A007318 Pascal's triangle read by rows: C(n,k) = binomial(n,k) = n!/(k!*(n-k)!), 0 <= k <= n.
1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 4, 6, 4, 1, 1, 5, 10, 10, 5, 1, 1, 6, 15, 20, 15, 6, 1, 1, 7, 21, 35, 35, 21, 7, 1, 1, 8, 28, 56, 70, 56, 28, 8, 1, 1, 9, 36, 84, 126, 126, 84, 36, 9, 1, 1, 10, 45, 120, 210, 252, 210, 120, 45, 10, 1, 1, 11, 55, 165, 330, 462, 462, 330, 165, 55, 11, 1
Offset: 0
Examples
Triangle T(n,k) begins: n\k 0 1 2 3 4 5 6 7 8 9 10 11 ... 0 1 1 1 1 2 1 2 1 3 1 3 3 1 4 1 4 6 4 1 5 1 5 10 10 5 1 6 1 6 15 20 15 6 1 7 1 7 21 35 35 21 7 1 8 1 8 28 56 70 56 28 8 1 9 1 9 36 84 126 126 84 36 9 1 10 1 10 45 120 210 252 210 120 45 10 1 11 1 11 55 165 330 462 462 330 165 55 11 1 ... There are C(4,2)=6 ways to distribute 5 balls BBBBB, among 3 different urns, < > ( ) [ ], so that each urn gets at least one ball, namely, <BBB>(B)[B], <B>(BBB)[B], <B>(B)[BBB], <BB>(BB)[B], <BB>(B)[BB], and <B>(BB)[BB]. There are C(4,2)=6 increasing functions from {1,2} to {1,2,3,4}, namely, {(1,1),(2,2)},{(1,1),(2,3)}, {(1,1),(2,4)}, {(1,2),(2,3)}, {(1,2),(2,4)}, and {(1,3),(2,4)}. - _Dennis P. Walsh_, Apr 07 2011 There are C(4,2)=6 subsets of {1,2,3,4,5} with median element 3, namely, {3}, {1,3,4}, {1,3,5}, {2,3,4}, {2,3,5}, and {1,2,3,4,5}. - _Dennis P. Walsh_, Dec 15 2011 The successive k-iterations of {A(0)} = E are E;E;E;...; the corresponding number of elements are 1,1,1,... The successive k-iterations of {A(1)} = {a} are (omitting brackets) a;a,E; a,E,E;...; the corresponding number of elements are 1,2,3,... The successive k-iterations of {A(2)} = {a,a} are aa; aa,a,E; aa, a, E and a,E and E;...; the corresponding number of elements are 1,3,6,... - _Gregory L. Simay_, Aug 06 2018 Boas-Buck type recurrence for column k = 4: T(8, 4) = (5/4)*(1 + 5 + 15 + 35) = 70. See the Boas-Buck comment above. - _Wolfdieter Lang_, Nov 12 2018
References
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 828.
- Amulya Kumar Bag, Binomial theorem in ancient India, Indian Journal of History of Science, vol. 1 (1966), pp. 68-74.
- Arthur T. Benjamin and Jennifer Quinn, Proofs that really count: the art of combinatorial proof, M.A.A. 2003, p. 63ff.
- Boris A. Bondarenko, Generalized Pascal Triangles and Pyramids (in Russian), FAN, Tashkent, 1990, ISBN 5-648-00738-8.
- Louis Comtet, Advanced Combinatorics, Reidel, 1974, p. 306.
- John H. Conway and Richard K. Guy, The Book of Numbers, New York: Springer-Verlag, 1996. See pp. 68-74.
- Paul Curtz, Intégration numérique des systèmes différentiels à conditions initiales, Centre de Calcul Scientifique de l'Armement, Arcueil, 1969.
- A. W. F. Edwards, Pascal's Arithmetical Triangle, 2002.
- William Feller, An Introduction to Probability Theory and Its Application, Vol. 1, 2nd ed. New York: Wiley, p. 36, 1968.
- Ronald L. Graham, Donald E. Knuth, and Oren Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 2nd. ed., 1994, p. 155.
- Jan Gullberg, Mathematics from the Birth of Numbers, W. W. Norton & Co., NY & London, 1997, §4.4 Powers and Roots, pp. 140-141.
- David Hök, Parvisa mönster i permutationer [Swedish], 2007.
- Donald E. Knuth, The Art of Computer Programming, Vol. 1, 2nd ed., p. 52.
- Sergei K. Lando, Lecture on Generating Functions, Amer. Math. Soc., Providence, R.I., 2003, pp. 60-61.
- Blaise Pascal, Traité du triangle arithmétique, avec quelques autres petits traitez sur la mesme matière, Desprez, Paris, 1665.
- Clifford A. Pickover, A Passion for Mathematics, Wiley, 2005; see p. 71.
- Alfred S. Posamentier, Math Charmers, Tantalizing Tidbits for the Mind, Prometheus Books, NY, 2003, pages 271-275.
- A. P. Prudnikov, Yu. A. Brychkov, and O. I. Marichev, "Integrals and Series", Volume 1: "Elementary Functions", Chapter 4: "Finite Sums", New York, Gordon and Breach Science Publishers, 1986-1992.
- John Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 6.
- John Riordan, Combinatorial Identities, Wiley, 1968, p. 2.
- Robert Sedgewick and Philippe Flajolet, An Introduction to the Analysis of Algorithms, Addison-Wesley, Reading, MA, 1996, p. 143.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Jerome Spanier and Keith B. Oldham, "Atlas of Functions", Hemisphere Publishing Corp., 1987, chapter 6, pages 43-52.
- James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, pages 13, 30-33.
- David Wells, The Penguin Dictionary of Curious and Interesting Numbers, Penguin Books, 1987, pp. 115-118.
- Douglas B. West, Combinatorial Mathematics, Cambridge, 2021, p. 25.
Links
- N. J. A. Sloane, First 141 rows of Pascal's triangle, formatted as a simple linear sequence: (n, a(n)), n=0..10152.
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
- Tewodros Amdeberhan, Moa Apagodu, and Doron Zeilberger, Wilf's "Snake Oil" Method Proves an Identity in The Motzkin Triangle, arXiv:1507.07660 [math.CO], 2015.
- Said Amrouche and Hacène Belbachir, Asymmetric extension of Pascal-Dellanoy triangles, arXiv:2001.11665 [math.CO], 2020.
- Shaun V. Ault and Charles Kicey, Counting paths in corridors using circular Pascal arrays, Discrete Mathematics, Vol. 332, No. 6 (2014), pp. 45-54.
- Mohammad K. Azarian, Fibonacci Identities as Binomial Sums, International Journal of Contemporary Mathematical Sciences, Vol. 7, No. 38 (2012), pp. 1871-1876.
- Mohammad K. Azarian, Fibonacci Identities as Binomial Sums II, International Journal of Contemporary Mathematical Sciences, Vol. 7, No. 42 (2012), pp. 2053-2059.
- Amulya Kumar Bag, Binomial theorem in ancient India, Indian Journal of History of Science, Vol. 1 (1966), pp. 68-74.
- Armen G. Bagdasaryan and Ovidiu Bagdasar, On some results concerning generalized arithmetic triangles, Electronic Notes in Discrete Mathematics, Vol. 67 (2018), pp. 71-77.
- Peter Bala, A combinatorial interpretation for the binomial coefficients, 2013.
- Cyril Banderier and Donatella Merlini, Lattice paths with an infinite set of jumps, Proceedings of the 14th International Conference on Formal Power Series and Algebraic Combinatorics, Melbourne, Australia. 2002.
- J. Fernando Barbero G., Jesús Salas, and Eduardo J. S. Villaseñor, Bivariate Generating Functions for a Class of Linear Recurrences. I. General Structure, arXiv:1307.2010 [math.CO], 2013.
- Paul Barry, On Integer-Sequence-Based Constructions of Generalized Pascal Triangles, Journal of Integer Sequences, Vol. 9 (2006), Article 06.2.4.
- Paul Barry, Symmetric Third-Order Recurring Sequences, Chebyshev Polynomials, and Riordan Arrays , JIS, Vol. 12 (2009) Article 09.8.6.
- Paul Barry, Eulerian polynomials as moments, via exponential Riordan arrays, arXiv:1105.3043 [math.CO], 2011.
- Paul Barry, Combinatorial polynomials as moments, Hankel transforms and exponential Riordan arrays, arXiv:1105.3044 [math.CO], 2011.
- Paul Barry, On the Central Coefficients of Bell Matrices, J. Int. Seq., Vol. 14 (2011) Article 11.4.3, example 2.
- Paul Barry, Riordan-Bernstein Polynomials, Hankel Transforms and Somos Sequences, Journal of Integer Sequences, Vol. 15 (2012), Article 12.8.2.
- Paul Barry, On the Central Coefficients of Riordan Matrices, Journal of Integer Sequences, Vol. 16 (2013), Article 13.5.1.
- Paul Barry, A Note on a Family of Generalized Pascal Matrices Defined by Riordan Arrays, Journal of Integer Sequences, Vol. 16 (2013), Article 13.5.4.
- Paul Barry, On the Inverses of a Family of Pascal-Like Matrices Defined by Riordan Arrays, Journal of Integer Sequences, Vol. 16 (2013), Article 13.5.6.
- Paul Barry, On the Connection Coefficients of the Chebyshev-Boubaker polynomials, The Scientific World Journal, Vol. 2013 (2013), Article ID 657806, 10 pages.
- Paul Barry, General Eulerian Polynomials as Moments Using Exponential Riordan Arrays, Journal of Integer Sequences, Vol. 16 (2013), Article 13.9.6.
- Paul Barry, Riordan arrays, generalized Narayana triangles, and series reversion, Linear Algebra and its Applications, Vol. 491 (2016), pp. 343-385.
- Paul Barry, The Gamma-Vectors of Pascal-like Triangles Defined by Riordan Arrays, arXiv:1804.05027 [math.CO], 2018.
- Paul Barry, On the f-Matrices of Pascal-like Triangles Defined by Riordan Arrays, arXiv:1805.02274 [math.CO], 2018.
- Paul Barry, The Central Coefficients of a Family of Pascal-like Triangles and Colored Lattice Paths, J. Int. Seq., Vol. 22 (2019), Article 19.1.3.
