cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A003436 Number of inequivalent labeled Hamiltonian circuits on n-octahedron. Interlacing chords joining 2n points on circle.

Original entry on oeis.org

1, 0, 1, 4, 31, 293, 3326, 44189, 673471, 11588884, 222304897, 4704612119, 108897613826, 2737023412199, 74236203425281, 2161288643251828, 67228358271588991, 2225173863019549229, 78087247031912850686, 2896042595237791161749, 113184512236563589997407
Offset: 0

Views

Author

Keywords

Comments

Also called the relaxed ménage problem (cf. A000179).
a(n) can be seen as a subset of the unordered pairings of the first 2n integers (A001147) with forbidden pairs (1,2n) and (i,i+1) for all i in [1,2n-1] (all adjacent integers modulo 2n). The linear version of this constraint is A000806. - Olivier Gérard, Feb 08 2011
Number of perfect matchings in the complement of C_{2n} where C_{2n} is the cycle graph on 2n vertices. - Andrew Howroyd, Mar 15 2016
Also the number of 2-uniform set partitions of {1...2n} containing no two cyclically successive vertices in the same block. - Gus Wiseman, Feb 27 2019

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A003435, A129348. A003437 gives unlabeled case.
First differences of A000806.
Column k=2 of A324428.

Programs

  • Maple
    A003436 := proc(n) local k;
          if n = 0 then 1
        elif n = 1 then 0
        else add( (-1)^k*binomial(n,k)*2*n/(2*n-k)*2^k*(2*n-k)!/2^n/n!,k=0..n) ;
        end if;
    end proc: # R. J. Mathar, Dec 11 2013
    A003436 := n-> `if`(n<2, 1-n, (-1)^n*2*hypergeom([n, -n], [], 1/2)):
    seq(simplify(A003436(n)), n=0..18); # Peter Luschny, Nov 10 2016
  • Mathematica
    a[n_] := (2*n-1)!! * Hypergeometric1F1[-n, 1-2*n, -2]; a[1] = 0;
    Table[a[n], {n, 0, 19}] (* Jean-François Alcover, Apr 05 2013 *)
    twounifll[{}]:={{}};twounifll[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@twounifll[Complement[set,s]]]/@Table[{i,j},{j,If[i==1,Select[set,2<#i+1&]]}];
    Table[Length[twounifll[Range[n]]],{n,0,14,2}] (* Gus Wiseman, Feb 27 2019 *)

Formula

a(n) = A003435(n)/(n!*2^n).
a(n) = 2*n*a(n-1)-2*(n-3)*a(n-2)-a(n-3) for n>4. [Corrected by Vasu Tewari, Apr 11 2010, and by R. J. Mathar, Oct 02 2013]
G.f.: x + ((1-x)/(1+x)) * Sum_{n>=0} A001147(n)*(x/(1+x)^2)^n. - Vladeta Jovovic, Jun 27 2007
a(n) ~ 2^(n+1/2)*n^n/exp(n+1). - Vaclav Kotesovec, Aug 13 2013
a(n) = (-1)^n*2*hypergeom([n, -n], [], 1/2) for n >= 2. - Peter Luschny, Nov 10 2016

Extensions

a(0)=1 prepended by Gus Wiseman, Feb 27 2019

A368755 Number of regions in the hyperoctahedral (or cocktail party) graph of order n.

Original entry on oeis.org

0, 2, 18, 64, 186, 380, 838, 1504, 2242, 4082, 6266, 8320, 13010, 17866, 20218, 31808, 41390, 50100, 66530, 82560, 93446, 123642, 149398, 171920, 212166, 249810, 283678, 340704, 394882, 428892, 521406, 594560, 659382, 764866, 863154, 954192, 1086490, 1212506, 1326654, 1498720, 1660278
Offset: 1

Views

Author

Scott R. Shannon, Jan 04 2024

Keywords

Crossrefs

Cf. A368756 (vertices), A368757 (edges), A368758 (k-gons), A129348, A193130, A282010.

Formula

a(n) = A368757(n) - A368756(n) + 1 by Euler's formula.

A368756 Number of vertices in the hyperoctahedral (or cocktail party) graph of order n.

Original entry on oeis.org

2, 5, 17, 49, 151, 273, 693, 1249, 1711, 3525, 5529, 6777, 11711, 16133, 15937, 29121, 38227, 44561, 61985, 77041, 81423, 116165, 140997, 157649, 201211, 237125, 263449, 324689, 377359, 392185, 499789, 570241, 621255, 735493, 831537, 909097, 1048887, 1171013, 1265501, 1450081, 1608523
Offset: 1

Views

Author

Scott R. Shannon, Jan 04 2024

Keywords

Crossrefs

Cf. A368755 (regions), A368757 (edges), A368758 (k-gons), A007569, A129348, A193130, A282010.

