cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A349812 Triangle read by rows: row 1 is [1]; for n >= 1, row n gives coefficients of expansion of (-1/x + x)*(1/x + 1 + x)^(n-1) in order of increasing powers of x.

Original entry on oeis.org

1, -1, 0, 1, -1, -1, 0, 1, 1, -1, -2, -2, 0, 2, 2, 1, -1, -3, -5, -4, 0, 4, 5, 3, 1, -1, -4, -9, -12, -9, 0, 9, 12, 9, 4, 1, -1, -5, -14, -25, -30, -21, 0, 21, 30, 25, 14, 5, 1, -1, -6, -20, -44, -69, -76, -51, 0, 51, 76, 69, 44, 20, 6, 1, -1, -7, -27, -70, -133, -189, -196, -127, 0, 127, 196, 189, 133, 70, 27, 7, 1
Offset: 0

Views

Author

N. J. A. Sloane, Dec 23 2021

Keywords

Comments

The rule for constructing this triangle (ignoring row 0) is the same as that for A027907: each number is the sum of the three numbers immediately above it in the previous row. Here row 1 is [-1, 0, 1] instead of [1, 1, 1].

Examples

			Triangle begins:
   1;
  -1,  0,   1;
  -1, -1,   0,   1,    1;
  -1, -2,  -2,   0,    2,    2,    1;
  -1, -3,  -5,  -4,    0,    4,    5,    3,  1;
  -1, -4,  -9, -12,   -9,    0,    9,   12,  9,   4,   1;
  -1, -5, -14, -25,  -30,  -21,    0,   21, 30,  25,  14,   5,   1;
  -1, -6, -20, -44,  -69,  -76,  -51,    0, 51,  76,  69,  44,  20,  6,  1;
  -1, -7, -27, -70, -133, -189, -196, -127,  0, 127, 196, 189, 133, 70, 27, 7, 1;
  ...
		

Crossrefs

The left half of the triangle is A026300, the right half is A064189 (or A122896). The central (nonzero) column gives the Motzkin numbers A001006.

Programs

  • Maple
    t1:=-1/x+x; m:=1/x+1+x;
    lprint([1]);
    for n from 1 to 12 do
    w1:=expand(t1*m^(n-1));
    w3:=expand(x^n*w1);
    w4:=series(w3,x,2*n+1);
    w5:=seriestolist(w4);
    lprint(w5);
    od:

A369923 Array read by antidiagonals: A(n,k) is the number of permutations of n copies of 1..k with values introduced in order and without cyclically adjacent elements equal.

Original entry on oeis.org

0, 1, 0, 1, 1, 0, 1, 4, 1, 0, 1, 31, 22, 1, 0, 1, 293, 1415, 134, 1, 0, 1, 3326, 140343, 75843, 866, 1, 0, 1, 44189, 20167651, 83002866, 4446741, 5812, 1, 0, 1, 673471, 3980871156, 158861646466, 55279816356, 276154969, 40048, 1, 0
Offset: 1

Views

Author

Andrew Howroyd, Feb 05 2024

Keywords

Comments

Also, T(n,k) is the number of generalized chord labeled loopless diagrams with k parts of K_n. See the Krasko reference for a full definition.

Examples

			Array begins:
n\k| 1 2    3         4              5                    6 ...
---+-----------------------------------------------------------
 1 | 0 1    1         1              1                    1 ...
 2 | 0 1    4        31            293                 3326 ...
 3 | 0 1   22      1415         140343             20167651 ...
 4 | 0 1  134     75843       83002866         158861646466 ...
 5 | 0 1  866   4446741    55279816356     1450728060971387 ...
 6 | 0 1 5812 276154969 39738077935264 14571371516350429940 ...
 ...
		

Crossrefs

Column 3 is A197657, column 4 appears to be A209183(n)/2.
Cf. A322013 (without linearly adjacent elements equal), A322093.

