A003436
Number of inequivalent labeled Hamiltonian circuits on n-octahedron. Interlacing chords joining 2n points on circle.
Original entry on oeis.org
1, 0, 1, 4, 31, 293, 3326, 44189, 673471, 11588884, 222304897, 4704612119, 108897613826, 2737023412199, 74236203425281, 2161288643251828, 67228358271588991, 2225173863019549229, 78087247031912850686, 2896042595237791161749, 113184512236563589997407
Offset: 0
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- F. R. Bernhart & N. J. A. Sloane, Emails, April-May 1994
- Kenneth P. Bogart and Peter G. Doyle, Nonsexist solution of the menage problem, Amer. Math. Monthly 93:7 (1986), 514-519.
- Robert Cori and G. Hetyei, Counting partitions of a fixed genus, arXiv preprint arXiv:1710.09992 [math.CO], 2017.
- M. Hazewinkel and V. V. Kalashnikov, Counting Interlacing Pairs on the Circle, CWI report AM-R9508 (1995)
- Evgeniy Krasko, Igor Labutin, and Alexander Omelchenko, Enumeration of Labelled and Unlabelled Hamiltonian Cycles in Complete k-partite Graphs, arXiv:1709.03218 [math.CO], 2017.
- E. Krasko and A. Omelchenko, Enumeration of Chord Diagrams without Loops and Parallel Chords, arXiv preprint arXiv:1601.05073 [math.CO], 2016.
- E. Krasko and A. Omelchenko, Enumeration of Chord Diagrams without Loops and Parallel Chords, The Electronic Journal of Combinatorics, 24(3) (2017), #P3.43.
- D. Singmaster, Hamiltonian circuits on the n-dimensional octahedron, J. Combinatorial Theory Ser. B 19 (1975), no. 1, 1-4.
- Gus Wiseman, The a(5) = 293 interlacing chord diagrams.
Cf.
A000179,
A000296,
A000699,
A001147,
A005493,
A170941,
A190823,
A278990,
A306386,
A306419,
A322402,
A324011,
A324172,
A324173.
-
A003436 := proc(n) local k;
if n = 0 then 1
elif n = 1 then 0
else add( (-1)^k*binomial(n,k)*2*n/(2*n-k)*2^k*(2*n-k)!/2^n/n!,k=0..n) ;
end if;
end proc: # R. J. Mathar, Dec 11 2013
A003436 := n-> `if`(n<2, 1-n, (-1)^n*2*hypergeom([n, -n], [], 1/2)):
seq(simplify(A003436(n)), n=0..18); # Peter Luschny, Nov 10 2016
-
a[n_] := (2*n-1)!! * Hypergeometric1F1[-n, 1-2*n, -2]; a[1] = 0;
Table[a[n], {n, 0, 19}] (* Jean-François Alcover, Apr 05 2013 *)
twounifll[{}]:={{}};twounifll[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@twounifll[Complement[set,s]]]/@Table[{i,j},{j,If[i==1,Select[set,2<#i+1&]]}];
Table[Length[twounifll[Range[n]]],{n,0,14,2}] (* Gus Wiseman, Feb 27 2019 *)
A368755
Number of regions in the hyperoctahedral (or cocktail party) graph of order n.
Original entry on oeis.org
0, 2, 18, 64, 186, 380, 838, 1504, 2242, 4082, 6266, 8320, 13010, 17866, 20218, 31808, 41390, 50100, 66530, 82560, 93446, 123642, 149398, 171920, 212166, 249810, 283678, 340704, 394882, 428892, 521406, 594560, 659382, 764866, 863154, 954192, 1086490, 1212506, 1326654, 1498720, 1660278
Offset: 1
A368756
Number of vertices in the hyperoctahedral (or cocktail party) graph of order n.
Original entry on oeis.org
2, 5, 17, 49, 151, 273, 693, 1249, 1711, 3525, 5529, 6777, 11711, 16133, 15937, 29121, 38227, 44561, 61985, 77041, 81423, 116165, 140997, 157649, 201211, 237125, 263449, 324689, 377359, 392185, 499789, 570241, 621255, 735493, 831537, 909097, 1048887, 1171013, 1265501, 1450081, 1608523
Offset: 1
- Scott R. Shannon, Image for n = 2.
- Scott R. Shannon, Image for n = 3.
- Scott R. Shannon, Image for n = 4.
- Scott R. Shannon, Image for n = 5.
- Scott R. Shannon, Image for n = 6.
- Scott R. Shannon, Image for n = 9.
- Scott R. Shannon, Image for n = 10.
- Scott R. Shannon, Image for n = 15. Note this 30-gon still contains vertices with 7 chords crossing, so this maximum possible value is the same as the regular n-gon with all diagonals drawn; see A007569.
- Eric Weisstein's World of Mathematics, Cocktail Party Graph.
A368758
Irregular table read by rows: T(n,k) is the number of k-sided regions, k>=3, in the hyperoctahedral (or cocktail party) graph of order n.
Original entry on oeis.org
0, 2, 14, 2, 2, 42, 22, 100, 72, 12, 2, 234, 142, 4, 418, 320, 90, 10, 734, 610, 116, 44, 1248, 878, 82, 20, 14, 1968, 1454, 534, 98, 12, 16, 2696, 2662, 744, 74, 56, 34, 4040, 3434, 770, 74, 0, 2, 5806, 4722, 1932, 430, 94, 26, 7706, 7102, 2048, 894, 92, 24, 10868, 7492, 1448, 406, 4
Offset: 1
The table begins:
0;
2;
14, 2, 2;
42, 22;
100, 72, 12, 2;
234, 142, 4;
418, 320, 90, 10;
734, 610, 116, 44;
1248, 878, 82, 20, 14;
1968, 1454, 534, 98, 12, 16;
2696, 2662, 744, 74, 56, 34;
4040, 3434, 770, 74, 0, 2;
5806, 4722, 1932, 430, 94, 26;
7706, 7102, 2048, 894, 92, 24;
10868, 7492, 1448, 406, 4;
13438, 12122, 4682, 1356, 206, 4;
17438, 15950, 5420, 2194, 296, 84, 6, 2;
22990, 17734, 7166, 1976, 182, 52;
27284, 25902, 9672, 2718, 772, 182;
34160, 31164, 12650, 3710, 648, 188, 0, 0, 8, 32;
.