Formula

a(n) = A368757(n) - A368755(n) + 1 by Euler's formula.

A368758 Irregular table read by rows: T(n,k) is the number of k-sided regions, k>=3, in the hyperoctahedral (or cocktail party) graph of order n.

Original entry on oeis.org

0, 2, 14, 2, 2, 42, 22, 100, 72, 12, 2, 234, 142, 4, 418, 320, 90, 10, 734, 610, 116, 44, 1248, 878, 82, 20, 14, 1968, 1454, 534, 98, 12, 16, 2696, 2662, 744, 74, 56, 34, 4040, 3434, 770, 74, 0, 2, 5806, 4722, 1932, 430, 94, 26, 7706, 7102, 2048, 894, 92, 24, 10868, 7492, 1448, 406, 4
Offset: 1

Views

Author

Scott R. Shannon, Jan 04 2024

Keywords

Comments

See A368755 and A368756 for further images of the graphs.

Examples

			The table begins:
0;
2;
14, 2, 2;
42, 22;
100, 72, 12, 2;
234, 142, 4;
418, 320, 90, 10;
734, 610, 116, 44;
1248, 878, 82, 20, 14;
1968, 1454, 534, 98, 12, 16;
2696, 2662, 744, 74, 56, 34;
4040, 3434, 770, 74, 0, 2;
5806, 4722, 1932, 430, 94, 26;
7706, 7102, 2048, 894, 92, 24;
10868, 7492, 1448, 406, 4;
13438, 12122, 4682, 1356, 206, 4;
17438, 15950, 5420, 2194, 296, 84, 6, 2;
22990, 17734, 7166, 1976, 182, 52;
27284, 25902, 9672, 2718, 772, 182;
34160, 31164, 12650, 3710, 648, 188, 0, 0, 8, 32;
.
.
		

Crossrefs

Cf. A368755 (regions), A368756 (vertices), A368757 (edges), A129348, A193130, A282010.

Formula

Sum of row n = A368755(n).

A368757 Number of edges in the hyperoctahedral (or cocktail party) graph of order n.

Original entry on oeis.org

0, 6, 34, 112, 336, 652, 1530, 2752, 3952, 7606, 11794, 15096, 24720, 33998, 36154, 60928, 79616, 94660, 128514, 159600, 174868, 239806, 290394, 329568, 413376, 486934, 547126, 665392, 772240, 821076, 1021194, 1164800, 1280636, 1500358, 1694690, 1863288, 2135376, 2383518, 2592154
Offset: 1

Views

Author

Scott R. Shannon, Jan 04 2024

Keywords

Comments

See A368755 and A368756 for images of the graphs.

Crossrefs

Cf. A368755 (regions), A368756 (vertices), A368758 (k-gons), A129348, A193130, A282010.

Formula

a(n) = A368755(n) + A368756(n) - 1 by Euler's formula.

A003435 Number of directed Hamiltonian circuits on n-octahedron with a marked starting node.

Original entry on oeis.org

8, 192, 11904, 1125120, 153262080, 28507207680, 6951513784320, 2153151603671040, 826060810479206400, 384600188992919961600, 213656089636192754073600, 139620366072628402087526400, 106033731334825319789808844800
Offset: 2

Views

Author

Keywords

Comments

Also called the relaxed menage problem (cf. A000179).
These are labeled and the order and starting point matter.

Examples

			n=2: label vertices of a square 1,2,3,4. Then the 8 Hamiltonian circuits are 1234, 1432, 2341, 2143, 3412, 3214, 4123, 4321; so a(2) = 8.
		

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Magma
    [(&+[ (-1)^k*2^(k+1)*n*Binomial(n, k)*Factorial(2*n-k-1): k in [0..n]]) : n in [2..20]]; // G. C. Greubel, Nov 17 2022
    
  • Maple
    A003435 := n->add((-1)^k*binomial(n,k)*((2*n)/(2*n-k))*2^k*(2*n-k)!,k=0..n);
  • Mathematica
    a[n_] := 2^n*n!*(2n-1)!!*Hypergeometric1F1[-n, 1-2n, -2]; Table[ a[n], {n, 2, 14}] (* Jean-François Alcover, Nov 04 2011 *)
  • PARI
    a(n)=sum(k=0,n,(-1)^k*binomial(n,k)*((2*n)/(2*n-k))*2^k*(2*n-k)!) \\ Charles R Greathouse IV, Nov 04 2011
    