Programs

  • Mathematica
    T[n_, k_] := If[k == 1, 0, Expand[(-1)^(k (n + 1))/(k - 1)! n Hypergeometric1F1[1 - n, 2, x]^k x^(k - 1)] /. x^p_ :> p!] (* Eric W. Weisstein, Feb 20 2025 *)
  • PARI
    \\ compare with A322013.
    q(n, x) = sum(i=1, n, (-1)^(n-i) * binomial(n-1, n-i) * x^i/i!)
    T(n, k) = if(k > 1, subst(serlaplace(n*q(n, x)^k/x), x, 1)/(k-1)!, 0)

A348813 a(n) = number of chord labeled loopless diagrams by number of K_3.

Original entry on oeis.org

0, 1, 22, 1415, 140343, 20167651, 3980871156, 1035707510307, 343866839138005, 141979144588872613, 71386289535825383386, 42954342000612934599071, 30482693813120122213093587, 25196997894058490607106028095, 24001522306527907199721466108488, 26102037346800387738363882455862531
Offset: 1

Views

Author

Michael De Vlieger, Nov 01 2021

Keywords

Crossrefs

Extensions

a(14) onwards from Andrew Howroyd, Feb 05 2024

A348818 a(n) = number of chord labeled loopless diagrams by number of K_5.

Original entry on oeis.org

0, 1, 866, 4446741, 55279816356, 1450728060971387, 72078730629785795963, 6235048155225093080061949, 879601407931825739964190440635, 192100729970218737700046212217095291, 62258393664270652226502315136978421947948, 28913744296806659870889046765907226809528931041
Offset: 1

Views

Author

Michael De Vlieger, Nov 01 2021

Keywords

Crossrefs

Extensions

a(9) onwards from Andrew Howroyd, Feb 05 2024

A348821 a(n) = number of chord labeled loopless diagrams by number of K_6.

Original entry on oeis.org

0, 1, 5812, 276154969, 39738077935264, 14571371516350429940, 11876790400066163254723167, 19372051918038657958659363247949, 58256941603805590330534264712744407687, 302616041649108508974263266688425815263488561, 2575195630881373033515248134269171034879932771154311
Offset: 1

Views

Author

Michael De Vlieger, Nov 01 2021

Keywords

Crossrefs

Extensions

a(8) onwards from Andrew Howroyd, Feb 05 2024

A348816 a(n) = number of loopless diagrams by number of K_4 up to rotational symmetry.

Original entry on oeis.org

0, 1, 15, 4790, 4151415, 6619291247, 17510518983528, 71631394311300461, 429426878302882412435, 3616596939726424941979785
Offset: 1

Views

Author

Michael De Vlieger, Nov 01 2021

Keywords

Crossrefs

A348817 a(n) = number of loopless diagrams by number of K_4 up to all symmetries.

Original entry on oeis.org

0, 1, 13, 2576, 2081393, 3309962320, 8755277273334, 35815698613833466, 214713439275724149414, 1808298469877117320495867
Offset: 1

Views

Author

Michael De Vlieger, Nov 01 2021

Keywords

Crossrefs

A349816 Irregular triangle read by rows: the right-hand side of the triangle in A349815.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 2, 4, 4, 3, 1, 8, 13, 12, 8, 4, 1, 13, 33, 41, 37, 25, 13, 5, 1, 74, 124, 136, 116, 80, 44, 19, 6, 1, 124, 334, 450, 456, 376, 259, 149, 70, 26, 7, 1, 784, 1364, 1616, 1541, 1240, 854, 504, 252, 104, 34, 8, 1, 1364, 3764, 5305, 5761, 5251, 4139, 2850, 1714, 894, 398, 147, 43, 9, 1, 9069, 16194, 20081, 20456, 18001, 13954, 9597, 5856, 3153, 1482, 597, 200, 53, 10, 1
Offset: 0

Views

Author

N. J. A. Sloane, Dec 23 2021

Keywords

Comments

It seems more symmetrical to omit the central column of zeros in A349815.

Examples

			Triangle begins:
    1;
    1,    1;
    1,    2,    1;
    2,    4,    4,    3,    1;
    8,   13,   12,    8,    4,   1;
   13,   33,   41,   37,   25,  13,   5,   1;
   74,  124,  136,  116,   80,  44,  19,   6,   1;
  124,  334,  450,  456,  376, 259, 149,  70,  26,  7, 1;
  784, 1364, 1616, 1541, 1240, 854, 504, 252, 104, 34, 8, 1;
  ...
		

Crossrefs

Showing 1-8 of 8 results.