,add(phi(p)*a(p,m*n/p),p in divisors(n))/n);
    B := (n,m)->A(n,m)/2+piecewise(n*m mod 2=0,piecewise(m mod 2=0,a(2,m*n/2)*2, a(2,m*n/2)+a(2,m*n/2-1))/4,0);
    A132100 := m -> A(4,m);[seq(A132100(m),m=1..15)]; # Laurent Tournier, Jul 09 2014

Formula

From Laurent Tournier, Jul 09 2014: (Start)
a(m) = ((4m-1)!! + sum_{j=0..m} 2^j binomial(2m,2j) (2j-1)!! + 2 sum_{0<=2j<=m} 4^j binomial(m, 2j) (2j-1)!!)/4
More generally, if A(n,m) is the number of n-sided tiles with m points per side (with nm even),
A(n,m) = 1/n sum_{n=pq} phi(p)*alpha(p,mq), phi = Euler's totient function,
alpha(p,r) = sum_{0 <= 2j <= r} p^j binomial(r,2j) (2j-1)!! if p even,
= p^(r/2) (r-1)!! if p odd.
If B(n,m) is the number of n-sided tiles with m points per side (with nm even), allowing reflections,
B(n,m) = (A(n,m) + alpha(2,mn/2))/2 if m even,
= (A(n,m) + alpha(2,mn/2)/2 + alpha(2,mn/2-1)/2)/2 if m odd.
(End)

Extensions

More terms from Laurent Tournier, Jul 09 2014

A132105 Number of distinct Tsuro tiles which are n-gonal in shape and have 2 points per side.

Original entry on oeis.org

1, 1, 3, 7, 30, 137, 1065, 10307, 130040, 1927853, 32809979, 625303343, 13178378742, 304081128617, 7623562484349, 206343110670031, 5996839161108904, 186254714746749377, 6156752738537004317, 215810382975655205399, 7995774673152799224930
Offset: 0

Views

Author

Keith F. Lynch, Oct 31 2007

Keywords

Comments

Turning over is allowed.
See A132100 for definition and comments.

Crossrefs

Programs

  • Maple
    # B(n,m) gives the number of n-sided tiles with m points per side, allowing reflections (cf. comments and formula of A132100)
    with(numtheory): a:=(p,r)->piecewise(p mod 2 = 1,p^(r/2)*doublefactorial(r-1), sum(p^j*binomial(r, 2*j)*doublefactorial(2*j - 1), j = 0 .. floor(r/2)));
    B := (n,m)->piecewise(n*m mod 2=1,0,add(phi(p)*a(p,m*n/p),p in divisors(n))/(2*n)+
    piecewise(m mod 2=0, a(2,m*n/2)*2, a(2,m*n/2)+a(2,m*n/2-1))/4);
    A132105 := n -> B(n,2);[seq(A132105(n),n=1..20)]; # Laurent Tournier, Jul 09 2014

Extensions

More terms from Laurent Tournier, Jul 09 2014

A380615 Triangle read by rows: T(n,k) is the number of sensed combinatorial maps with n edges and k vertices, 1 <= k <= n + 1.

Original entry on oeis.org

1, 1, 1, 2, 2, 1, 5, 8, 5, 2, 18, 38, 34, 14, 3, 105, 275, 288, 154, 42, 6, 902, 2614, 3102, 1959, 705, 140, 14, 9749, 30346, 39242, 27898, 11956, 3142, 473, 34, 127072, 415360, 573654, 446078, 217000, 68544, 13886, 1670, 95, 1915951, 6513999, 9484003, 7911844, 4230802, 1523176, 373188, 60614, 5969, 280
Offset: 0

Views

Author

Andrew Howroyd, Jan 28 2025

Keywords

Comments

By duality, also the number of sensed combinatorial maps with n edges and k faces.

Examples

			Triangle begins:
n\k |      1       2       3       4       5      6      7     8   9
----+----------------------------------------------------------------
  0 |      1
  1 |      1,      1
  2 |      2,      2,      1;
  3 |      5,      8,      5,      2;
  4 |     18,     38,     34,     14,      3;
  5 |    105,    275,    288,    154,     42,     6;
  6 |    902,   2614,   3102,   1959,    705,   140,    14;
  7 |   9749,  30346,  39242,  27898,  11956,  3142,   473,   34;
  8 | 127072, 415360, 573654, 446078, 217000, 68544, 13886, 1670, 95;
  ...
		

