cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A081437 Diagonal in array of n-gonal numbers A081422.

Original entry on oeis.org

1, 10, 33, 76, 145, 246, 385, 568, 801, 1090, 1441, 1860, 2353, 2926, 3585, 4336, 5185, 6138, 7201, 8380, 9681, 11110, 12673, 14376, 16225, 18226, 20385, 22708, 25201, 27870, 30721, 33760, 36993, 40426, 44065, 47916, 51985, 56278, 60801, 65560
Offset: 0

Views

Author

Paul Barry, Mar 21 2003

Keywords

Comments

One of a family of sequences with palindromic generators.
For q a prime power, a(q-1) = q^3 + q^2 - q is the number of pairs of commuting nilpotent 2*2 matrices with coefficients in GF(q). (Proof: the zero matrix commutes with all q^2 nilpotent matrices, there are q^2-1 nonzero nilpotent matrices, all conjugate, each commuting with q nilpotent matrices.) - Mark Wildon, Jun 20 2017
Also the cyclomatic number (= circuit rank) of the n+1 X n+1 rook graph. - Eric W. Weisstein, Jun 20 2017

Crossrefs

Equals A027620(n-1) + 1.

Programs

  • GAP
    List([0..40], n-> (n+1)^3+n*(n+1)); # G. C. Greubel, Aug 14 2019
  • Magma
    [n^3+4*n^2+4*n+1: n in [0..50]]; // Vincenzo Librandi, Aug 08 2013
    
  • Maple
    a:=n->sum(n*k, k=0..n):seq(a(n)+sum(n*k, k=2..n), n=1..40); # Zerinvary Lajos, Jun 10 2008
    a:=n->sum(-2+sum(2+sum(2, j=1..n),j=1..n),j=1..n):seq(a(n)/2,n=1..40); # Zerinvary Lajos, Dec 06 2008
  • Mathematica
    Table[n^3 + 4 n^2 + 4n + 1, {n, 0, 40}] (* or *) LinearRecurrence[{4, -6, 4, -1}, {1, 10, 33, 76}, 40] (* Harvey P. Dale, Jan 24 2012 *)
    CoefficientList[Series[(1 + 5 x - 7 x^2 + x^3)/(1 - x)^5, {x, 0, 60}], x] (* Vincenzo Librandi, Aug 08 2013 *)
  • PARI
    vector(40, n, n--; (n+1)^3+n*(n+1)) \\ G. C. Greubel, Aug 14 2019
    
  • Sage
    [(n+1)^3+n*(n+1) for n in (0..40)] # G. C. Greubel, Aug 14 2019
    

Formula

a(n) = n^3 + 4*n^2 + 4*n + 1.
G.f.: (1 +5*x -7*x^2 +x^3)/(1-x)^5.
a(0)=1, a(1)=10, a(2)=33, a(3)=76; for n>3, a(n) = 4*a(n-1) -6*a(n-2) +4*a(n-3) -a(n-4). - Harvey P. Dale, Jan 24 2012
E.g.f.: (1 +9*x +7*x^2 +x^3)*exp(x). - G. C. Greubel, Aug 14 2019

A081422 Triangle read by rows in which row n consists of the first n+1 n-gonal numbers.

Original entry on oeis.org

1, 1, 1, 1, 2, 3, 1, 3, 6, 10, 1, 4, 9, 16, 25, 1, 5, 12, 22, 35, 51, 1, 6, 15, 28, 45, 66, 91, 1, 7, 18, 34, 55, 81, 112, 148, 1, 8, 21, 40, 65, 96, 133, 176, 225, 1, 9, 24, 46, 75, 111, 154, 204, 261, 325, 1, 10, 27, 52, 85, 126, 175, 232, 297, 370, 451
Offset: 0

Views

Author

Paul Barry, Mar 21 2003

Keywords

Examples

			The array starts
  1  1  3 10 ...
  1  2  6 16 ...
  1  3  9 22 ...
  1  4 12 28 ...
The triangle starts
  1;
  1,  1;
  1,  2,  3;
  1,  3,  6, 10;
  1,  4,  9, 16, 25;
  ...
		

Crossrefs

Antidiagonals are composed of n-gonal numbers.