- Paul Barry, On the halves of a Riordan array and their antecedents, arXiv:1906.06373 [math.CO], 2019.
- Paul Barry, On the r-shifted central triangles of a Riordan array, arXiv:1906.01328 [math.CO], 2019.
- Paul Barry, Generalized Catalan Numbers Associated with a Family of Pascal-like Triangles, J. Int. Seq., Vol. 22 (2019), Article 19.5.8.
- Paul Barry, A Note on Riordan Arrays with Catalan Halves, arXiv:1912.01124 [math.CO], 2019.
- Paul Barry, Chebyshev moments and Riordan involutions, arXiv:1912.11845 [math.CO], 2019.
- Paul Barry, Characterizations of the Borel triangle and Borel polynomials, arXiv:2001.08799 [math.CO], 2020.
- Paul Barry, On a Central Transform of Integer Sequences, arXiv:2004.04577 [math.CO], 2020.
- Paul Barry, Extensions of Riordan Arrays and Their Applications, Mathematics (2025) Vol. 13, No. 2, 242. See p. 13.
- Paul Barry, Notes on Riordan arrays and lattice paths, arXiv:2504.09719 [math.CO], 2025. See p. 2.
- Paul Barry and Aoife Hennessy, Four-term Recurrences, Orthogonal Polynomials and Riordan Arrays, Journal of Integer Sequences, Vol. 15 (2012), Article 12.4.2.
- Jonathan W. Bober, Factorial ratios, hypergeometric series, and a family of step functions, arXiv:0709.1977v1 [math.NT], J. London Math. Soc. (2), Vol. 79 (2009), pp. 422-444.
- Boris A. Bondarenko, Generalized Pascal Triangles and Pyramids, English translation published by Fibonacci Association, Santa Clara Univ., Santa Clara, CA, 1993; see p. 4.
- Michael Bukata, Ryan Kulwicki, Nicholas Lewandowski, Lara Pudwell, Jacob Roth and Teresa Wheeland, Distributions of Statistics over Pattern-Avoiding Permutations, arXiv preprint arXiv:1812.07112 [math.CO], 2018.
- Douglas Butler, Pascal's Triangle.
- Isabel Cação, Helmuth R. Malonek, Maria Irene Falcão, and Graça Tomaz, Intrinsic Properties of a Non-Symmetric Number Triangle, J. Int. Seq., Vol. 26 (2023), Article 23.4.8.
- Naiomi T. Cameron and Asamoah Nkwanta, On Some (Pseudo) Involutions in the Riordan Group, Journal of Integer Sequences, Vol. 8 (2005), Article 05.3.7.
- Dario T. de Castro, p-adic Order of Positive Integers via Binomial Coefficients, INTEGERS, Electronic J. of Combinatorial Number Theory, Vol. 22, Paper A61, 2022.
- Ji Young Choi, Digit Sums Generalizing Binomial Coefficients, J. Int. Seq., Vol. 22 (2019), Article 19.8.3.
- Cristian Cobeli and Alexandru Zaharescu, Promenade around Pascal Triangle - Number Motives, Bull. Math. Soc. Sci. Math. Roumanie, Tome 56(104) No. 1 (2013), pp. 73-98.
- CombOS - Combinatorial Object Server, Generate combinations.
- J. H. Conway and N. J. A. Sloane, Low-dimensional lattices. VII Coordination sequences, Proc. R. Soc. Lond. A, Vo. 453, No. 1966 (1997), pp. 2369-2389.
- Tom Copeland, Infinigens, the Pascal Triangle, and the Witt and Virasoro Algebras.
- Persi Diaconis, The distribution of leading digits and uniform distribution mod 1, Ann. Probability, Vol. 5 (1977), pp. 72-81.
- Karl Dilcher and Kenneth B. Stolarsky, A Pascal-Type Triangle Characterizing Twin Primes, The American Mathematical Monthly, Vol. 112, No. 8 (Oct 2005), pp. 673-681.
- Tomislav Došlic and Darko Veljan, Logarithmic behavior of some combinatorial sequences, Discrete Math., Vol. 308, No. 11 (2008), pp. 2182-2212. MR2404544 (2009j:05019).
- Steffen Eger, Some Elementary Congruences for the Number of Weighted Integer Compositions, J. Int. Seq., Vol. 18 (2015), Article 15.4.1.
- Leonhard Euler, On the expansion of the power of any polynomial (1+x+x^2+x^3+x^4+etc.)^n, arXiv:math/0505425 [math.HO], 2005. See also The Euler Archive, item E709.
- Jackson Evoniuk, Steven Klee, and Van Magnan, Enumerating Minimal Length Lattice Paths, J. Int. Seq., Vol. 21 (2018), Article 18.3.6.
- A. Farina, S. Giompapa, A. Graziano, A. Liburdi, M. Ravanelli, and F. Zirilli, Tartaglia-Pascal's triangle: a historical perspective with applications, Signal, Image and Video Processing, Vol. 7, No. 1 (January 2013), pp. 173-188.
- Steven Finch, Pascal Sebah, and Zai-Qiao Bai, Odd Entries in Pascal's Trinomial Triangle, arXiv:0802.2654 [math.NT], 2008.
- David Fowler, The binomial coefficient function, Amer. Math. Monthly, Vol. 103, No. 1 (1996), pp. 1-17.
- Shishuo Fu and Yaling Wang, Bijective recurrences concerning two Schröder triangles, arXiv:1908.03912 [math.CO], 2019.
- Tom Halverson and Theodore N. Jacobson, Set-partition tableaux and representations of diagram algebras, arXiv:1808.08118 [math.RT], 2018.
- T. Han and S. Kitaev, Joint distributions of statistics over permutations avoiding two patterns of length 3, arXiv:2311.02974 [math.CO], 2023
- Brady Haran and Casandra Monroe, Pascal's Triangle, Numberphile video (2017).
- Tian-Xiao He and Renzo Sprugnoli, Sequence characterization of Riordan arrays, Discrete Math., Vol. 309, No. 12 (2009), pp. 3962-3974.
- Nick Hobson, Python program for A007318.
- V. E. Hoggatt, Jr. and Marjorie Bicknell, Catalan and related sequences arising from inverses of Pascal's triangle matrices, Fib. Quart., Vol. 14, No. 5 (1976), pp. 395-405.
- Matthew Hubbard and Tom Roby, Pascal's Triangle From Top to Bottom. [archived page]
- Charles Jordan, Calculus of Finite Differences (p. 65).
- Subhash Kak, The golden mean and the physics of aesthetics, in: B. Yadav and M. Mohan (eds.), Ancient Indian Leaps into Mathematics, Birkhäuser, Boston, MA, 2009, pp. 111-119; arXiv preprint, arXiv:physics/0411195 [physics.hist-ph], 2004.
- Petro Kolosov, Polynomial identities involving Pascal's triangle rows, 2022.
- Wolfdieter Lang, On generalizations of Stirling number triangles, J. Integer Seq., Vol. 3 (2000), Article 00.2.4.
- Eitan Y. Levine, GCD formula proof.
- Meng Li and Ron Goldman, Limits of sums for binomial and Eulerian numbers and their associated distributions, Discrete mathematics, Vol. 343, No. 7 (2020), 111870.
- P. A. MacMahon, Memoir on the Theory of the Compositions of Numbers, Phil. Trans. Royal Soc. London A, Vol. 184 (1893), pp. 835-901.
- Mathforum, Pascal's Triangle
- Carl McTague, On the Greatest Common Divisor of C(q*n,n), C(q*n,2*n), ...C(q*n,q*n-q), arXiv:1510.06696 [math.CO], 2015.
- D. Merlini, R. Sprugnoli, and M. C. Verri, An algebra for proper generating trees, in: D. Gardy and A. Mokkadem (eds.), Mathematics and Computer Science, Trends in Mathematics, Birkhäuser, Basel, 2000, pp. 127-139; alternative link.
- Donatella Merlini, Francesca Uncini, and M. Cecilia Verri, A unified approach to the study of general and palindromic compositions, Integers, Vol. 4 (2004), A23, 26 pp.
- Ângela Mestre and José Agapito, A Family of Riordan Group Automorphisms, J. Int. Seq., Vol. 22 (2019), Article 19.8.5.
- Pierre Remond de Montmort, Essay d'analyse sur les jeux de hazard, Paris: Chez Jacque Quillau, 1708, p. 80.
- Yossi Moshe, The density of 0's in recurrence double sequences, J. Number Theory, Vol. 103 (2003), pp. 109-121.
- Lili Mu and Sai-nan Zheng, On the Total Positivity of Delannoy-Like Triangles, Journal of Integer Sequences, Vol. 20 (2017), Article 17.1.6.
- Abdelkader Necer, Séries formelles et produit de Hadamard, Journal de théorie des nombres de Bordeaux, Vol. 9, No. 2 (1997), pp. 319-335.
- Asamoah Nkwanta and Earl R. Barnes, Two Catalan-type Riordan Arrays and their Connections to the Chebyshev Polynomials of the First Kind, Journal of Integer Sequences, Vol. 15 (2012), Article 12.3.3.
- Asamoah Nkwanta and Akalu Tefera, Curious Relations and Identities Involving the Catalan Generating Function and Numbers, Journal of Integer Sequences, Vol. 16 (2013), Article 13.9.5.
- Mustafa A. A. Obaid, S. Khalid Nauman, Wafaa M. Fakieh, and Claus Michael Ringel, The numbers of support-tilting modules for a Dynkin algebra, 2014.
- OEIS Wiki, Binomial coefficients
- Richard L. Ollerton and Anthony G. Shannon, Some properties of generalized Pascal squares and triangles, Fib. Q., Vol. 36, No. 2 (1998), pp. 98-109.
- Ed Pegg, Jr., Sequence Pictures, Math Games column, Dec 08 2003.
- Ed Pegg, Jr., Sequence Pictures, Math Games column, Dec 08 2003. [Cached copy, with permission (pdf only)]
- Balak Ram, Common factors of n!/(m!(n-m)!), (m = 1, 2, ... n-1), Journal of the Indian Mathematical Club (Madras) 1 (1909), pp. 39-43.
- Franck Ramaharo, Statistics on some classes of knot shadows, arXiv:1802.07701 [math.CO], 2018.
- Franck Ramaharo, A generating polynomial for the pretzel knot, arXiv:1805.10680 [math.CO], 2018.