.
A368757
Number of edges in the hyperoctahedral (or cocktail party) graph of order n.
Original entry on oeis.org
0, 6, 34, 112, 336, 652, 1530, 2752, 3952, 7606, 11794, 15096, 24720, 33998, 36154, 60928, 79616, 94660, 128514, 159600, 174868, 239806, 290394, 329568, 413376, 486934, 547126, 665392, 772240, 821076, 1021194, 1164800, 1280636, 1500358, 1694690, 1863288, 2135376, 2383518, 2592154
Offset: 1
A003435
Number of directed Hamiltonian circuits on n-octahedron with a marked starting node.
Original entry on oeis.org
8, 192, 11904, 1125120, 153262080, 28507207680, 6951513784320, 2153151603671040, 826060810479206400, 384600188992919961600, 213656089636192754073600, 139620366072628402087526400, 106033731334825319789808844800
Offset: 2
n=2: label vertices of a square 1,2,3,4. Then the 8 Hamiltonian circuits are 1234, 1432, 2341, 2143, 3412, 3214, 4123, 4321; so a(2) = 8.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Vincenzo Librandi, Table of n, a(n) for n = 2..100
- Kenneth P. Bogart and Peter G. Doyle, Nonsexist solution of the menage problem, Amer. Math. Monthly 93 (1986), no. 7, 514-519.
- D. Singmaster, Enumerating unlabeled Hamiltonian circuts, Preprint (1974).
- D. Singmaster, Hamiltonian circuits on the n-dimensional octahedron, J. Combinatorial Theory Ser. B 19 (1975), no. 1, 1-4.
- D. Singmaster, Letter to N. J. A. Sloane, May 1975
- Eric Weisstein's World of Mathematics, Cocktail Party Graph
-
[(&+[ (-1)^k*2^(k+1)*n*Binomial(n, k)*Factorial(2*n-k-1): k in [0..n]]) : n in [2..20]]; // G. C. Greubel, Nov 17 2022
-
A003435 := n->add((-1)^k*binomial(n,k)*((2*n)/(2*n-k))*2^k*(2*n-k)!,k=0..n);
-
a[n_] := 2^n*n!*(2n-1)!!*Hypergeometric1F1[-n, 1-2n, -2]; Table[ a[n], {n, 2, 14}] (* Jean-François Alcover, Nov 04 2011 *)
-
a(n)=sum(k=0,n,(-1)^k*binomial(n,k)*((2*n)/(2*n-k))*2^k*(2*n-k)!) \\ Charles R Greathouse IV, Nov 04 2011
-
[sum( (-1)^k*2^(k+1)*n*binomial(n, k)*factorial(2*n-k-1) for k in (0..n)) for n in (2..20)] # G. C. Greubel, Nov 17 2022
A307923
Number of (undirected) Hamiltonian cycles in the n-cocktail party graph.
Original entry on oeis.org
0, 1, 16, 744, 56256, 6385920, 1018114560, 217234805760, 59809766768640, 20651520261980160, 8740913386202726400, 4451168534087349043200, 2685007039858238501683200, 1893459488121880710532300800, 1543515756205349079583241011200, 1440363330182802737753009160192000
Offset: 1
-
Join[{0}, Table[Gamma[2 n] Hypergeometric1F1[-n, 1 - 2 n, -2]/2, {n, 2, 20}]] (* Eric W. Weisstein, Feb 20 2025 *)
Join[{0}, RecurrenceTable[{-4 (1 + n) (2 + n) (5 + 2 n) a[n] - 2 (2 + n) (17 + 16 n + 4 n^2) a[n + 1] + (3 + 2 n) a[n + 2] == 0, a[1] == 1, a[2] == 16}, a[n], {n, 20}]] (* Eric W. Weisstein, Feb 20 2025 *)
A286038
Number of (undirected) paths in the n-cocktail party graph.
Original entry on oeis.org
0, 12, 396, 21672, 1918920, 250696980, 45304472052, 10816917169296, 3296928965854032, 1248938916843586140, 575559130836761023260, 317049200473798671358392, 205722831410326997504441496, 155295648728262284680608862692, 134934407215203512994225979686660
Offset: 1
-
a[n_] := (1/2)*(-2n - 1 + Sum[Sum[(-1)^j*2^j*(k - j)!*Binomial[n, j]* Binomial[2n - 2j, k - 2j], {k, 2j, 2n}], {j, 0, n}]);
Array[a, 15] (* Jean-François Alcover, Oct 02 2017, after Andrew Howroyd *)
Table[(Sum[(-2)^k Binomial[n, k] k! HypergeometricU[k + 1, 2 n + 2 - k, 1], {k, 0, n}] - 2 n - 1)/2, {n, 20}] // FunctionExpand (* Eric W. Weisstein, Oct 02 2017 *)
-
a(n) = (-2*n-1 + sum(j=0,n, sum(k=2*j,2*n, (-1)^j*2^j*(k-j)! * binomial(n,j) * binomial(2*n-2*j, k-2*j))) )/2; \\ Andrew Howroyd, Jun 19 2017
Showing 1-8 of 8 results.
Comments