A316989
Irregular triangle read by rows: row n consists of the coefficients in the expansion of the polynomial (x^2 + 4*x + 3)*(x + 1)^(2*n) + (x^2 - 1)*(x^2 + 3*x + 3).
Original entry on oeis.org
0, 1, 3, 3, 1, 0, 7, 14, 9, 2, 0, 13, 37, 43, 26, 8, 1, 0, 19, 72, 129, 141, 98, 42, 10, 1, 0, 25, 119, 291, 463, 504, 378, 192, 63, 12, 1, 0, 31, 178, 553, 1156, 1716, 1848, 1452, 825, 330, 88, 14, 1, 0, 37, 249, 939, 2432, 4576, 6435, 6864, 5577, 3432, 1573
Offset: 0
The triangle T(n,k) begins:
n\k| 0 1 2 3 4 5 9 7 8 9 10 11 12 13 14
-------------------------------------------------------------------------------
0 | 0 1 3 3 1
1 | 0 7 14 9 2
2 | 0 13 37 43 26 8 1
3 | 0 19 72 129 141 98 42 10 1
4 | 0 25 119 291 463 504 378 192 63 12 1
5 | 0 31 178 553 1156 1716 1848 1452 825 330 88 14 1
6 | 0 37 249 939 2432 4576 6435 6864 5577 3432 1573 520 117 16 1
...
- Ji-Young Ham and Joongul Lee, An explicit formula for the A-polynomial of the knot with Conway’s notation C(2n,3), Journal of Knot Theory and Its Ramifications 25 (2016), 1-9.
- Ryo Hanaki, On scannable properties of the original knot from a knot shadow, Topology and its Applications 194 (2015), 296-305.
- Bin Lu and Jianyuan K. Zhong, The Kauffman Polynomials of 2-bridge Knots, arXiv:math/0606114 [math.GT], 2006.
-
T := proc (n, k) if k = 1 then 6*n + 1 else binomial(2*n + 3, k + 1) + (binomial(2*n + 1, k)*(2*k - 2*n) + binomial(4, k)*(2*k - 3))/(k + 1) end if end proc:
for n from 0 to 12 do seq(T(n, k), k = 0 .. max(4, 2*(n + 1))) od;
-
row[n_] := CoefficientList[(x^2 + 4*x + 3)*(x + 1)^(2*n) + (x^2 - 1)*(x^2 + 3*x + 3), x];
Array[row, 12, 0] // Flatten
-
T(n, k) := binomial(2*n + 3, k + 1) + (binomial(2*n + 1, k)*(2*k - 2*n) + binomial(4, k)*(2*k - 3))/(k + 1) - kron_delta(1, k)$
for n:0 thru 12 do print(makelist(T(n, k), k, 0, max(4, 2*(n + 1))));
A321127
Irregular triangle read by rows: row n gives the coefficients in the expansion of ((x + 1)^(2*n) + (x^2 - 1)*(2*(x + 1)^n - 1))/x.
Original entry on oeis.org
0, 1, 0, 2, 2, 0, 5, 8, 3, 0, 10, 24, 21, 8, 1, 0, 17, 56, 80, 64, 30, 8, 1, 0, 26, 110, 220, 270, 220, 122, 45, 10, 1, 0, 37, 192, 495, 820, 952, 804, 497, 220, 66, 12, 1, 0, 50, 308, 973, 2030, 3059, 3472, 3017, 2004, 1001, 364, 91, 14, 1
Offset: 0
Triangle begins:
n\k | 0 1 2 3 4 5 6 7 8 9 11 12
----+----------------------------------------------------
0 | 0 1
1 | 0 2 2
2 | 0 5 8 3
3 | 0 10 24 21 8 1
4 | 0 17 56 80 64 30 8 1
5 | 0 26 110 220 270 220 122 45 10 1
6 | 0 37 192 495 820 952 804 497 220 66 12 1
...
- Louis H. Kauffman, Formal Knot Theory, Princeton University Press, 1983.