- Franck Ramaharo, A generating polynomial for the two-bridge knot with Conway's notation C(n,r), arXiv:1902.08989 [math.CO], 2019.
- Franck Ramaharo, A bracket polynomial for 2-tangle shadows, arXiv:2002.06672 [math.CO], 2020.
- Jack Ramsay, On Arithmetical Triangles, The Pulse of Long Island, June 1965 [Mentions application to design of antenna arrays. Annotated scan.]
- Thomas M. Richardson, The Reciprocal Pascal Matrix, arXiv preprint arXiv:1405.6315 [math.CO], 2014.
- Yuriy Shablya, Dmitry Kruchinin, and Vladimir Kruchinin, Method for Developing Combinatorial Generation Algorithms Based on AND/OR Trees and Its Application, Mathematics, Vol. 8, No. 6 (2020), 962.
- Louis W. Shapiro, Seyoum Getu, Wen-Jin Woan, and Leon C. Woodson, The Riordan group, Discrete Applied Math., Vol. 34 (1991), pp. 229-239.
- N. J. A. Sloane, My favorite integer sequences, in Sequences and their Applications (Proceedings of SETA '98).
- N. J. A. Sloane, Triangle showing silhouette of first 30 rows of Pascal's triangle (after Cobeli and Zaharescu)
- N. J. A. Sloane, The OEIS: A Fingerprint File for Mathematics, arXiv:2105.05111 [math.HO], 2021.
- N. J. A. Sloane, "A Handbook of Integer Sequences" Fifty Years Later, arXiv:2301.03149 [math.NT], 2023, p. 5.
- Hermann Stamm-Wilbrandt, Compute C(n+m,...) based on C(n,...) and C(m,...) values animation.
- Igor Victorovich Statsenko, On the ordinal numbers of triangles of generalized special numbers, Innovation science No 2-2, State Ufa, Aeterna Publishing House, 2024, pp. 15-19. In Russian.
- Christopher Stover and Eric W. Weisstein, Composition. From MathWorld - A Wolfram Web Resource.
- Gérard Villemin's Almanach of Numbers, Triangle de Pascal.
- Eric Weisstein's World of Mathematics, Pascal's Triangle.
- Wikipedia, Pascal's triangle.
- Herbert S. Wilf, Generatingfunctionology, 2nd edn., Academic Press, NY, 1994, pp. 12ff.
- Ken Williams, Mathforum, Interactive Pascal's Triangle.
- Doron Zeilberger, The Combinatorial Astrology of Rabbi Abraham Ibn Ezra, arXiv:math/9809136 [math.CO], 1998.
- Chris Zheng and Jeffrey Zheng, Triangular Numbers and Their Inherent Properties, Variant Construction from Theoretical Foundation to Applications, Springer, Singapore, 51-65.
- Index entries for triangles and arrays related to Pascal's triangle.
- Index entries for "core" sequences.
- Index entries for sequences related to Benford's law.
Crossrefs
Equals differences between consecutive terms of A102363. - David G. Williams (davidwilliams(AT)Paxway.com), Jan 23 2006
Row sums give A000079 (powers of 2).
Partial sums of rows give triangle A008949.
The triangle of the antidiagonals is A011973.
Another version: A108044.
Cf. A008277, A132311, A132312, A052216, A052217, A052218, A052219, A052220, A052221, A052222, A052223, A144225, A202750, A211226, A047999, A026729, A052553, A051920, A193242.
Triangle sums (see the comments): A000079 (Row1); A000007 (Row2); A000045 (Kn11 & Kn21); A000071 (Kn12 & Kn22); A001924 (Kn13 & Kn23); A014162 (Kn14 & Kn24); A014166 (Kn15 & Kn25); A053739 (Kn16 & Kn26); A053295 (Kn17 & Kn27); A053296 (Kn18 & Kn28); A053308 (Kn19 & Kn29); A053309 (Kn110 & Kn210); A001519 (Kn3 & Kn4); A011782 (Fi1 & Fi2); A000930 (Ca1 & Ca2); A052544 (Ca3 & Ca4); A003269 (Gi1 & Gi2); A055988 (Gi3 & Gi4); A034943 (Ze1 & Ze2); A005251 (Ze3 & Ze4). - Johannes W. Meijer, Sep 22 2010
Fibonacci-Pascal triangles: A027926, A036355, A037027, A074829, A105809, A109906, A111006, A114197, A162741, A228074, A228196, A228576.
Cf. A115940 (pandigital binomial coefficients C(m,k) with k>1).
Programs
-
Axiom
-- (start) )set expose add constructor OutputForm pascal(0,n) == 1 pascal(n,n) == 1 pascal(i,j | 0 < i and i < j) == pascal(i-1,j-1) + pascal(i,j-1) pascalRow(n) == [pascal(i,n) for i in 0..n] displayRow(n) == output center blankSeparate pascalRow(n) for i in 0..20 repeat displayRow i -- (end)
-
GAP
Flat(List([0..12],n->List([0..n],k->Binomial(n,k)))); # Stefano Spezia, Dec 22 2018
-
Haskell
a007318 n k = a007318_tabl !! n !! k a007318_row n = a007318_tabl !! n a007318_list = concat a007318_tabl a007318_tabl = iterate (\row -> zipWith (+) ([0] ++ row) (row ++ [0])) [1] -- Cf. http://www.haskell.org/haskellwiki/Blow_your_mind#Mathematical_sequences -- Reinhard Zumkeller, Nov 09 2011, Oct 22 2010
-
Magma
/* As triangle: */ [[Binomial(n, k): k in [0..n]]: n in [0.. 10]]; // Vincenzo Librandi, Jul 29 2015
-
Maple
A007318 := (n,k)->binomial(n,k);
-
Mathematica
Flatten[Table[Binomial[n, k], {n, 0, 11}, {k, 0, n}]] (* Robert G. Wilson v, Jan 19 2004 *) Flatten[CoefficientList[CoefficientList[Series[1/(1 - x - x*y), {x, 0, 12}], x], y]] (* Mats Granvik, Jul 08 2014 *)
-
Maxima
create_list(binomial(n,k),n,0,12,k,0,n); /* Emanuele Munarini, Mar 11 2011 */
-
PARI
C(n,k)=binomial(n,k) \\ Charles R Greathouse IV, Jun 08 2011
-
Python
# See Hobson link. Further programs: from math import prod,factorial def C(n,k): return prod(range(n,n-k,-1))//factorial(k) # M. F. Hasler, Dec 13 2019, updated Apr 29 2022, Feb 17 2023
-
Python
from math import comb, isqrt def A007318(n): return comb(r:=(m:=isqrt(k:=n+1<<1))-(k<=m*(m+1)),n-comb(r+1,2)) # Chai Wah Wu, Nov 11 2024
-
Sage
def C(n,k): return Subsets(range(n), k).cardinality() # Ralf Stephan, Jan 21 2014
Formula
a(n, k) = C(n,k) = binomial(n, k).
C(n, k) = C(n-1, k) + C(n-1, k-1).
The triangle is symmetric: C(n,k) = C(n,n-k).
a(n+1, m) = a(n, m) + a(n, m-1), a(n, -1) := 0, a(n, m) := 0, n
C(n, k) = n!/(k!(n-k)!) if 0<=k<=n, otherwise 0.
C(n, k) = ((n-k+1)/k) * C(n, k-1) with C(n, 0) = 1. - Michael B. Porter, Mar 23 2025
G.f.: 1/(1-y-x*y) = Sum_(C(n, k)*x^k*y^n, n, k>=0)
G.f.: 1/(1-x-y) = Sum_(C(n+k, k)*x^k*y^n, n, k>=0).
G.f. for row n: (1+x)^n = Sum_{k=0..n} C(n, k)*x^k.
G.f. for column k: x^k/(1-x)^(k+1); [corrected by Werner Schulte, Jun 15 2022].
E.g.f.: A(x, y) = exp(x+x*y).
E.g.f. for column n: x^n*exp(x)/n!.
In general the m-th power of A007318 is given by: T(0, 0) = 1, T(n, k) = T(n-1, k-1) + m*T(n-1, k), where n is the row-index and k is the column; also T(n, k) = m^(n-k)*C(n, k).
Triangle T(n, k) read by rows; given by A000007 DELTA A000007, where DELTA is Deléham's operator defined in A084938.
Let P(n+1) = the number of integer partitions of (n+1); let p(i) = the number of parts of the i-th partition of (n+1); let d(i) = the number of different parts of the i-th partition of (n+1); let m(i, j) = multiplicity of the j-th part of the i-th partition of (n+1). Define the operator Sum_{i=1..P(n+1), p(i)=k+1} as the sum running from i=1 to i=P(n+1) but taking only partitions with p(i)=(k+1) parts into account. Define the operator Product_{j=1..d(i)} = product running from j=1 to j=d(i). Then C(n, k) = Sum_{p(i)=(k+1), i=1..P(n+1)} p(i)! / [Product_{j=1..d(i)} m(i, j)!]. E.g., C(5, 3) = 10 because n=6 has the following partitions with m=3 parts: (114), (123), (222). For their multiplicities one has: (114): 3!/(2!*1!) = 3; (123): 3!/(1!*1!*1!) = 6; (222): 3!/3! = 1. The sum is 3 + 6 + 1 = 10 = C(5, 3). - Thomas Wieder, Jun 03 2005
C(n, k) = Sum_{j=0..k} (-1)^j*C(n+1+j, k-j)*A000108(j). - Philippe Deléham, Oct 10 2005
G.f.: 1 + x*(1 + x) + x^3*(1 + x)^2 + x^6*(1 + x)^3 + ... . - Michael Somos, Sep 16 2006
Sum_{k=0..floor(n/2)} x^(n-k)*T(n-k,k) = A000007(n), A000045(n+1), A002605(n), A030195(n+1), A057087(n), A057088(n), A057089(n), A057090(n), A057091(n), A057092(n), A057093(n) for x = 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, respectively. Sum_{k=0..floor(n/2)} (-1)^k*x^(n-k)*T(n-k,k) = A000007(n), A010892(n), A009545(n+1), A057083(n), A001787(n+1), A030191(n), A030192(n), A030240(n), A057084(n), A057085(n+1), A057086(n), A084329(n+1) for x = 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 20, respectively. - Philippe Deléham, Sep 16 2006
C(n,k) <= A062758(n) for n > 1. - Reinhard Zumkeller, Mar 04 2008
C(t+p-1, t) = Sum_{i=0..t} C(i+p-2, i) = Sum_{i=1..p} C(i+t-2, t-1). A binomial number is the sum of its left parent and all its right ancestors, which equals the sum of its right parent and all its left ancestors. - Lee Naish (lee(AT)cs.mu.oz.au), Mar 07 2008
From Paul D. Hanna, Mar 24 2011: (Start)
Let A(x) = Sum_{n>=0} x^(n*(n+1)/2)*(1+x)^n be the g.f. of the flattened triangle:
A(x) = 1 + (x + x^2) + (x^3 + 2*x^4 + x^5) + (x^6 + 3*x^7 + 3*x^8 + x^9) + ...
then A(x) equals the series Sum_{n>=0} (1+x)^n*x^n*Product_{k=1..n} (1-(1+x)*x^(2*k-1))/(1-(1+x)*x^(2*k));
also, A(x) equals the continued fraction 1/(1- x*(1+x)/(1+ x*(1-x)*(1+x)/(1- x^3*(1+x)/(1+ x^2*(1-x^2)*(1+x)/(1- x^5*(1+x)/(1+ x^3*(1-x^3)*(1+x)/(1- x^7*(1+x)/(1+ x^4*(1-x^4)*(1+x)/(1- ...))))))))).
