A349812
Triangle read by rows: row 1 is [1]; for n >= 1, row n gives coefficients of expansion of (-1/x + x)*(1/x + 1 + x)^(n-1) in order of increasing powers of x.
Original entry on oeis.org
1, -1, 0, 1, -1, -1, 0, 1, 1, -1, -2, -2, 0, 2, 2, 1, -1, -3, -5, -4, 0, 4, 5, 3, 1, -1, -4, -9, -12, -9, 0, 9, 12, 9, 4, 1, -1, -5, -14, -25, -30, -21, 0, 21, 30, 25, 14, 5, 1, -1, -6, -20, -44, -69, -76, -51, 0, 51, 76, 69, 44, 20, 6, 1, -1, -7, -27, -70, -133, -189, -196, -127, 0, 127, 196, 189, 133, 70, 27, 7, 1
Offset: 0
Triangle begins:
1;
-1, 0, 1;
-1, -1, 0, 1, 1;
-1, -2, -2, 0, 2, 2, 1;
-1, -3, -5, -4, 0, 4, 5, 3, 1;
-1, -4, -9, -12, -9, 0, 9, 12, 9, 4, 1;
-1, -5, -14, -25, -30, -21, 0, 21, 30, 25, 14, 5, 1;
-1, -6, -20, -44, -69, -76, -51, 0, 51, 76, 69, 44, 20, 6, 1;
-1, -7, -27, -70, -133, -189, -196, -127, 0, 127, 196, 189, 133, 70, 27, 7, 1;
...
- Jack Ramsay, On Arithmetical Triangles, The Pulse of Long Island, June 1965 [Mentions application to design of antenna arrays. Annotated scan.]
The left half of the triangle is
A026300, the right half is
A064189 (or
A122896). The central (nonzero) column gives the Motzkin numbers
A001006.
A369923
Array read by antidiagonals: A(n,k) is the number of permutations of n copies of 1..k with values introduced in order and without cyclically adjacent elements equal.
Original entry on oeis.org
0, 1, 0, 1, 1, 0, 1, 4, 1, 0, 1, 31, 22, 1, 0, 1, 293, 1415, 134, 1, 0, 1, 3326, 140343, 75843, 866, 1, 0, 1, 44189, 20167651, 83002866, 4446741, 5812, 1, 0, 1, 673471, 3980871156, 158861646466, 55279816356, 276154969, 40048, 1, 0
Offset: 1
Array begins:
n\k| 1 2 3 4 5 6 ...
---+-----------------------------------------------------------
1 | 0 1 1 1 1 1 ...
2 | 0 1 4 31 293 3326 ...
3 | 0 1 22 1415 140343 20167651 ...
4 | 0 1 134 75843 83002866 158861646466 ...
5 | 0 1 866 4446741 55279816356 1450728060971387 ...
6 | 0 1 5812 276154969 39738077935264 14571371516350429940 ...
...
- Andrew Howroyd, Table of n, a(n) for n = 1..1275 (first 51 antidiagonals)
- Evgeniy Krasko, Igor Labutin, and Alexander Omelchenko, Enumeration of Labelled and Unlabelled Hamiltonian Cycles in Complete k-partite Graphs, arXiv:1709.03218 [math.CO], 2017.
- Mathematics.StackExchange, Find the number of k 1's, k 2's, ... , k n's - total kn cards, Apr 08 2012.
-
T[n_, k_] := If[k == 1, 0, Expand[(-1)^(k (n + 1))/(k - 1)! n Hypergeometric1F1[1 - n, 2, x]^k x^(k - 1)] /. x^p_ :> p!] (* Eric W. Weisstein, Feb 20 2025 *)
-
\\ compare with A322013.
q(n, x) = sum(i=1, n, (-1)^(n-i) * binomial(n-1, n-i) * x^i/i!)
T(n, k) = if(k > 1, subst(serlaplace(n*q(n, x)^k/x), x, 1)/(k-1)!, 0)
A348813
a(n) = number of chord labeled loopless diagrams by number of K_3.
Original entry on oeis.org
0, 1, 22, 1415, 140343, 20167651, 3980871156, 1035707510307, 343866839138005, 141979144588872613, 71386289535825383386, 42954342000612934599071, 30482693813120122213093587, 25196997894058490607106028095, 24001522306527907199721466108488, 26102037346800387738363882455862531
Offset: 1
A348818
a(n) = number of chord labeled loopless diagrams by number of K_5.
Original entry on oeis.org
0, 1, 866, 4446741, 55279816356, 1450728060971387, 72078730629785795963, 6235048155225093080061949, 879601407931825739964190440635, 192100729970218737700046212217095291, 62258393664270652226502315136978421947948, 28913744296806659870889046765907226809528931041
Offset: 1
A348821
a(n) = number of chord labeled loopless diagrams by number of K_6.
Original entry on oeis.org
0, 1, 5812, 276154969, 39738077935264, 14571371516350429940, 11876790400066163254723167, 19372051918038657958659363247949, 58256941603805590330534264712744407687, 302616041649108508974263266688425815263488561, 2575195630881373033515248134269171034879932771154311
Offset: 1
A348816
a(n) = number of loopless diagrams by number of K_4 up to rotational symmetry.
Original entry on oeis.org
0, 1, 15, 4790, 4151415, 6619291247, 17510518983528, 71631394311300461, 429426878302882412435, 3616596939726424941979785
Offset: 1
A348817
a(n) = number of loopless diagrams by number of K_4 up to all symmetries.
Original entry on oeis.org
0, 1, 13, 2576, 2081393, 3309962320, 8755277273334, 35815698613833466, 214713439275724149414, 1808298469877117320495867
Offset: 1
A349816
Irregular triangle read by rows: the right-hand side of the triangle in A349815.
Original entry on oeis.org
1, 1, 1, 1, 2, 1, 2, 4, 4, 3, 1, 8, 13, 12, 8, 4, 1, 13, 33, 41, 37, 25, 13, 5, 1, 74, 124, 136, 116, 80, 44, 19, 6, 1, 124, 334, 450, 456, 376, 259, 149, 70, 26, 7, 1, 784, 1364, 1616, 1541, 1240, 854, 504, 252, 104, 34, 8, 1, 1364, 3764, 5305, 5761, 5251, 4139, 2850, 1714, 894, 398, 147, 43, 9, 1, 9069, 16194, 20081, 20456, 18001, 13954, 9597, 5856, 3153, 1482, 597, 200, 53, 10, 1
Offset: 0
Triangle begins:
1;
1, 1;
1, 2, 1;
2, 4, 4, 3, 1;
8, 13, 12, 8, 4, 1;
13, 33, 41, 37, 25, 13, 5, 1;
74, 124, 136, 116, 80, 44, 19, 6, 1;
124, 334, 450, 456, 376, 259, 149, 70, 26, 7, 1;
784, 1364, 1616, 1541, 1240, 854, 504, 252, 104, 34, 8, 1;
...
Showing 1-8 of 8 results.
Comments