Crossrefs

Row sums are A170946.
Main diagonal is A002995(n+1).
Second diagonal gives A380237.
Columns 1..3 are A007769, A380618, A380619.
Cf. A053979 (rooted), A379430 (planar), A380616 (unsensed), A380617 (achiral).

Programs

  • PARI
    InvEulerMTS(p)={my(n=serprec(p, x)-1, q=log(p), vars=variables(p)); sum(i=1, n, moebius(i)*substvec(q + O(x*x^(n\i)), vars, apply(v->v^i, vars))/i)}
    b(k,r)={if(k%2, if(r%2, 0, my(j=r/2); k^j*(2*j)!/(j!*2^j)), sum(j=0, r\2, binomial(r, 2*j)*k^j*(2*j)!/(j!*2^j)))}
    C(k,r,y)={my(p=sumdiv(k,d,eulerphi(k/d)*y^d)/k); sum(i=0, r, abs(stirling(r,i,1))*p^i)/r!}
    S(n,k,y)={sum(r=0, 2*n\k, if(k*r%2==0, x^(k*r/2)*b(k,r)*C(k,r,y)), O(x*x^n))}
    G(n,y='y)={prod(k=1, 2*n, S(n,k,y))}
    T(n)={[Vecrev(p/y) | p<-Vec(y+InvEulerMTS(G(n)))]}
    { my(A=T(10)); for(i=1, #A, print(A[i])) }

A380626 Array read by antidiagonals: T(n,k) is the number of sensed k-regular combinatorial maps with n vertices, n >= 0, k >= 1.

Original entry on oeis.org

1, 1, 0, 1, 1, 1, 1, 0, 1, 0, 1, 2, 3, 1, 0, 1, 0, 7, 0, 1, 0, 1, 5, 29, 36, 11, 1, 0, 1, 0, 174, 0, 365, 0, 1, 0, 1, 18, 1475, 26614, 44106, 5250, 81, 1, 0, 1, 0, 16162, 0, 10107019, 0, 103801, 0, 1, 0, 1, 105, 214215, 102762168, 3703659517, 6605320523, 549530780, 2492164, 1228, 1, 0
Offset: 0

Views

Author

Andrew Howroyd, Jan 29 2025

Keywords

Comments

The combinatorial maps considered are connected, unrooted, unlabeled, may have loops and parallel edges and are of any orientable genus.

Examples

			Array begins:
==================================================================
n\k | 1 2  3       4         5          6          7         8 ...
----+-------------------------------------------------------------
  0 | 1 1  1       1         1          1          1         1 ...
  1 | 0 1  0       2         0          5          0        18 ...
  2 | 1 1  3       7        29        174       1475     16162 ...
  3 | 0 1  0      36         0      26614          0 102762168 ...
  4 | 0 1 11     365     44106   10107019 3703659517 ...
  5 | 0 1  0    5250         0 6605320523 ...
  6 | 0 1 81  103801 549530780 ...
  7 | 0 1  0 2492164 ...
   ...
		

Crossrefs

Columns 2..6 (odd columns with interspersed zeros) are A000012, A129114, A292206, A380627, A380628.
Row n=1 is A007769 (with interspersed zeros).
Cf. A170946, A380622 (rooted), A380629.

Programs

  • PARI
    InvEulerT(v)={dirdiv(Vec(log(1+x*Ser(v)),-#v), vector(#v,n,1/n))}
    D(m,k)={my(g=gcd(m,k)); sumdiv(g, d, my(j=m/d); x^j*eulerphi(d)*k^(j-1)/j)}
    G(n,m)={my(t=m*n); prod(k=1, t, my(A=O(x^(t\k+1)), p=serconvol(exp(A + D(m,k)), exp(A + D(2,k)))); sum(r=0, t\k, if(k*r%m==0, r!*polcoef(p,r)/(k^r)*x^(k*r/m)), O(x*x^n)) )}
    T(n,k)=if(n==0, 1, InvEulerT(Vec(-1 + G(n,k), -n))[n])

Formula

A380629(n) = Sum_{d|2*n} T(d,2*n/d).