These formulas are due to (1) a q-series identity and (2) a partial elliptic theta function expression. (End)
Row n of the triangle is the result of applying the ConvOffs transform to the first n terms of the natural numbers (1, 2, 3, ..., n). See A001263 or A214281 for a definition of this transformation. - Gary W. Adamson, Jul 12 2012
From L. Edson Jeffery, Aug 02 2012: (Start)
Row n (n >= 0) of the triangle is given by the n-th antidiagonal of the infinite matrix P^n, where P = (p_{i,j}), i,j >= 0, is the production matrix
0, 1,
1, 0, 1,
0, 1, 0, 1,
0, 0, 1, 0, 1,
0, 0, 0, 1, 0, 1,
0, 0, 0, 0, 1, 0, 1,
0, 0, 0, 0, 0, 1, 0, 1,
0, 0, 0, 0, 0, 0, 1, 0, 1,
... (End)
Row n of the triangle is also given by the n+1 coefficients of the polynomial P_n(x) defined by the recurrence P_0(x) = 1, P_1(x) = x + 1, P_n(x) = x*P_{n-1}(x) + P_{n-2}(x), n > 1. - L. Edson Jeffery, Aug 12 2013
For a closed-form formula for arbitrary left and right borders of Pascal-like triangles see A228196. - Boris Putievskiy, Aug 18 2013
For a closed-form formula for generalized Pascal's triangle see A228576. - Boris Putievskiy, Sep 04 2013
(1+x)^n = Sum_{k=0..n} (-1)^(n-k)*binomial(n,k)*Sum_{i=0..k} k^(n-i)*binomial(k,i)*x^(n-i)/(n-i)!. - Vladimir Kruchinin, Oct 21 2013
E.g.f.: A(x,y) = exp(x+x*y) = 1 + (x+y*x)/( E(0)-(x+y*x)), where E(k) = 1 + (x+y*x)/(1 + (k+1)/E(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Nov 08 2013
E.g.f.: E(0) -1, where E(k) = 2 + x*(1+y)/(2*k+1 - x*(1+y)/E(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Dec 24 2013
G.f.: 1 + x*(1+x)*(1+x^2*(1+x)/(W(0)-x^2-x^3)), where W(k) = 1 + (1+x)*x^(k+2) - (1+x)*x^(k+3)/W(k+1); (continued fraction). - Sergei N. Gladkovskii, Dec 24 2013
Sum_{n>=0} C(n,k)/n! = e/k!, where e = exp(1), while allowing n < k where C(n,k) = 0. Also Sum_{n>=0} C(n+k-1,k)/n! = e * A000262(k)/k!, and for k>=1 equals e * A067764(k)/A067653(k). - Richard R. Forberg, Jan 01 2014
Sum_{n>=k} 1/C(n,k) = k/(k-1) for k>=1. - Richard R. Forberg, Feb 10 2014
From Tom Copeland, Apr 26 2014: (Start)
Multiply each n-th diagonal of the Pascal lower triangular matrix by x^n and designate the result by A007318(x) = P(x). Then with :xD:^n = x^n*(d/dx)^n and B(n,x), the Bell polynomials (A008277),
A) P(x)= exp(x*dP) = exp[x*(e^M-I)] = exp[M*B(.,x)] = (I+dP)^B(.,x)
B) P(:xD:) = exp(dP:xD:) = exp[(e^M-I):xD:] = exp[M*B(.,:xD:)] = exp[M*xD] = (I+dP)^(xD) with action P(:xD:)g(x) = exp(dP:xD:)g(x) = g[(I+dP)*x] (cf. also A238363).
C) P(x)^y = P(y*x). P(2x) = A038207(x) = exp[M*B(.,2x)], the face vectors of the n-dim hypercubes.
D) P(x) = [St2]*exp(x*M)*[St1] = [St2]*(I+dP)^x*[St1]
E) = [St1]^(-1)*(I+dP)^x*[St1] = [St2]*(I+dP)^x*[St2]^(-1)
where [St1]=padded A008275 just as [St2]=A048993=padded A008277 and exp(x*M) = (I+dP)^x = Sum_{k>=0} C(x,k) dP^k. (End)
From Peter Bala, Dec 21 2014: (Start)
Recurrence equation: T(n,k) = T(n-1,k)*(n + k)/(n - k) - T(n-1,k-1) for n >= 2 and 1 <= k < n, with boundary conditions T(n,0) = T(n,n) = 1. Note, changing the minus sign in the recurrence to a plus sign gives a recurrence for the square of the binomial coefficients - see A008459.
There is a relation between the e.g.f.'s of the rows and the diagonals of the triangle, namely, exp(x) * e.g.f. for row n = e.g.f. for diagonal n. For example, for n = 3 we have exp(x)*(1 + 3*x + 3*x^2/2! + x^3/3!) = 1 + 4*x + 10*x^2/2! + 20*x^3/3! + 35*x^4/4! + .... This property holds more generally for the Riordan arrays of the form ( f(x), x/(1 - x) ), where f(x) is an o.g.f. of the form 1 + f_1*x + f_2*x^2 + .... See, for example, A055248 and A106516.
Let P denote the present triangle. For k = 0,1,2,... define P(k) to be the lower unit triangular block array
/I_k 0\
\ 0 P/ having the k X k identity matrix I_k as the upper left block; in particular, P(0) = P. The infinite product P(0)*P(1)*P(2)*..., which is clearly well-defined, is equal to the triangle of Stirling numbers of the second kind A008277. The infinite product in the reverse order, that is, ...*P(2)*P(1)*P(0), is equal to the triangle of Stirling cycle numbers A130534. (End)
C(a+b,c) = Sum_{k=0..a} C(a,k)*C(b,b-c+k). This is a generalization of equation 1 from section 4.2.5 of the Prudnikov et al. reference, for a=b=c=n: C(2*n,n) = Sum_{k=0..n} C(n,k)^2. See Links section for animation of new formula. - Hermann Stamm-Wilbrandt, Aug 26 2015
The row polynomials of the Pascal matrix P(n,x) = (1+x)^n are related to the Bernoulli polynomials Br(n,x) and their umbral compositional inverses Bv(n,x) by the umbral relation P(n,x) = (-Br(.,-Bv(.,x)))^n = (-1)^n Br(n,-Bv(.,x)), which translates into the matrix relation P = M * Br * M * Bv, where P is the Pascal matrix, M is the diagonal matrix diag(1,-1,1,-1,...), Br is the matrix for the coefficients of the Bernoulli polynomials, and Bv that for the umbral inverse polynomials defined umbrally by Br(n,Bv(.,x)) = x^n = Bv(n,Br(.,x)). Note M = M^(-1). - Tom Copeland, Sep 05 2015
1/(1-x)^k = (r(x) * r(x^2) * r(x^4) * ...) where r(x) = (1+x)^k. - Gary W. Adamson, Oct 17 2016
Boas-Buck type recurrence for column k for Riordan arrays (see the Aug 10 2017 remark in A046521, also for the reference) with the Boas-Buck sequence b(n) = {repeat(1)}. T(n, k) = ((k+1)/(n-k))*Sum_{j=k..n-1} T(j, k), for n >= 1, with T(n, n) = 1. This reduces, with T(n, k) = binomial(n, k), to a known binomial identity (e.g, Graham et al. p. 161). - Wolfdieter Lang, Nov 12 2018
C((p-1)/a, b) == (-1)^b * fact_a(a*b-a+1)/fact_a(a*b) (mod p), where fact_n denotes the n-th multifactorial, a divides p-1, and the denominator of the fraction on the right side of the equation represents the modular inverse. - Isaac Saffold, Jan 07 2019
C(n,k-1) = A325002(n,k) - [k==n+1] = (A325002(n,k) + A325003(n,k)) / 2 = [k==n+1] + A325003(n,k). - Robert A. Russell, Oct 20 2020
From Hermann Stamm-Wilbrandt, May 13 2021: (Start)
Binomial sums are Fibonacci numbers A000045:
Sum_{k=0..n} C(n + k, 2*k + 1) = F(2*n).
Sum_{k=0..n} C(n + k, 2*k) = F(2*n + 1). (End)
C(n,k) = Sum_{i=0..k} A000108(i) * C(n-2i-1, k-i), for 0 <= k <= floor(n/2)-1. - Tushar Bansal, May 17 2025
Extensions
Checked all links, deleted 8 that seemed lost forever and were probably not of great importance. - N. J. A. Sloane, May 08 2018
A027907 Triangle of trinomial coefficients T(n,k) (n >= 0, 0 <= k <= 2*n), read by rows: n-th row is obtained by expanding (1 + x + x^2)^n.
