Original entry on oeis.org
1, 1, 3, 11, 65, 513, 5363, 68219, 1016481, 17243105, 327431363, 6874989963, 158118876449, 3952936627361, 106729080101235, 3095142009014843, 95949394016339393, 3166329948046914369, 110821547820208233731, 4100397266856761733515
Offset: 0
a(2)=3 counts the arrangements [1122], [1212] and [1221]. - _R. J. Mathar_, Oct 18 2019
- G. C. Greubel, Table of n, a(n) for n = 0..400
- Jonathan Burns, Assembly Graph Words - Single Transverse Component (Counts).
- Jonathan Burns, Egor Dolzhenko, Natasa Jonoska, Tilahun Muche, and Masahico Saito, Four-Regular Graphs with Rigid Vertices Associated to DNA Recombination, Discrete Applied Mathematics, Volume 161, Issues 10-11, July 2013, Pages 1378-1394.
- R. J. Mathar, Feynman diagrams of the QED vacuum polarization, vixra:1901.0148 (2019), Section IV.
-
R:=PowerSeriesRing(Rationals(), 30);
Coefficients(R!(Laplace( (Exp(x+x^2) + 1/Sqrt(1-2*x))/2 ))); // G. C. Greubel, Jul 12 2024
-
A132101 := proc(n)
(A001147(n)+A047974(n))/2 ;
end proc:
seq(A132101(n),n=0..30) ; # R. J. Mathar, Dec 20 2020
-
Table[((2n-1)!!+I^(-n)*HermiteH[n,I/2])/2,{n,0,30}] (* Jonathan Burns, Apr 05 2016 *)
-
[(factorial(n)*binomial(2*n,n) + (-2*i)^n*hermite(n,i/2))/2^(n+1) for n in range(31)] # G. C. Greubel, Jul 12 2024
A132105
Number of distinct Tsuro tiles which are n-gonal in shape and have 2 points per side.
Original entry on oeis.org
1, 1, 3, 7, 30, 137, 1065, 10307, 130040, 1927853, 32809979, 625303343, 13178378742, 304081128617, 7623562484349, 206343110670031, 5996839161108904, 186254714746749377, 6156752738537004317, 215810382975655205399, 7995774673152799224930
Offset: 0
-
# B(n,m) gives the number of n-sided tiles with m points per side, allowing reflections (cf. comments and formula of A132100)
with(numtheory): a:=(p,r)->piecewise(p mod 2 = 1,p^(r/2)*doublefactorial(r-1), sum(p^j*binomial(r, 2*j)*doublefactorial(2*j - 1), j = 0 .. floor(r/2)));
B := (n,m)->piecewise(n*m mod 2=1,0,add(phi(p)*a(p,m*n/p),p in divisors(n))/(2*n)+
piecewise(m mod 2=0, a(2,m*n/2)*2, a(2,m*n/2)+a(2,m*n/2-1))/4);
A132105 := n -> B(n,2);[seq(A132105(n),n=1..20)]; # Laurent Tournier, Jul 09 2014
A132104
Number of distinct Tsuro tiles which are square and have Q points per side.
Original entry on oeis.org
1, 2, 30, 1447, 257107, 81898020, 39531524384, 26682303327353, 23987350539183237, 27705387002314059046, 39978873351170263411714, 70482753710219315731386411, 149071024096816130023228547735, 372528489217914304271725034290952, 1085920546070218942128273877774286532, 3651950796434146162433577686485443037885
Offset: 0
-
# B(n,m) gives the number of n-sided tiles with m points per side, allowing reflections (cf. comments in A132100)
with(numtheory): a:=(p,r)->piecewise(p mod 2 = 1,p^(r/2)*doublefactorial(r-1), sum(p^j*binomial(r, 2*j)*doublefactorial(2*j - 1), j = 0 .. floor(r/2)));
B := (n,m)->piecewise(n*m mod 2=1,0,add(phi(p)*a(p,m*n/p),p in divisors(n))/(2*n) + piecewise(m mod 2=0, a(2,m*n/2)*2, a(2,m*n/2)+a(2,m*n/2-1))/4);
A132104 := m -> B(4,m);[seq(A132104(m),m=1..15)]; # Laurent Tournier, Jul 09 2014
A132102
Number of distinct Tsuro tiles which are n-gonal in shape and have 2 points per side.
Original entry on oeis.org
1, 1, 3, 7, 35, 193, 1799, 19311, 254143, 3828921, 65486307, 1249937335, 26353147811, 608142583137, 15247011443103, 412685556939751, 11993674252049647, 372509404162520641, 12313505313357313047, 431620764875678503143, 15991549339008732109899
Offset: 0
-
with(numtheory): a:=(p,q)->piecewise(p mod 2 = 1, p^q*doublefactorial(2*q - 1), sum(p^j*binomial(2*q, 2*j)*doublefactorial(2*j - 1), j = 0 .. q));
A132102 := n->add(phi(p)*a(p,n/p),p in divisors(n))/n;
[seq(A132102(n),n=1..20)]; # Laurent Tournier, Jul 09 2014
-
a(n)={if(n<1, n==0, sumdiv(n, d, my(m=n/d); eulerphi(d)*sum(j=0, m, (d%2==0 || m-j==0) * binomial(2*m, 2*j) * d^j * (2*j)! / (j!*2^j) ))/n)} \\ Andrew Howroyd, Jan 26 2020
a(9) and a(10) corrected, and addition of more terms using formula given above by
Laurent Tournier, Jul 09 2014
A132103
Number of distinct Tsuro tiles which are digonal in shape and have Q points per side.
Original entry on oeis.org
1, 1, 3, 8, 45, 283, 2847, 34518, 511209
Offset: 0
Showing 1-5 of 5 results.
Comments