cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A049065 Record primes reached in A048986.

Original entry on oeis.org

2, 3, 31, 179, 12007, 1564237, 17320726789571, 401278664296369, 576312045441408907, 37246812772043701411753149215934377, 3690727229000499480592573891534356177653018575120050845976045596834749951228879
Offset: 1

Views

Author

Michael B Greenwald (mbgreen(AT)central.cis.upenn.edu)

Keywords

Comments

The value 37246812772043701411753149215934377 is the base-2 home prime for 922 and occurs after 66 steps. The value 3690727229000499480592573891534356177653018575120050845976045596834749951228879 is the base-2 home prime for 1345 and occurs after 131 steps. The next term (home prime for 2295) contains at least 124 digits. Computation of further terms involves large factorizations. - Sean A. Irvine, Aug 04 2005 [corrected Jul 17 2021]

Crossrefs

Extensions

a(10)-a(11) from Sean A. Irvine, Aug 04 2005
a(10) corrected by Sean A. Irvine, Jul 17 2021

A037274 Home primes: for n >= 2, a(n) = the prime that is finally reached when you start with n, concatenate its prime factors (A037276) and repeat until a prime is reached (a(n) = -1 if no prime is ever reached).

Original entry on oeis.org

1, 2, 3, 211, 5, 23, 7, 3331113965338635107, 311, 773, 11, 223, 13, 13367, 1129, 31636373, 17, 233, 19, 3318308475676071413, 37, 211, 23, 331319, 773, 3251, 13367, 227, 29, 547, 31, 241271, 311, 31397, 1129, 71129, 37, 373, 313, 3314192745739, 41, 379, 43, 22815088913, 3411949, 223, 47, 6161791591356884791277
Offset: 1

Views

Author

Keywords

Comments

The initial 1 could have been omitted.
Probabilistic arguments give exactly zero for the chance that the sequence of integers starting at n contains no prime, the expected number of primes being given by a divergent sequence. - J. H. Conway
After over 100 iterations, a(49) is still composite - see A056938 for the latest information.
More terms:
a(50) to a(60) are 3517, 317, 2213, 53, 2333, 773, 37463, 1129, 229, 59, 35149;
a(61) to a(65) are 61, 31237, 337, 1272505013723, 1381321118321175157763339900357651;
a(66) to a(76) are 2311, 67, 3739, 33191, 257, 71, 1119179, 73, 379, 571, 333271.
This is different from A195264. Here 8 = 2^3 -> 222 -> ... -> 3331113965338635107 (a prime), whereas in A195264 8 = 2^3 -> 23 (a prime). - N. J. A. Sloane, Oct 12 2014

Examples

			9 = 3*3 -> 33 = 3*11 -> 311, prime, so a(9) = 311.
The trajectory of 8 is more interesting:
8 ->
2 * 2 * 2 ->
2 * 3 * 37 ->
3 * 19 * 41 ->
3 * 3 * 3 * 7 * 13 * 13 ->
3 * 11123771 ->
7 * 149 * 317 * 941 ->
229 * 31219729 ->
11 * 2084656339 ->
3 * 347 * 911 * 118189 ->
11 * 613 * 496501723 ->
97 * 130517 * 917327 ->
53 * 1832651281459 ->
3 * 3 * 3 * 11 * 139 * 653 * 3863 * 5107
and 3331113965338635107 is prime, so a(8) = 3331113965338635107.
		

References

  • Jeffrey Heleen, Family Numbers: Mathemagical Black Holes, Recreational and Educational Computing, 5:5, pp. 6, 1990.
  • Jeffrey Heleen, Family numbers: Constructing Primes by Prime Factor Splicing, J. Recreational Math., Vol. 28 #2, 1996-97, pp. 116-119.

Crossrefs

Cf. A195264 (use exponents instead of repeating primes).
Cf. A084318 (use only one copy of each prime), A248713 (Fermi-Dirac analog: use unique representation of n>1 as a product of distinct terms of A050376).
Cf. also A120716 and related sequences.

Programs

  • Maple
    b:= n-> parse(cat(sort(map(i-> i[1]$i[2], ifactors(n)[2]))[])):
    a:= n-> `if`(isprime(n) or n=1, n, a(b(n))):
    seq(a(n), n=1..48);  # Alois P. Heinz, Jan 09 2021
  • Mathematica
    f[n_] := FromDigits@ Flatten[ IntegerDigits@ Table[ #[[1]], { #[[2]] }] & /@ FactorInteger@n, 2]; g[n_] := NestWhile[ f@# &, n, !PrimeQ@# &]; g[1] = 1; Array[g, 41] (* Robert G. Wilson v, Sep 22 2007 *)
  • PARI
    step(n)=my(f=factor(n),s="");for(i=1,#f~,for(j=1,f[i,2],s=Str(s,f[i,1]))); eval(s)
    a(n)=if(n<4,return(n)); while(!isprime(n), n=step(n)); n \\ Charles R Greathouse IV, May 14 2015
    