1, 1, 1, 1, 1, 2, 3, 2, 1, 1, 3, 6, 7, 6, 3, 1, 1, 4, 10, 16, 19, 16, 10, 4, 1, 1, 5, 15, 30, 45, 51, 45, 30, 15, 5, 1, 1, 6, 21, 50, 90, 126, 141, 126, 90, 50, 21, 6, 1, 1, 7, 28, 77, 161, 266, 357, 393, 357, 266, 161, 77, 28, 7, 1, 1, 8, 36, 112, 266
Offset: 0
Comments
When the rows are centered about their midpoints, each term is the sum of the three terms directly above it (assuming the undefined terms in the previous row are zeros). - N. J. A. Sloane, Dec 23 2021
T(n,k) = number of integer strings s(0),...,s(n) such that s(0)=0, s(n)=k, s(i) = s(i-1) + c, where c is 0, 1 or 2. Columns of T include A002426, A005717 and A014531.
Also number of ordered trees having n+1 leaves, all at level three and n+k+3 edges. Example: T(3,5)=3 because we have three ordered trees with 4 leaves, all at level three and 11 edges: the root r has three children; from one of these children two paths of length two are hanging (i.e., 3 possibilities) while from each of the other two children one path of length two is hanging. Diagonal sums are the tribonacci numbers; more precisely: Sum_{i=0..floor(2*n/3)} T(n-i,i) = A000073(n+2). - Emeric Deutsch, Jan 03 2004
T(n,k) = A111808(n,k) for 0 <= k <= n and T(n, 2*n-k) = A111808(n,k) for 0 <= k < n. - Reinhard Zumkeller, Aug 17 2005
The trinomial coefficients, T(n,i), are the absolute value of the coefficients of the chromatic polynomial of P_2 X P_n factored with x*(x-1)^i terms. Example: The chromatic polynomial of P_2 X P_2 is: x*(x-1) - 2*x*(x-1)^2 + x*(x-1)^3 and so T(1,0)=1, T(1,1)=2 and T(1,1) = 1. - Thomas J. Pfaff (tpfaff(AT)ithaca.edu), Oct 02 2006
T(n,k) is the number of distinct ways in which k unlabeled objects can be distributed in n labeled urns allowing at most 2 objects to fall into each urn. - N-E. Fahssi, Mar 16 2008
T(n,k) is the number of compositions of k into n parts p, each part 0 <= p <= 2. Adding 1 to each part, as a corollary, T(n,k) is the number of compositions of n+k into n parts p where 1 <= p <= 3. E.g., T(2,3)=2 since 5 = 3+2 = 2+3. - Steffen Eger, Jun 10 2011
Number of lattice paths from (0,0) to (n,k) using steps (1,0), (1,1), (1,2). - Joerg Arndt, Jul 05 2011
Number of lattice paths from (0,0) to (2*n-k,k) using steps (2,0), (1,1), (0,2). - Werner Schulte, Jan 25 2017
T(n,k) is number of distinct ways to sum the integers -1, 0 , and 1 n times to obtain n-k, where T(n,0) = T(n,2*n+1) = 1. - William Boyles, Apr 23 2017
T(n-1,k-1) is the number of 2-compositions of n with 0's having k parts; see Hopkins & Ouvry reference. - Brian Hopkins, Aug 15 2020
T(n,k) is the number of ways to obtain a sum of n+k when throwing a 3-sided die n times. Follows from the "T(n,k) is the number of compositions of n+k into n parts p where 1 <= p <= 3" comment above. - Feryal Alayont, Dec 30 2024
Examples
The triangle T(n, k) begins: n\k 0 1 2 3 4 5 6 7 8 9 10 11 12 0: 1 1: 1 1 1 2: 1 2 3 2 1 3: 1 3 6 7 6 3 1 4: 1 4 10 16 19 16 10 4 1 5: 1 5 15 30 45 51 45 30 15 5 1 6: 1 6 21 50 90 126 141 126 90 50 21 6 1 Concatenated rows: G.f. = 1 + (x^2+x+1)*x + (x^2+x+1)^2*x^4 + (x^2+x+1)^3*x^9 + ... = 1 + (x + x^2 + x^3) + (x^4 + 2*x^5 + 3*x^6 + 2*x^7 + x^8) + (x^9 + 3*x^10 + 6*x^11 + 7*x^12 + 6*x^13 + 3*x^14 + x^15) + ... . As a centered triangle, this begins: 1 1 1 1 1 2 3 2 1 1 3 6 7 6 3 1
References
- Boris A. Bondarenko, Generalized Pascal Triangles and Pyramids (in Russian), FAN, Tashkent, 1990, ISBN 5-648-00738-8.
- L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 78.
- D. C. Fielder and C. O. Alford, Pascal's triangle: top gun or just one of the gang?, in G E Bergum et al., eds., Applications of Fibonacci Numbers Vol. 4 1991 pp. 77-90 (Kluwer).
- L. Kleinrock, Uniform permutation of sequences, JPL Space Programs Summary, Vol. 37-64-III, Apr 30, 1970, pp. 32-43.
Links
- Seiichi Manyama, Rows n=0..99 of triangle, flattened (Rows 0..30 from T. D. Noe)
- Moussa Ahmia and Hacene Belbachir, Preserving log-convexity for generalized Pascal triangles, Electronic Journal of Combinatorics, 19(2) (2012), #P16. - _N. J. A. Sloane_, Oct 13 2012
- Tewodros Amdeberhan, Moa Apagodu and Doron Zeilberger, Wilf's "Snake Oil" Method Proves an Identity in The Motzkin Triangle, arXiv:1507.07660 [math.CO], 2015.
- Said Amrouche and Hacène Belbachir, Asymmetric extension of Pascal-Dellanoy triangles, arXiv:2001.11665 [math.CO], 2020.
- G. E. Andrews, Euler's 'exemplum memorabile inductionis fallacis' and q-trinomial coefficients, J. Amer. Math. Soc. 3 (1990) 653-669.
- G. E. Andrews, Three aspects of partitions, Séminaire Lotharingien de Combinatoire, B25f (1990), 1 p.
- George E. Andrews and Alexander Berkovich, A trinomial analogue of Bailey's lemma and N= 2 superconformal invariance, arXiv:q-alg/9702008, 1997; Communications in mathematical physics 192.2 (1998): 245-260. See page 248.
- Armen G. Bagdasaryan and Ovidiu Bagdasar, On some results concerning generalized arithmetic triangles, Electronic Notes in Discrete Mathematics (2018) Vol. 67, 71-77.
- Abdelghafour Bazeniar, Moussa Ahmia and Hacène Belbachir, Connection between bi^s nomial coefficients with their analogs and symmetric functions, Turkish Journal of Mathematics, Vol. 42, No. 3 (2018), pp. 807-818.
- Hacène Belbachir and Oussama Igueroufa, Combinatorial interpretation of bisnomial coefficients and Generalized Catalan numbers, Proceedings of the 1st International Conference on Algebras, Graphs and Ordered Sets (ALGOS 2020), hal-02918958 [math.cs], 47-54.
- Hacène Belbachir and Yassine Otmani, Quadrinomial-Like Versions for Wolstenholme, Morley and Glaisher Congruences, Integers (2023) Vol. 23.
- Leonardo Bennun, A Pragmatic Smoothing Method for Improving the Quality of the Results in Atomic Spectroscopy, arXiv:1603.02061 [physics.atom-ph], 2016. See reference 22.
- Alexander Berkovich and Ali K. Uncu, Elementary Polynomial Identities Involving q-Trinomial Coefficients, arXiv:1810.06497 [math.NT], 2018.
- F. R. Bernhart, Catalan, Motzkin and Riordan numbers, Discr. Math., 204 (1999) 73-112.
- Jan Bok, Graph-indexed random walks on special classes of graphs, arXiv:1801.05498 [math.CO], 2018.
- Richard C. Bollinger, Reliability and Runs of Ones, Mathematics Magazine, 57(1) (1984), 34-37.
- Boris A. Bondarenko, Generalized Pascal Triangles and Pyramids, English translation published by Fibonacci Association, Santa Clara Univ., Santa Clara, CA, 1993; see p. 17.
- Eduardo H. M. Brietzke, Generalization of an identity of Andrews, Fibonacci Quart. 44(2) (2006), 166-171.
- Rezig Boualam and Moussa Ahmia, Log-concavity and strong q-log-convexity for some generalized triangular arrays, arXiv:2409.18886 [math.CO], 2024. See p. 2.
- L. Carlitz, Comment on the paper "Some probability distributions and their associated structures", Math. Magazine, 37:1 (1964), 51-52. [The triangle is on page 51]
- Ji Young Choi, Digit Sums Generalizing Binomial Coefficients, J. Int. Seq. 22 (2019), Article 19.8.3.
- Karl Dilcher and Larry Ericksen, Polynomials and algebraic curves related to certain binary and b-ary overpartitions, arXiv:2405.12024 [math.CO], 2024. See p. 7.
- S. Eger, Some Elementary Congruences for the Number of Weighted Integer Compositions, J. Int. Seq. 18 (2015), #15.4.1.
- L. Euler, Disquitiones analyticae super evolutione potestatis trinomialis (1+x+xx)^n, 1805. This is paper E722 in Eneström's index of Euler's works, translated from Latin to German. The sequence appears in the table on page 2.
- L. Euler, On the expansion of the power of any polynomial (1+x+x^2+x^3+x^4+etc.)^n, arXiv:math/0505425 [math.HO], 2005.
- L. Euler, De evolutione potestatis polynomialis cuiuscunque (1 + x + x^2 + x^3 + x^4 + etc.)^n, E709.
- Nour-Eddine Fahssi, Polynomial Triangles Revisited, arXiv:1202.0228 [math.CO], 2012.
- Luca Ferrari and Emanuele Munarini, Enumeration of edges in some lattices of paths, arXiv:1203.6792 [math.CO], 2012 and J. Int. Seq., 17 (2014), #14.1.5.
- D. Fielder, Letter to N. J. A. Sloane, Jun. 1991.
- D. C. Fielder and C. O. Alford, Pascal's triangle: top gun or just one of the gang?, Applications of Fibonacci Numbers 4 (1991), 77-90. (Annotated scanned copy)
- S. R. Finch, P. Sebah and Z.-Q. Bai, Odd Entries in Pascal's Trinomial Triangle, arXiv:0802.2654 [math.NT], 2008.
- A. Fink, R. K. Guy and M. Krusemeyer, Partitions with parts occurring at most thrice, Contrib. Discr. Math. 3(2) (2008), 76-114.