Programs

  • GAP
    Flat(List([0..10], n-> List([1..n+1], k-> k*((n-2)*k-(n-4))/2 ))); # G. C. Greubel, Aug 14 2019
  • Magma
    [[k*((n-2)*k-(n-4))/2: k in [1..n+1]]: n in [0..10]]; // G. C. Greubel, Oct 13 2018
    
  • Mathematica
    Table[PolygonalNumber[n,i],{n,0,10},{i,n+1}]//Flatten (* Requires Mathematica version 10.4 or later *) (* Harvey P. Dale, Aug 27 2016 *)
  • PARI
    tabl(nn) = {for (n=0, nn, for (k=1, n+1, print1(k*((n-2)*k-(n-4))/2, ", ");); print(););} \\ Michel Marcus, Jun 22 2015
    
  • Sage
    [[k*((n-2)*k -(n-4))/2 for k in (1..n+1)] for n in (0..10)] # G. C. Greubel, Aug 14 2019
    

Formula

Array of coefficients of x in the expansions of T(k, x) = (1 + k*x -(k-2)*x^2)/(1-x)^4, k > -4.
T(n, k) = k*((n-2)*k -(n-4))/2 (see MathWorld link). - Michel Marcus, Jun 22 2015

A081441 a(n) = (2*n^3 - n^2 - n + 2)/2.

Original entry on oeis.org

1, 1, 6, 22, 55, 111, 196, 316, 477, 685, 946, 1266, 1651, 2107, 2640, 3256, 3961, 4761, 5662, 6670, 7791, 9031, 10396, 11892, 13525, 15301, 17226, 19306, 21547, 23955, 26536, 29296, 32241, 35377, 38710, 42246, 45991, 49951, 54132, 58540, 63181
Offset: 0

Views

Author

Paul Barry, Mar 21 2003

Keywords

Comments

Diagonal in array of n-gonal numbers A081422.

Crossrefs

Programs

  • GAP
    List([0..40], n-> (2*n^3-n^2-n+2)/2); # G. C. Greubel, Aug 14 2019
  • Magma
    [(2*n^3-n^2-n+2)/2: n in [0..50]]; // Vincenzo Librandi, Aug 08 2013
    
  • Maple
    a:= n-> (2*n^3-n^2-n+2)/2: seq(a(n), n=0..50); # Zerinvary Lajos, Sep 13 2006
  • Mathematica
    Table[(2n^3-n^2-n+2)/2,{n,0,40}] (* Harvey P. Dale, May 29 2012 *)
    CoefficientList[Series[(1 - 4 x + 11 x^2 - 8 x^3) / (1 - x)^5, {x, 0, 50}],x] (* Vincenzo Librandi, Aug 08 2013 *)
  • PARI
    vector(40, n, n--; (2*n^3-n^2-n+2)/2) \\ G. C. Greubel, Aug 14 2019
    
  • Sage
    [(2*n^3-n^2-n+2)/2 for n in (0..40)] # G. C. Greubel, Aug 14 2019
    

Formula

G.f.: (1 -4*x +11*x^2 -8*x^3)/(1-x)^5.
a(n) = (n + 1)*(2*n^2 - 3*n + 2)/2 = (n-1)*A005564(n+1) - n*A005564(n), where A005564(0..2) = 0, -1, 0. - Bruno Berselli, May 19 2015
E.g.f.: (2 + 5*x^2 + 2*x^3)*exp(x)/2. - G. C. Greubel, Aug 14 2019

A177058 a(n) = n^3 - 3n^2 + 3.

Original entry on oeis.org

3, 1, -1, 3, 19, 53, 111, 199, 323, 489, 703, 971, 1299, 1693, 2159, 2703, 3331, 4049, 4863, 5779, 6803, 7941, 9199, 10583, 12099, 13753, 15551, 17499, 19603, 21869, 24303, 26911, 29699, 32673, 35839, 39203, 42771, 46549, 50543, 54759, 59203
Offset: 0

Views

Author

Vincenzo Librandi, May 27 2010

Keywords

Comments

For n>2, fourth diagonal of A162611.

Crossrefs

Programs

  • Mathematica
    Table[n^3-3n^2+3,{n,0,40}] (* or *) LinearRecurrence[{4,-6,4,-1},{3,1,-1,3},50] (* Harvey P. Dale, May 15 2020 *)
  • PARI
    a(n)=n^3-3*n^2+3 \\ Charles R Greathouse IV, Jan 11 2012

Formula

From Bruno Berselli, Jun 04 2010: (Start)
G.f.: (3-11*x+13*x^2+x^3)/(1-x)^4.
a(n)-4*a(n-1)+6*a(n-2)-4*a(n-3)+a(n-4) = 0, with n>3.
a(n)+a(n-1) = 2*A081438(n-3), with n>2. (End)
G.f.: 3+x+x^2*G(0) where G(k) = 1 - x*(k+1)*(k+1)*(k+4)/(1 - 1/(1 - (k+1)*(k+1)*(k+4)/G(k+1))); (continued fraction, 3-step). - Sergei N. Gladkovskii, Oct 16 2012
Showing 1-4 of 4 results.