- Michael De Vlieger, Table of n, a(n) for n = 0..14282 (rows 0 <= n <= 120, flattened).
- Louis H. Kauffman, State models and the Jones polynomial, Topology Vol. 26 (1987), 395-407.
- Kelsey Lafferty, The three-variable bracket polynomial for reduced, alternating links, Rose-Hulman Undergraduate Mathematics Journal Vol. 14 (2013), 98-113.
- Matthew Overduin, The three-variable bracket polynomial for two-bridge knots, California State University REU, 2013.
- Franck Ramaharo, A generating polynomial for the two-bridge knot with Conway's notation C(n,r), arXiv:1902.08989 [math.CO], 2019.
- Wikipedia, 2-bridge knot
- Wikipedia, Bracket polynomial
-
row[n_] := CoefficientList[Expand[((x + 1)^(2*n) + (x^2 - 1)*(2*(x + 1)^n - 1))/x], x]; Array[row, 12, 0] // Flatten
-
T(n, k) := if k = 1 then n^2 + 1 else ((4*k - 2*n)/(k + 1))*binomial(n + 1, k) + binomial(2*n, k + 1)$
create_list(T(n, k), n, 0, 12, k, 0, max(2*n - 1, n + 1));
A320530
T(n,k) = k^n + k^(n - 2)*n*(n - 1)*(k*(k - 1) + 1)/2 for 0 < k <= n and T(n,0) = A154272(n+1), square array read by antidiagonals upwards.
Original entry on oeis.org
1, 1, 1, 0, 1, 1, 0, 2, 2, 1, 0, 4, 7, 3, 1, 0, 7, 26, 16, 4, 1, 0, 11, 88, 90, 29, 5, 1, 0, 16, 272, 459, 220, 46, 6, 1, 0, 22, 784, 2133, 1504, 440, 67, 7, 1, 0, 29, 2144, 9234, 9344, 3775, 774, 92, 8, 1, 0, 37, 5632, 37908, 54016, 29375, 7992, 1246, 121, 9
Offset: 0
Square array begins:
1, 1, 1, 1, 1, 1, 1, ...
0, 1, 2, 3, 4, 5, 6, ...
1, 2, 7, 16, 29, 46, 67, ...
0, 4, 26, 90, 220, 440, 774, ...
0, 7, 88, 459, 1504, 3775, 7992, ...
0, 11, 272, 2133, 9344, 29375, 74736, ...
0, 16, 784, 9234, 54016, 212500, 649296, ...
0, 22, 2144, 37908, 295936, 1456250, 5342112, ...
...
T(3,2) = 2^3 + 2^(3 - 2)*3*(3 - 1)*(2*(2 - 1) + 1)/2 = 26. The corresponding ternary words are abc, acb, cab, bac, bca, cba, bbc, bcb, cbb, ccc. Next, let a = {00}, b = {11} and c = {01, 10}. The resulting binary words are
abc: 001101, 001110;
acb: 000111, 001011;
cab: 010011, 100011;
bac: 110001, 110010;
bca: 110100, 111000;
cba: 011100, 101100;
bbc: 111101, 111110;
bcb: 110111, 111011;
cbb: 011111, 101111;
ccc: 010101, 101010, 010110, 011001, 100101, 101001, 100110, 011010.
- Louis H. Kauffman, Formal Knot Theory, Princeton University Press, 1983.
- Louis H. Kauffman, State models and the Jones polynomial, Topology, Vol. 26 (1987), 395-407.
- Franck Ramaharo, A generating polynomial for the pretzel knot, arXiv:1805.10680 [math.CO], 2018.
- Alexander Stoimenow, Everywhere Equivalent 2-Component Links, Symmetry Vol. 7 (2015), 365-375.