- W. Florek and T. Lulek, Combinatorial analysis of magnetic configurations, Séminaire Lotharingien de Combinatoire, B26d (1991), 12 pp.
- J. E. Freund, Restricted Occupancy Theory - A Generalization of Pascal's Triangle, American Mathematical Monthly, Vol. 63(1) (1956), 20-27.
- Berit Nilsen Givens, The trinomial triangle knitted shawl, J. Math. Arts (2023).
- Fern Gossow, Lyndon-like cyclic sieving and Gauss congruence, arXiv:2410.05678 [math.CO], 2024. See p. 17.
- R. K. Guy, Letter to N. J. A. Sloane, 1987
- V. E. Hoggatt, Jr. and M. Bicknell, Diagonal sums of generalized Pascal triangles, Fib. Quart. 7 (1969), 341-358 and 393.
- Brian Hopkins and Stéphane Ouvry, Combinatorics of Multicompositions, arXiv:2008.04937 [math.CO], 2020.
- Veronika Irvine, Lace Tessellations: A mathematical model for bobbin lace and an exhaustive combinatorial search for patterns, PhD Dissertation, University of Victoria, 2016.
- S. Kak, The Golden Mean and the Physics of Aesthetics, arXiv:physics/0411195 [physics.hist-ph], 2004.
- L. Kleinrock, Uniform permutation of sequences, JPL Space Programs Summary, Vol. 37-64-III, Apr 30, 1970, pp. 32-43. [Annotated scanned copy]
- László Németh, The trinomial transform triangle, J. Int. Seqs., Vol. 21 (2018), Article 18.7.3. Also arXiv:1807.07109 [math.NT], 2018.
- T. Neuschel, A Note on Extended Binomial Coefficients, J. Int. Seq. 17 (2014), #14.10.4.
- Yassine Otmani, The 2-Pascal Triangle and a Related Riordan Array, J. Int. Seq. (2025) Vol. 28, Issue 3, Art. No. 25.3.5. See p. 4.
- Andrei G. Pronko, Periodic Motzkin chain: Ground states and symmetries, arXiv:2504.00835 [math-ph], 2025. See p. 16.
- Jack Ramsay, On Arithmetical Triangles, The Pulse of Long Island, June 1965 [Mentions application to design of antenna arrays. Annotated scan.]
- L. W. Shapiro, S. Getu, W.-J. Woan and L. C. Woodson, The Riordan group, Discrete Applied Math., 34 (1991), 229-239.
- Eric Weisstein's World of Mathematics, Trinomial Triangle.
- Eric Weisstein's World of Mathematics, Trinomial Coefficient.
- Sheng-Liang Yang and Yuan-Yuan Gao, The Pascal rhombus and Riordan arrays, Fib. Q., 56:4 (2018), 337-347. See Fig. 3.
- Xuxu Zhao, Xu Wang and Haiyuan Yao, Some enumerative properties of a class of Fibonacci-like cubes, arXiv:1905.00573 [math.CO], 2019.
- Bao-Xuan Zhu, Linear transformations and strong q-log-concavity for certain combinatorial triangle, arXiv:1605.00257 [math.CO], 2016.
Crossrefs
Programs
-
Haskell
a027907 n k = a027907_tabf !! n !! k a027907_row n = a027907_tabf !! n a027907_tabf = [1] : iterate f [1, 1, 1] where f row = zipWith3 (((+) .) . (+)) (row ++ [0, 0]) ([0] ++ row ++ [0]) ([0, 0] ++ row) a027907_list = concat a027907_tabf -- Reinhard Zumkeller, Jul 06 2014, Jan 22 2013, Apr 02 2011
-
Maple
A027907 := proc(n,k) expand((1+x+x^2)^n) ; coeftayl(%,x=0,k) ; end proc: seq(seq(A027907(n,k),k=0..2*n),n=0..5) ; # R. J. Mathar, Jun 13 2011 T := (n,k) -> simplify(GegenbauerC(`if`(k
Peter Luschny, May 08 2016 -
Mathematica
Table[CoefficientList[Series[(Sum[x^i, {i, 0, 2}])^n, {x, 0, 2 n}], x], {n, 0, 10}] // Grid (* Geoffrey Critzer, Mar 31 2010 *) Table[Sum[Binomial[n, i]Binomial[n - i, k - 2i], {i, 0, n}], {n, 0, 10}, {k, 0, 2n}] (* Adi Dani, May 07 2011 *) T[ n_, k_] := If[ n < 0, 0, Coefficient[ (1 + x + x^2)^n, x, k]]; (* Michael Somos, Nov 08 2016 *) Flatten[DeleteCases[#,0]&/@CellularAutomaton[{Total[#] &, {}, 1}, {{1}, 0}, 8] ] (* Giorgos Kalogeropoulos, Nov 09 2021 *)
-
Maxima
trinomial(n,k):=coeff(expand((1+x+x^2)^n),x,k); create_list(trinomial(n,k),n,0,8,k,0,2*n); /* Emanuele Munarini, Mar 15 2011 */
-
Maxima
create_list(ultraspherical(k,-n,-1/2),n,0,6,k,0,2*n); /* Emanuele Munarini, Oct 18 2016 */
-
PARI
{T(n, k) = if( n<0, 0, polcoeff( (1 + x + x^2)^n, k))}; /* Michael Somos, Jun 27 2003 */
Formula
G.f.: 1/(1-z*(1+w+w^2)).
T(n,k) = Sum_{r=0..floor(k/3)} (-1)^r*binomial(n, r)*binomial(k-3*r+n-1, n-1).
Recurrence: T(0,0) = 1; T(n,k) = T(n-1,k-2) + T(n-1,k-1) + T(n-1,k-0), with T(n,k) = 0 if k < 0 or k > 2*n:
T(i,0) = T(i, 2*i) = 1 for i >= 0, T(i, 1) = T(i, 2*i-1) = i for i >= 1 and for i >= 2 and 2 <= j <= i-2, T(i, j) = T(i-1, j-2) + T(i-1, j-1) + T(i-1, j).
The row sums are powers of 3 (A000244). - Gerald McGarvey, Aug 14 2004
T(n,k) = Sum_{i=0..floor(k/2)} binomial(n, 2*i+n-k) * binomial(2*i+n-k, i). - Ralf Stephan, Jan 26 2005
T(n,k) = Sum_{j=0..n} binomial(n, j) * binomial(j, k-j). - Paul Barry, May 21 2005
T(n,k) = Sum_{j=0..n} binomial(k-j, j) * binomial(n, k-j). - Paul Barry, Nov 04 2005
From Loic Turban (turban(AT)lpm.u-nancy.fr), Aug 31 2006: (Start)
T(n,k) = Sum_{j=0..n} (-1)^j * binomial(n,j) * binomial(2*n-2*j, k-j); (G. E. Andrews (1990)) obtained by expanding ((1+x)^2 - x)^n.
T(n,k) = Sum_{j=0..n} binomial(n,j) * binomial(n-j, k-2*j); obtained by expanding ((1+x) + x^2)^n.
T(n,k) = (-1)^k*Sum_{j=0..n} (-3)^j * binomial(n,j) * binomial(2*n-2*j, k-j); obtained by expanding ((1-x)^2 + 3*x)^n.
T(n,k) = (1/2)^k * Sum_{j=0..n} 3^j * binomial(n,j) * binomial(2*n-2*j, k-2*j); obtained by expanding ((1+x/2)^2 + (3/4)*x^2)^n.
T(n,k) = (2^k/4^n) * Sum_{j=0..n} 3^j * binomial(n,j) * binomial(2*n-2*j, k); obtained by expanding ((1/2+x)^2 + 3/4)^n using T(n,k) = T(2*n-k). (End)
From Paul D. Hanna, Apr 18 2012: (Start)
Let A(x) be the g.f. of the flattened sequence, then:
G.f.: A(x) = Sum_{n>=0} x^(n^2) * (1+x+x^2)^n.
G.f.: A(x) = Sum_{n>=0} x^n*(1+x+x^2)^n * Product_{k=1..n} (1 - (1+x+x^2) * x^(4*k-3)) / (1 - (1+x+x^2)*x^(4*k-1)).
G.f.: A(x) = 1/(1 - x*(1+x+x^2)/(1 + x*(1-x^2)*(1+x+x^2)/(1 - x^5*(1+x+x^2)/(1 + x^3*(1-x^4)*(1+x+x^2)/(1 - x^9*(1+x+x^2)/(1 + x^5*(1-x^6)*(1+x+x^2)/(1 - x^13* (1+x+x^2)/(1 + x^7*(1-x^8)*(1+x+x^2)/(1 - ...))))))))), a continued fraction.
(End)
Triangle: G.f. = Sum_{n>=0} (1+x+x^2)^n * x^(n^2) * y^n. - Daniel Forgues, Mar 16 2015
From Peter Luschny, May 08 2016: (Start)
T(n+1,n)/(n+1) = A001006(n) (Motzkin) for n>=0.
T(n,k) = H(n, k) if k < n else H(n, 2*n-k) where H(n,k) = binomial(n,k)*hypergeom([(1-k)/2, -k/2], [n-k+1], 4).
T(n,k) = GegenbauerC(m, -n, -1/2) where m=k if k < n else 2*n-k. (End)
T(n,k) = (-1)^k * C(2*n,k) * hypergeom([-k, -(2*n-k)], [-n+1/2], 3/4), for all k with 0 <= k <= 2n. - Robert S. Maier, Jun 13 2023
T(n,n) = Sum_{k=0..2*n} (-1)^k*(T(n,k))^2 and T(2*n,2*n) = Sum_{k=0..2*n} (T(n,k))^2 for n >= 0. - Werner Schulte, Nov 08 2016
T(n,n) = A002426(n), central trinomial coefficients. - M. F. Hasler, Nov 02 2019
Sum_{k=0..n-1} T(n, 2*k) = (3^n-1)/2. - Tony Foster III, Oct 06 2020
A008287 Triangle of quadrinomial coefficients, row n is the sequence of coefficients of (1 + x + x^2 + x^3)^n.