  • SageMath
    [sum( (-1)^k*2^(k+1)*n*binomial(n, k)*factorial(2*n-k-1) for k in (0..n)) for n in (2..20)] # G. C. Greubel, Nov 17 2022

Formula

For n >= 2, a(n) = Sum_{k=0..n}(-1)^k*binomial(n, k)*((2*n)/(2*n-k))*2^k*(2*n-k)!.
Conjecture: a(n) -(4*n^2 - 2*n + 5)*a(n-1) + 2*(n-1)*(4*n-17)*a(n-2) + 12*(n-1)*(n-2)*a(n-3) = 0. - R. J. Mathar, Oct 02 2013
Recurrence: (2*n-3)*a(n) = 2*n*(4*n^2 - 8*n + 5)*a(n-1) + 4*(n-1)*n*(2*n-1)*a(n-2). - Vaclav Kotesovec, Feb 12 2014
a(n) ~ sqrt(Pi) * 2^(2*n+1) * n^(2*n+1/2) / exp(2*n+1). - Vaclav Kotesovec, Feb 12 2014
a(n) = -(-2)^(n+1)*n!*hypergeom([n, -n], [], 1/2). - Peter Luschny, Nov 10 2016

Extensions

Name made more precise by Andrew Howroyd, May 14 2017

A307923 Number of (undirected) Hamiltonian cycles in the n-cocktail party graph.

Original entry on oeis.org

0, 1, 16, 744, 56256, 6385920, 1018114560, 217234805760, 59809766768640, 20651520261980160, 8740913386202726400, 4451168534087349043200, 2685007039858238501683200, 1893459488121880710532300800, 1543515756205349079583241011200, 1440363330182802737753009160192000
Offset: 1

Views

Author

Eric W. Weisstein, May 06 2019

Keywords

Crossrefs

Programs

  • Mathematica
    Join[{0}, Table[Gamma[2 n] Hypergeometric1F1[-n, 1 - 2 n, -2]/2, {n, 2, 20}]] (* Eric W. Weisstein, Feb 20 2025 *)
    Join[{0}, RecurrenceTable[{-4 (1 + n) (2 + n) (5 + 2 n) a[n] - 2 (2 + n) (17 + 16 n + 4 n^2) a[n + 1] + (3 + 2 n) a[n + 2] == 0, a[1] == 1, a[2] == 16}, a[n], {n, 20}]] (* Eric W. Weisstein, Feb 20 2025 *)

Formula

a(n) = A129348(n)/2.

A286038 Number of (undirected) paths in the n-cocktail party graph.

Original entry on oeis.org

0, 12, 396, 21672, 1918920, 250696980, 45304472052, 10816917169296, 3296928965854032, 1248938916843586140, 575559130836761023260, 317049200473798671358392, 205722831410326997504441496, 155295648728262284680608862692, 134934407215203512994225979686660
Offset: 1

Views

Author

Eric W. Weisstein, Jun 15 2017

Keywords

Crossrefs

Cf. A167987 (cycles), A007060 (Hamiltonian paths), A129348 (Hamiltonian cycles).

Programs

  • Mathematica
    a[n_] := (1/2)*(-2n - 1 + Sum[Sum[(-1)^j*2^j*(k - j)!*Binomial[n, j]* Binomial[2n - 2j, k - 2j], {k, 2j, 2n}], {j, 0, n}]);
    Array[a, 15] (* Jean-François Alcover, Oct 02 2017, after Andrew Howroyd *)
    Table[(Sum[(-2)^k Binomial[n, k] k! HypergeometricU[k + 1, 2 n + 2 - k, 1], {k, 0, n}] - 2 n - 1)/2, {n, 20}] // FunctionExpand (* Eric W. Weisstein, Oct 02 2017 *)
  • PARI
    a(n) = (-2*n-1 + sum(j=0,n, sum(k=2*j,2*n, (-1)^j*2^j*(k-j)! * binomial(n,j) * binomial(2*n-2*j, k-2*j))) )/2; \\ Andrew Howroyd, Jun 19 2017

Formula

a(n) = (1/2) * (-2*n - 1 + Sum_{j=0..n} Sum_{k=2*j..2*n} (-1)^j*2^j*(k-j)! * binomial(n,j) * binomial(2*n-2*j,k-2*j) ). - Andrew Howroyd, Jun 19 2017

Extensions

Terms a(7) and beyond from Andrew Howroyd, Jun 19 2017
Showing 1-8 of 8 results.