- Wikipedia, Pretzel link
-
T[n_, k_] = If[k > 0, k^n + k^(n - 2)*n*(n - 1)*(k*(k - 1) + 1)/2, If[k == 0 && (n == 0 || n == 1), 1, 0]];
Table[Table[T[n - k, k], {k, 0, n}], {n, 0, 10}]//Flatten
-
t(n, k) := k^n + k^(n - 2)*binomial(n, 2)*(2*binomial(k, 2) + 1)$
u(n) := if n = 0 or n = 1 then 1 else 0$
T(n, k) := if k = 0 then u(n) else t(n,k)$
tabl(nn) := for n:0 thru 10 do print(makelist(T(n, k), k, 0, nn))$
A303273
Array T(n,k) = binomial(n, 2) + k*n + 1 read by antidiagonals.
Original entry on oeis.org
1, 1, 1, 1, 2, 2, 1, 3, 4, 4, 1, 4, 6, 7, 7, 1, 5, 8, 10, 11, 11, 1, 6, 10, 13, 15, 16, 16, 1, 7, 12, 16, 19, 21, 22, 22, 1, 8, 14, 19, 23, 26, 28, 29, 29, 1, 9, 16, 22, 27, 31, 34, 36, 37, 37, 1, 10, 18, 25, 31, 36, 40, 43, 45, 46, 46, 1, 11, 20, 28, 35, 41
Offset: 0
The array T(n,k) begins
1 1 1 1 1 1 1 1 1 1 1 1 1 ... A000012
1 2 3 4 5 6 7 8 9 10 11 12 13 ... A000027
2 4 6 8 10 12 14 16 18 20 22 24 26 ... A005843
4 7 10 13 16 19 22 25 28 31 34 37 40 ... A016777
7 11 15 19 23 27 31 35 39 43 47 51 55 ... A004767
11 16 21 26 31 36 41 46 51 56 61 66 71 ... A016861
16 22 28 34 40 46 52 58 64 70 76 82 88 ... A016957
22 29 36 43 50 57 64 71 78 85 92 99 106 ... A016993
29 37 45 53 61 69 77 85 93 101 109 117 125 ... A004770
37 46 55 64 73 82 91 100 109 118 127 136 145 ... A017173
46 56 66 76 86 96 106 116 126 136 146 156 166 ... A017341
56 67 78 89 100 111 122 133 144 155 166 177 188 ... A017401
67 79 91 103 115 127 139 151 163 175 187 199 211 ... A017605
79 92 105 118 131 144 157 170 183 196 209 222 235 ... A190991
...
The inverse binomial transforms of the columns are
1 1 1 1 1 1 1 1 1 1 1 1 1 ...
0 1 2 3 4 5 6 7 8 9 10 11 12 ...
1 1 1 1 1 1 1 1 1 1 1 1 1 ...
0 0 0 0 0 0 0 0 0 0 0 0 0 ...
0 0 0 0 0 0 0 0 0 0 0 0 0 ...
0 0 0 0 0 0 0 0 0 0 0 0 0 ...
...
T(k,n-k) = A087401(n,k) + 1 as triangle
1
1 1
1 2 2
1 3 4 4
1 4 6 7 7
1 5 8 10 11 11
1 6 10 13 15 16 16
1 7 12 16 19 21 22 22
1 8 14 19 23 26 28 29 29
1 9 16 22 27 31 34 36 37 37
1 10 18 25 31 36 40 43 45 46 46
...
- R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics: A Foundation for Computer Science, Addison-Wesley, 1994.
-
T := (n, k) -> binomial(n, 2) + k*n + 1;
for n from 0 to 20 do seq(T(n, k), k = 0 .. 20) od;
-
Table[With[{n = m - k}, Binomial[n, 2] + k n + 1], {m, 0, 11}, {k, m, 0, -1}] // Flatten (* Michael De Vlieger, Apr 21 2018 *)
-
T(n, k) := binomial(n, 2)+ k*n + 1$
for n:0 thru 20 do
print(makelist(T(n, k), k, 0, 20));
-
T(n,k) = binomial(n, 2) + k*n + 1;
tabl(nn) = for (n=0, nn, for (k=0, nn, print1(T(n, k), ", ")); print); \\ Michel Marcus, May 17 2018
Showing 1-4 of 4 results.
Comments