1, 1, 1, 1, 1, 1, 2, 3, 4, 3, 2, 1, 1, 3, 6, 10, 12, 12, 10, 6, 3, 1, 1, 4, 10, 20, 31, 40, 44, 40, 31, 20, 10, 4, 1, 1, 5, 15, 35, 65, 101, 135, 155, 155, 135, 101, 65, 35, 15, 5, 1, 1, 6, 21, 56, 120, 216, 336, 456, 546, 580, 546, 456, 336, 216, 120, 56, 21, 6, 1
Offset: 0
Comments
Coefficient of x^k in (1 + x + x^2 + x^3)^n is the number of distinct ways in which k unlabeled objects can be distributed in n labeled urns allowing at most 3 objects to fall in each urn. - N-E. Fahssi, Mar 16 2008
T(n,k) is the number of compositions of k into n parts p, each part 0<=p<=3. Adding 1 to each part, as a corollary, T(n,k) is the number of compositions of n+k into n parts p where 1<=p<=4. E.g., T(2,3)=4 since 3=0+3=3+0=1+2=2+1. In general, the entry (n,k) of the (l+1)-nomial triangle gives the number of compositions of k into n parts p, each part 0<=p<=l. - Steffen Eger, Jun 18 2011
Number of lattice paths from (0,0) to (n,k) using steps (1,0), (1,1), (1,2), (1,3). - Joerg Arndt, Jul 05 2011
T(n-1,k-1) is the number of 3-compositions of n with zeros having k parts; see Hopkins & Ouvry reference. - Brian Hopkins, Aug 16 2020
T(n,k) is the number of ways to obtain a sum of n+k when throwing a 4-sided die n times. Follows from the "T(n,k) is the number of compositions of n+k into n parts p where 1 <= p <= 4" comment above. - Feryal Alayont, Dec 30 2024
Examples
Triangle begins 1; 1,1,1,1; 1,2,3,4,3,2,1; 1,3,6,10,12,12,10,6,3,1; ...
References
- Boris A. Bondarenko, Generalized Pascal Triangles and Pyramids (in Russian), FAN, Tashkent, 1990, ISBN 5-648-00738-8.
- L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 78.
- D. C. Fielder and C. O. Alford, Pascal's triangle: top gun or just one of the gang?, in G E Bergum et al., eds., Applications of Fibonacci Numbers Vol. 4 1991 pp. 77-90 (Kluwer).
Links
- Alois P. Heinz, Rows n = 0..100, flattened (first 26 rows from T. D. Noe)
- Moussa Ahmia and Hacene Belbachir, Preserving log-convexity for generalized Pascal triangles, Electronic Journal of Combinatorics, 19(2) (2012), #P16. - _N. J. A. Sloane_, Oct 13 2012
- Said Amrouche and Hacène Belbachir, Asymmetric extension of Pascal-Dellanoy triangles, arXiv:2001.11665 [math.CO], 2020.
- Armen G. Bagdasaryan and Ovidiu Bagdasar, On some results concerning generalized arithmetic triangles, Electronic Notes in Discrete Mathematics (2018) Vol. 67, 71-77.
- Hacène Belbachir and Oussama Igueroufa, Combinatorial interpretation of bisnomial coefficients and Generalized Catalan numbers, Proceedings of the 1st International Conference on Algebras, Graphs and Ordered Sets (ALGOS 2020), hal-02918958 [math.cs], 47-54.
- Hacène Belbachir and Yassine Otmani, Quadrinomial-Like Versions for Wolstenholme, Morley and Glaisher Congruences, Integers (2023) Vol. 23.
- Boris A. Bondarenko, Generalized Pascal Triangles and Pyramids, English translation published by Fibonacci Association, Santa Clara Univ., Santa Clara, CA, 1993; see p. 17.
- Ji Young Choi, Digit Sums Generalizing Binomial Coefficients, J. Int. Seq., Vol. 22 (2019), Article 19.8.3.
- Spiros D. Dafnis, Frosso S. Makri, and Andreas N. Philippou, Restricted occupancy of s kinds of cells and generalized Pascal triangles, Fibonacci Quart. 45 (2007), no. 4, 347-356.
- L. Euler, On the expansion of the power of any polynomial (1+x+x^2+x^3+x^4+etc.)^n, arXiv:math/0505425 [math.HO], 2005.
- L. Euler, De evolutione potestatis polynomialis cuiuscunque (1+x+x^2+x^3+x^4+etc.)^n, E709.
- Nour-Eddine Fahssi, Polynomial Triangles Revisited, arXiv:1202.0228 [math.CO], (25-July-2012).
- D. C. Fielder and C. O. Alford, Pascal's triangle: top gun or just one of the gang?, Applications of Fibonacci Numbers 4 (1991), 77-90. (Annotated scanned copy)
- J. E. Freund, Restricted Occupancy Theory - A Generalization of Pascal's Triangle, American Mathematical Monthly, Vol. 63, No. 1 (1956), pp. 20-27.
- S. R. Finch, P. Sebah and Z.-Q. Bai, Odd Entries in Pascal's Trinomial Triangle, arXiv:0802.2654 [math.NT], 2008.
- W. Florek and T. Lulek, Combinatorial analysis of magnetic configurations, Séminaire Lotharingien de Combinatoire, B26d (1991), 12 pp.
- R. K. Guy, Letter to N. J. A. Sloane, 1987
- Brian Hopkins and Stéphane Ouvry, Combinatorics of Multicompositions, arXiv:2008.04937 [math.CO], 2020.
- Kantaphon Kuhapatanakul and Anantakitpaisal, The k-nacci triangle and applications, Cogent Math. 4, Article ID 1333293, 13 p. (2017).
- Thorsten Neuschel, A Note on Extended Binomial Coefficients, J. Int. Seq. 17 (2014) # 14.10.4.
- Yassine Otmani, The 2-Pascal Triangle and a Related Riordan Array, J. Int. Seq. (2025) Vol. 28, Issue 3, Art. No. 25.3.5. See p. 4.
- Jack Ramsay, On Arithmetical Triangles, The Pulse of Long Island, June 1965 [Mentions application to design of antenna arrays. Annotated scan.]
- Boualam Rezig and Moussa Ahmia, Combinatorics of three-Catalan numbers and some positivities, arXiv:2502.03615 [math.CO], 2025. See Table 1 p. 4.
- Claudia Smith and Verner E. Hoggatt, Jr. , A Study of the Maximal Values in Pascal's Quadrinomial Triangle, Fibonacci Quart. 17 (1979), no. 3, 264-269.
- Bao-Xuan Zhu, Linear transformations and strong q-log-concavity for certain combinatorial triangle, arXiv preprint arXiv:1605.00257 [math.CO], 2016.
Programs
-
Haskell
a008287 n = a008287_list !! n a008287_list = concat $ iterate ([1,1,1,1] *) [1] instance Num a => Num [a] where fromInteger k = [fromInteger k] (p:ps) + (q:qs) = p + q : ps + qs ps + qs = ps ++ qs (p:ps) * qs'@(q:qs) = p * q : ps * qs' + [p] * qs * = [] -- Reinhard Zumkeller, Apr 02 2011
-
Maple
#Define the r-nomial coefficients for r = 1, 2, 3, ... rnomial := (r,n,k) -> add((-1)^i*binomial(n,i)*binomial(n+k-1-r*i,n-1), i = 0..floor(k/r)): #Display the 4-nomials as a table r := 4: rows := 10: for n from 0 to rows do seq(rnomial(r,n,k), k = 0..(r-1)*n) end do; # Peter Bala, Sep 07 2013 # second Maple program: T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))((1+x+x^2+x^3)^n): seq(T(n), n=0..10); # Alois P. Heinz, Aug 17 2018
-
Mathematica
Flatten[Table[CoefficientList[(1 + x + x^2 + x^3)^n, x], {n, 0, 10}]] (* T. D. Noe, Apr 04 2011 *) T[n_, k_] := Sum[Binomial[n, i] Binomial[n, k-2i], {i, 0, k/2}]; Table[T[n, k], {n, 0, 6}, {k, 0, 3n}] // Flatten (* Jean-François Alcover, Feb 02 2018 *)
-
Maxima
quadrinomial(n,k):=coeff(expand((1+x+x^2+x^3)^n),x,k); create_list(quadrinomial(n,k),n,0,8,k,0,3*n); /* Emanuele Munarini, Mar 15 2011 */
Formula
n-th row is formed by expanding (1+x+x^2+x^3)^n.
From Vladimir Shevelev, Dec 15 2010: (Start)
T(n,0) = 1; T(n,3*n) = 1; T(n,k) = T(n,3*n-k);
T(n,k) = 0, iff k<0 or k>3*n; Sum{k=0..3*n} T(n,k) = 4^n; Sum{k=0..3*n}((-1)^k)*T(n,k)=0 for n > 0; [corrected by Werner Schulte, Sep 09 2015]
T(n,k) = Sum{i=0..floor(k/2)} C(n,i)*C(n,k-2*i);
T(n+1,k) = T(n,k-3)+T(n,k-2)+T(n,k-1)+T(n,k). (End)
T(n,k) = Sum_{i = 0..floor(k/4)} (-1)^i*C(n,i)*C(n+k-1-4*i,n-1) for n >= 0 and 0 <= k <= 3*n. - Peter Bala, Sep 07 2013
G.f.: 1/(1 - ( x + y*x + y^2*x +y^3*x )). - Geoffrey Critzer, Feb 05 2014
T(n,k) = Sum_{j=0..k} (-2)^j*binomial(n,j)*binomial(3*n-2*j,k-j) for n >= 0 and 0 <= k <= 3*n (conjectured). - Werner Schulte, Sep 09 2015
A112467 Riordan array ((1-2x)/(1-x), x/(1-x)).