  • Python
    from sympy import factorint, isprime
    def f(n): return int("".join(str(p)*e for p, e in factorint(n).items()))
    def a(n):
        if n == 1: return 1
        fn = n
        while not isprime(fn): fn = f(fn)
        return fn
    print([a(n) for n in range(1, 40)]) # Michael S. Branicky, Jul 11 2022
  • SageMath
    def digitLen(x,n):
        r=0
        while(x>0):
            x//=n
            r+=1
        return r
    def concatPf(x,n):
        r=0
        f=list(factor(x))
        for c in range(len(f)):
            for d in range(f[c][1]):
                r*=(n**digitLen(f[c][0],n))
                r+=f[c][0]
        return r
    def hp(x,n):
        x1=concatPf(x,n)
        while(x1!=x):
            x=x1
            x1=concatPf(x1,n)
        return x
    #example: prints the home prime of 8 in base 10
    print(hp(8,10))
    

Extensions

Corrected and extended by Karl W. Heuer, Sep 30 2003

A048985 Working in base 2, replace n with the concatenation of its prime divisors in increasing order (write answer in base 10).

Original entry on oeis.org

1, 2, 3, 10, 5, 11, 7, 42, 15, 21, 11, 43, 13, 23, 29, 170, 17, 47, 19, 85, 31, 43, 23, 171, 45, 45, 63, 87, 29, 93, 31, 682, 59, 81, 47, 175, 37, 83, 61, 341, 41, 95, 43, 171, 125, 87, 47, 683, 63, 173, 113, 173, 53, 191, 91, 343, 115, 93, 59, 349, 61, 95, 127, 2730
Offset: 1

Views

Author

Keywords

Examples

			15 = 3*5 -> 11.101 -> 11101 = 29, so a(15) = 29.
		

Crossrefs

Cf. A193652, A029744 (record values and where they occur).
Cf. A027746.

Programs

  • Haskell
    -- import Data.List (unfoldr)
    a048985 = foldr (\d v -> 2 * v + d) 0 . concatMap
       (unfoldr (\x -> if x == 0 then Nothing else Just $ swap $ divMod x 2))
       . reverse . a027746_row
    -- Reinhard Zumkeller, Jul 16 2012
    
  • Mathematica
    f[n_] := FromDigits[ Flatten[ IntegerDigits[ Flatten[ Table[ #1, {#2}] & @@@ FactorInteger@n], 2]], 2]; Array[f, 64] (* Robert G. Wilson v, Jun 02 2010 *)
  • Python
    from sympy import factorint
    def a(n):
        if n == 1: return 1
        return int("".join(bin(p)[2:]*e for p, e in factorint(n).items()), 2)
    print([a(n) for n in range(1, 65)]) # Michael S. Branicky, Oct 07 2022

Extensions

More terms from Sam Alexander (pink2001x(AT)hotmail.com) and Michel ten Voorde

A006919 Write down all the prime divisors in previous term.

Original entry on oeis.org

8, 222, 2337, 31941, 33371313, 311123771, 7149317941, 22931219729, 112084656339, 3347911118189, 11613496501723, 97130517917327, 531832651281459, 3331113965338635107, 3331113965338635107
Offset: 1

Views

Author

Keywords

References

  • H. Jaleebi, personal communication.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A056938 (same for a(1)=49), A037271-A037276, A048985, A048986, A049065.

Programs

  • Mathematica
    g[ n_ ] := (x = n; d = {}; While[ FactorInteger[ x ] != {}, f = FactorInteger[ x, FactorComplete -> True ][ [ 1, 1 ] ]; x = x/f; AppendTo[ d, IntegerDigits[ f ] ] ]; FromDigits[ Flatten[ d ] ]); NestList[ g, 8, 15 ]
    NestList[FromDigits[Flatten[IntegerDigits/@(Table[First[#],{Last[#]}]& /@ FactorInteger[#])]]&,8,15] (* Harvey P. Dale, Dec 04 2011 *)
  • PARI
    first(N, a=8)=vector(N,i,if(i>1,a=A037276(a),a)) \\ M. F. Hasler, Oct 07 2022

Formula

a(n+1) = A037276(a(n)), a(1) = 8. - M. F. Hasler, Oct 07 2022

Extensions

More terms from Robert G. Wilson v, Sep 05 2000, who remarks that sequence stabilizes at 13th term with a prime.

A064795 Home primes in base 2: primes reached when you start with n and (working in base 2) concatenate its prime factors (A048985); repeat until a prime is reached (or -1 if no prime is ever reached).

Original entry on oeis.org

1, 10, 11, 11111, 101, 1011, 111, 10110011, 11101, 11111, 1011, 101011, 1101, 10111, 11101, 10111011100111, 10001, 101111, 10011, 11111011, 11111, 101011, 10111, 111110011, 111111111011, 111111111011, 1111111, 111111111011, 11101
Offset: 1

Views

Author

N. J. A. Sloane, Oct 31 2001

Keywords

Comments

a(1) = 1 by convention.

Crossrefs

See A048986 for base 10 representation. Cf. A037274.

Extensions

More terms from David Wasserman, Aug 15 2002
Showing 1-5 of 5 results.