cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: central

central's wiki page.

central has authored 2 sequences.

A049065 Record primes reached in A048986.

Original entry on oeis.org

2, 3, 31, 179, 12007, 1564237, 17320726789571, 401278664296369, 576312045441408907, 37246812772043701411753149215934377, 3690727229000499480592573891534356177653018575120050845976045596834749951228879
Offset: 1

Author

Michael B Greenwald (mbgreen(AT)central.cis.upenn.edu)

Keywords

Comments

The value 37246812772043701411753149215934377 is the base-2 home prime for 922 and occurs after 66 steps. The value 3690727229000499480592573891534356177653018575120050845976045596834749951228879 is the base-2 home prime for 1345 and occurs after 131 steps. The next term (home prime for 2295) contains at least 124 digits. Computation of further terms involves large factorizations. - Sean A. Irvine, Aug 04 2005 [corrected Jul 17 2021]

Extensions

a(10)-a(11) from Sean A. Irvine, Aug 04 2005
a(10) corrected by Sean A. Irvine, Jul 17 2021

A048986 Home primes in base 2: primes reached when you start with n and (working in base 2) concatenate its prime factors (A048985); repeat until a prime is reached (or -1 if no prime is ever reached). Answer is written in base 10.

Original entry on oeis.org

1, 2, 3, 31, 5, 11, 7, 179, 29, 31, 11, 43, 13, 23, 29, 12007, 17, 47, 19, 251, 31, 43, 23, 499, 4091, 4091, 127, 4091, 29, 127, 31, 1564237, 59, 4079, 47, 367, 37, 83, 61, 383, 41, 179, 43, 499, 4091, 4091, 47, 683, 127, 173, 113, 173, 53, 191, 4091
Offset: 1

Author

Michael B Greenwald (mbgreen(AT)central.cis.upenn.edu)

Keywords

Comments

a(1) = 1 by convention.
The first binary home prime that is not known is a(2295). - Ely Golden, Jan 09 2017

Examples

			4 = 2*2 -> 1010 = 10 = 2*5 ->10101 = 21 = 3*7 -> 11111 = 31 = prime.
		

Crossrefs

Programs

  • Mathematica
    f[n_] := Module[{fi}, If[PrimeQ[n], n, fi = FactorInteger[n]; Table[ First[#], {Last[#]}]& /@ fi // Flatten // IntegerDigits[#, 2]& // Flatten // FromDigits[#, 2]&]]; a[1] = 1; a[n_] := TimeConstrained[FixedPoint[f, n], 1] /. $Aborted -> -1; Array[a, 55] (* Jean-François Alcover, Jan 01 2016 *)
  • Python
    from sympy import factorint, isprime
    def f(n):
        if n == 1: return 1
        return int("".join(bin(p)[2:]*e for p, e in factorint(n).items()), 2)
    def a(n):
        if n == 1: return 1
        while not isprime(n): n = f(n)
        return n
    print([a(n) for n in range(1, 56)]) # Michael S. Branicky, Oct 07 2022
  • SageMath
    def digitLen(x,n):
        r=0
        while(x>0):
            x//=n
            r+=1
        return r
    def concatPf(x,n):
        r=0
        f=list(factor(x))
        for c in range(len(f)):
            for d in range(f[c][1]):
                r*=(n**digitLen(f[c][0],n))
                r+=f[c][0]
        return r
    def hp(x,n):
        x1=concatPf(x,n)
        while(x1!=x):
            x=x1
            x1=concatPf(x1,n)
        return x
    radix=2
    index=2
    while(index<=1344):
        print(str(index)+" "+str(hp(index,radix)))
        index+=1