1, -1, 1, -1, 0, 1, -1, -1, 1, 1, -1, -2, 0, 2, 1, -1, -3, -2, 2, 3, 1, -1, -4, -5, 0, 5, 4, 1, -1, -5, -9, -5, 5, 9, 5, 1, -1, -6, -14, -14, 0, 14, 14, 6, 1, -1, -7, -20, -28, -14, 14, 28, 20, 7, 1, -1, -8, -27, -48, -42, 0, 42, 48, 27, 8, 1, -1, -9, -35, -75, -90, -42, 42, 90, 75, 35, 9, 1, -1, -10, -44, -110, -165, -132, 0, 132, 165, 110
Offset: 0
Comments
(-1,1)-Pascal triangle. - Philippe Deléham, Aug 07 2006
Apart from initial term, same as A008482. - Philippe Deléham, Nov 07 2006
Each column equals the cumulative sum of the previous column. - Mats Granvik, Mar 15 2010
Reading along antidiagonals generates in essence rows of A192174. - Paul Curtz, Oct 02 2011
Triangle T(n,k), read by rows, given by (-1,2,0,0,0,0,0,0,0,...) DELTA (1,0,0,0,0,0,0,0,0,...) where DELTA is the operator defined in A084938. - Philippe Deléham, Nov 01 2011
Examples
Triangle starts: 1; -1, 1; -1, 0, 1; -1, -1, 1, 1; -1, -2, 0, 2, 1; -1, -3, -2, 2, 3, 1; -1, -4, -5, 0, 5, 4, 1; -1, -5, -9, -5, 5, 9, 5, 1; -1, -6, -14, -14, 0, 14, 14, 6, 1; -1, -7, -20, -28, -14, 14, 28, 20, 7, 1; -1, -8, -27, -48, -42, 0, 42, 48, 27, 8, 1; -1, -9, -35, -75, -90, -42, 42, 90, 75, 35, 9, 1; ... From _Paul Barry_, Apr 08 2011: (Start) Production matrix begins: 1, 1, -2, -1, 1, 2, 0, -1, 1, -2, 0, 0, -1, 1, 2, 0, 0, 0, -1, 1, -2, 0, 0, 0, 0, -1, 1, 2, 0, 0, 0, 0, 0, -1, 1 ... (End)
Links
- G. C. Greubel, Rows n = 0..100 of triangle, flattened
- Elena Barcucci, Antonio Bernini, Stefano Bilotta, and Renzo Pinzani, Restricting Dyck Paths and 312-avoiding Permutations, arXiv:2307.02837 [math.CO], 2023. Mentions this sequence.
- Paul Barry, A Note on Riordan Arrays with Catalan Halves, arXiv:1912.01124 [math.CO], 2019.
- Emeric Deutsch, L. Ferrari and S. Rinaldi, Production Matrices, Advances in Mathematics, 34 (2005) pp. 101-122.
- D. Foata and G.-N. Han, The doubloon polynomial triangle, Ram. J. 23 (2010), 107-126.
- Jack Ramsay, On Arithmetical Triangles, The Pulse of Long Island, June 1965. [Mentions application to design of antenna arrays. Annotated scan.]
Crossrefs
Programs
-
Magma
[n eq 0 select 1 else (2*k-n)*Binomial(n,k)/n: k in [0..n], n in [0..10]]; // G. C. Greubel, Dec 04 2019
-
Maple
seq(seq( `if`(n=0, 1, (2*k-n)*binomial(n,k)/n), k=0..n), n=0..10); # G. C. Greubel, Dec 04 2019
-
Mathematica
T[n_, k_]= If[n==0, 1, ((2*k-n)/n)*Binomial[n, k]]; Table[T[n, k], {n, 0, 10}, {k, 0, n}]//Flatten (* Roger L. Bagula, Feb 16 2009; modified by G. C. Greubel, Dec 04 2019 *)
-
PARI
T(n, k) = if(n==0, 1, (2*k-n)*binomial(n,k)/n ); \\ G. C. Greubel, Dec 04 2019
-
Sage
def T(n, k): if (n==0): return 1 else: return (2*k-n)*binomial(n,k)/n [[T(n, k) for k in (0..n)] for n in (0..10)] # G. C. Greubel, Dec 04 2019
Formula
Number triangle T(n, k) = binomial(n, n-k) - 2*binomial(n-1, n-k-1).
Sum_{k=0..n} T(n, k)*x^k = (x-1)*(x+1)^(n-1). - Philippe Deléham, Oct 03 2005
T(n,k) = ((2*k-n)/n)*binomial(n, k), with T(0,0)=1. - Roger L. Bagula, Feb 16 2009; modified by G. C. Greubel, Dec 04 2019
T(n,k) = T(n-1,k-1) + T(n-1,k) with T(0,0)=1, T(1,0)=-1, T(n,k)=0 for k>n or for n<0. - Philippe Deléham, Nov 01 2011
G.f.: (1-2x)/(1-(1+y)*x). - Philippe Deléham, Dec 15 2011
Sum_{k=0..n} T(n,k)*x^k = A000007(n), A133494(n), A081294(n), A005053(n), A067411(n), A199661(n), A083233(n) for x = 1, 2, 3, 4, 5, 6, 7, respectively. - Philippe Deléham, Dec 15 2011
exp(x) * e.g.f. for row n = e.g.f. for diagonal n. For example, for n = 3 we have exp(x)*(-1 - x + x^2/2! + x^3/3!) = -1 - 2*x - 2*x^2/2! + 5*x^4/4! + 14*x^5/5! + .... The same property holds more generally for Riordan arrays of the form ( f(x), x/(1 - x) ). - Peter Bala, Dec 21 2014
Sum_{k=0..n} T(n,k) = 0^n = A000007(n). - G. C. Greubel, Dec 04 2019
A349813 Triangle read by rows: row 1 is [3]; for n >= 1, row n gives coefficients of expansion of (-3 - x + x^2 + 3*x^3)*(1 + x + x^2 + x^3)^(n-1) in order of increasing powers of x.
3, -3, -1, 1, 3, -3, -4, -3, 0, 3, 4, 3, -3, -7, -10, -10, -4, 4, 10, 10, 7, 3, -3, -10, -20, -30, -31, -20, 0, 20, 31, 30, 20, 10, 3, -3, -13, -33, -63, -91, -101, -81, -31, 31, 81, 101, 91, 63, 33, 13, 3, -3, -16, -49, -112, -200, -288, -336, -304, -182, 0, 182, 304, 336, 288, 200, 112, 49, 16, 3
Offset: 0
Comments
The row polynomials can be further factorized, since -3 - x + x^2 + 3*x^3 = -(1-x)*(3 + 4*x + 3*x^2) and 1 + x + x^2 + x^3 = (1+x)*(1+x^2).
The rule for constructing this triangle (ignoring row 0) is the same as that for A008287: each number is the sum of the four numbers immediately above it in the previous row. Here row 1 is [-3, -1, 1, 3] instead of [1, 1, 1, 1].
Examples
Triangle begins: 3; -3, -1, 1, 3; -3, -4, -3, 0, 3, 4, 3; -3, -7, -10, -10, -4, 4, 10, 10, 7, 3; -3, -10, -20, -30, -31, -20, 0, 20, 31, 30, 20, 10, 3; -3, -13, -33, -63, -91, -101, -81, -31, 31, 81, 101, 91, 63, 33, 13, 3; ...
Links
- Jack Ramsay, On Arithmetical Triangles, The Pulse of Long Island, June 1965 [Mentions application to design of antenna arrays. Annotated scan.]
Crossrefs
Programs
-
Maple
t1:=-3-x+x^2+3*x^3; m:=1+x+x^2+x^3; lprint([3]); for n from 1 to 12 do w1:=expand(t1*m^(n-1)); w4:=series(w1,x,3*n+1); w5:=seriestolist(w4); lprint(w5); od:
A349815 Triangle read by rows: row 1 is [1]; for n >= 1, row n gives coefficients of expansion of (-1 - x + x^2 + x^3)*(1 + x + x^2 + x^3)^(n-1) in order of increasing powers of x.
1, -1, -1, 1, 1, -1, -2, -1, 0, 1, 2, 1, -1, -3, -4, -4, -2, 2, 4, 4, 3, 1, -1, -4, -8, -12, -13, -8, 0, 8, 13, 12, 8, 4, 1, -1, -5, -13, -25, -37, -41, -33, -13, 13, 33, 41, 37, 25, 13, 5, 1, -1, -6, -19, -44, -80, -116, -136, -124, -74, 0, 74, 124, 136, 116, 80, 44, 19, 6, 1, -1, -7, -26, -70, -149, -259, -376, -456, -450, -334, -124, 124, 334, 450, 456, 376, 259, 149, 70, 26, 7, 1
Offset: 0
Comments
The row polynomials can be further factorized, since -3 - x + x^2 + 3*x^3 = -(1-x)*(1+x)^2 and 1 + x + x^2 + x^3 = (1+x)*(1+x^2).
The rule for constructing this triangle (ignoring row 0) is the same as that for A008287: each number is the sum of the four numbers immediately above it in the previous row. Here row 1 is [-1, -1, 1, 3] instead of [1, 1, 1, 1].
Examples
Triangle begins: 1; -1, -1, 1, 1; -1, -2, -1, 0, 1, 2, 1; -1, -3, -4, -4, -2, 2, 4, 4, 3, 1; -1, -4, -8, -12, -13, -8, 0, 8, 13, 12, 8, 4, 1; -1, -5, -13, -25, -37, -41, -33, -13, 13, 33, 41, 37, 25, 13, 5, 1; ...
Links
- Jack Ramsay, On Arithmetical Triangles, The Pulse of Long Island, June 1965 [Mentions application to design of antenna arrays. Annotated scan.]
Crossrefs
Programs
-
Maple
t1:=-1-x+x^2+x^3; m:=1+x+x^2+x^3; lprint([3]); for n from 1 to 12 do w1:=expand(t1*m^(n-1)); w4:=series(w1,x,3*n+1); w5:=seriestolist(w4); lprint(w5); od:
A349818 Central column (ignoring the zeros) of A349815, or leading entries in rows of A349816.
1, 1, 1, 2, 8, 13, 74, 124, 784, 1364, 9069, 16194, 111144, 202070, 1418196, 2612376, 18642208, 34682348, 250706548, 470066728, 3433030048, 6477333149, 47703926354, 90472092748, 670963514192, 1278016171132, 9534032792470, 18226719157820, 136658371126320
Offset: 0
Keywords
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..500
Programs
-
PARI
a(n) = if(n==0, 1, polcoef((-1 - x + x^2 + x^3)*(1 + x + x^2 + x^3)^(n-1), 3*n\2+1)) \\ Andrew Howroyd, Feb 28 2023
Formula
a(n) = [x^floor(3*n/2+1)](-1 - x + x^2 + 3*x^3)*(1 + x + x^2 + x^3)^(n-1) for n > 0. - Andrew Howroyd, Feb 28 2023
Extensions
Offset corrected and terms a(21) and beyond from Andrew Howroyd, Feb 28 2023
Comments