A132104 Number of distinct Tsuro tiles which are square and have Q points per side.

Original entry on oeis.org

1, 2, 30, 1447, 257107, 81898020, 39531524384, 26682303327353, 23987350539183237, 27705387002314059046, 39978873351170263411714, 70482753710219315731386411, 149071024096816130023228547735, 372528489217914304271725034290952, 1085920546070218942128273877774286532, 3651950796434146162433577686485443037885
Offset: 0

Views

Author

Keith F. Lynch, Oct 31 2007

Keywords

Comments

Turning over is allowed.
See A132100 for definition and comments.

Crossrefs

Programs

  • Maple
    # B(n,m) gives the number of n-sided tiles with m points per side, allowing reflections (cf. comments in A132100)
    with(numtheory): a:=(p,r)->piecewise(p mod 2 = 1,p^(r/2)*doublefactorial(r-1), sum(p^j*binomial(r, 2*j)*doublefactorial(2*j - 1), j = 0 .. floor(r/2)));
    B := (n,m)->piecewise(n*m mod 2=1,0,add(phi(p)*a(p,m*n/p),p in divisors(n))/(2*n) + piecewise(m mod 2=0, a(2,m*n/2)*2, a(2,m*n/2)+a(2,m*n/2-1))/4);
    A132104 := m -> B(4,m);[seq(A132104(m),m=1..15)]; # Laurent Tournier, Jul 09 2014

Extensions

More terms from Laurent Tournier, Jul 09 2014

A132102 Number of distinct Tsuro tiles which are n-gonal in shape and have 2 points per side.

Original entry on oeis.org

1, 1, 3, 7, 35, 193, 1799, 19311, 254143, 3828921, 65486307, 1249937335, 26353147811, 608142583137, 15247011443103, 412685556939751, 11993674252049647, 372509404162520641, 12313505313357313047, 431620764875678503143, 15991549339008732109899
Offset: 0

Views

Author

Keith F. Lynch, Oct 31 2007

Keywords

Comments

Turning over is not allowed.
See A132100 for definition and comments.
Even and odd terms can be computed with the help of Burnside Lemma and recursive sequences. - Lionel RAVEL, Sep 18 2013

Crossrefs

Programs

  • Maple
    with(numtheory): a:=(p,q)->piecewise(p mod 2 = 1, p^q*doublefactorial(2*q - 1), sum(p^j*binomial(2*q, 2*j)*doublefactorial(2*j - 1), j = 0 .. q));
    A132102 := n->add(phi(p)*a(p,n/p),p in divisors(n))/n;
    [seq(A132102(n),n=1..20)]; # Laurent Tournier, Jul 09 2014
  • PARI
    a(n)={if(n<1, n==0, sumdiv(n, d, my(m=n/d); eulerphi(d)*sum(j=0, m, (d%2==0 || m-j==0) * binomial(2*m, 2*j) * d^j * (2*j)! / (j!*2^j) ))/n)} \\ Andrew Howroyd, Jan 26 2020

Formula

a(n) = (1/n)*Sum_{d|n} phi(d)*alpha(d, n/d), where phi = Euler's totient function,
alpha(p,q) = Sum_{j=0..q} p^j * binomial(2q, 2j) * (2j-1)!! if p even,
= p^q * (2q-1)!! if p odd. (cf. also A132100) - Laurent Tournier, Jul 09 2014

Extensions

More terms from Lionel RAVEL, Sep 18 2013
a(9) and a(10) corrected, and addition of more terms using formula given above by Laurent Tournier, Jul 09 2014

A132103 Number of distinct Tsuro tiles which are digonal in shape and have Q points per side.

Original entry on oeis.org

1, 1, 3, 8, 45, 283, 2847, 34518, 511209
Offset: 0

Views

Author

Keith F. Lynch, Oct 31 2007

Keywords

Comments

Turning over is allowed.
See A132100 for definition and comments.

Crossrefs

A279207 Number of analytic chord diagrams with n chords.

Original entry on oeis.org

1, 2, 5, 18, 102, 817, 7641
Offset: 1

Views

Author

N. J. A. Sloane, Dec 23 2016

Keywords

Crossrefs

Showing 1-10 of 15 results. Next