cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A349818 Central column (ignoring the zeros) of A349815, or leading entries in rows of A349816.

Original entry on oeis.org

1, 1, 1, 2, 8, 13, 74, 124, 784, 1364, 9069, 16194, 111144, 202070, 1418196, 2612376, 18642208, 34682348, 250706548, 470066728, 3433030048, 6477333149, 47703926354, 90472092748, 670963514192, 1278016171132, 9534032792470, 18226719157820, 136658371126320
Offset: 0

Views

Author

N. J. A. Sloane, Dec 24 2021

Keywords

Comments

Note that the analogous sequence for A349812 is the Motzkin numbers A001006.

Crossrefs

Programs

  • PARI
    a(n) = if(n==0, 1, polcoef((-1 - x + x^2 + x^3)*(1 + x + x^2 + x^3)^(n-1), 3*n\2+1)) \\ Andrew Howroyd, Feb 28 2023

Formula

a(n) = [x^floor(3*n/2+1)](-1 - x + x^2 + 3*x^3)*(1 + x + x^2 + x^3)^(n-1) for n > 0. - Andrew Howroyd, Feb 28 2023

Extensions

Offset corrected and terms a(21) and beyond from Andrew Howroyd, Feb 28 2023

A349816 Irregular triangle read by rows: the right-hand side of the triangle in A349815.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 2, 4, 4, 3, 1, 8, 13, 12, 8, 4, 1, 13, 33, 41, 37, 25, 13, 5, 1, 74, 124, 136, 116, 80, 44, 19, 6, 1, 124, 334, 450, 456, 376, 259, 149, 70, 26, 7, 1, 784, 1364, 1616, 1541, 1240, 854, 504, 252, 104, 34, 8, 1, 1364, 3764, 5305, 5761, 5251, 4139, 2850, 1714, 894, 398, 147, 43, 9, 1, 9069, 16194, 20081, 20456, 18001, 13954, 9597, 5856, 3153, 1482, 597, 200, 53, 10, 1
Offset: 0

Views

Author

N. J. A. Sloane, Dec 23 2021

Keywords

Comments

It seems more symmetrical to omit the central column of zeros in A349815.

Examples

			Triangle begins:
    1;
    1,    1;
    1,    2,    1;
    2,    4,    4,    3,    1;
    8,   13,   12,    8,    4,   1;
   13,   33,   41,   37,   25,  13,   5,   1;
   74,  124,  136,  116,   80,  44,  19,   6,   1;
  124,  334,  450,  456,  376, 259, 149,  70,  26,  7, 1;
  784, 1364, 1616, 1541, 1240, 854, 504, 252, 104, 34, 8, 1;
  ...
		

Crossrefs

A349813 Triangle read by rows: row 1 is [3]; for n >= 1, row n gives coefficients of expansion of (-3 - x + x^2 + 3*x^3)*(1 + x + x^2 + x^3)^(n-1) in order of increasing powers of x.

Original entry on oeis.org

3, -3, -1, 1, 3, -3, -4, -3, 0, 3, 4, 3, -3, -7, -10, -10, -4, 4, 10, 10, 7, 3, -3, -10, -20, -30, -31, -20, 0, 20, 31, 30, 20, 10, 3, -3, -13, -33, -63, -91, -101, -81, -31, 31, 81, 101, 91, 63, 33, 13, 3, -3, -16, -49, -112, -200, -288, -336, -304, -182, 0, 182, 304, 336, 288, 200, 112, 49, 16, 3
Offset: 0

Views

Author

N. J. A. Sloane, Dec 23 2021

Keywords

Comments

The row polynomials can be further factorized, since -3 - x + x^2 + 3*x^3 = -(1-x)*(3 + 4*x + 3*x^2) and 1 + x + x^2 + x^3 = (1+x)*(1+x^2).
The rule for constructing this triangle (ignoring row 0) is the same as that for A008287: each number is the sum of the four numbers immediately above it in the previous row. Here row 1 is [-3, -1, 1, 3] instead of [1, 1, 1, 1].

Examples

			Triangle begins:
   3;
  -3,  -1,   1,   3;
  -3,  -4,  -3,   0,   3,    4,   3;
  -3,  -7, -10, -10,  -4,    4,  10,  10,  7,  3;
  -3, -10, -20, -30, -31,  -20,   0,  20, 31, 30,  20, 10,  3;
  -3, -13, -33, -63, -91, -101, -81, -31, 31, 81, 101, 91, 63, 33, 13, 3;
  ...
		

Crossrefs

The right half of the triangle gives A349814.

Programs

  • Maple
    t1:=-3-x+x^2+3*x^3;
    m:=1+x+x^2+x^3;
    lprint([3]);
    for n from 1 to 12 do
    w1:=expand(t1*m^(n-1));
    w4:=series(w1,x,3*n+1);
    w5:=seriestolist(w4);
    lprint(w5);
    od:
Showing 1-3 of 3 results.