cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A300184 Irregular triangle read by rows: row n consists of the coefficients of the expansion of the polynomial (2*x + 2)^n + (x^2 - 1)*(x + 2)^n.

Original entry on oeis.org

0, 0, 1, 0, 1, 2, 1, 0, 4, 7, 4, 1, 0, 12, 26, 19, 6, 1, 0, 32, 88, 88, 39, 8, 1, 0, 80, 272, 360, 230, 71, 10, 1, 0, 192, 784, 1312, 1140, 532, 123, 12, 1, 0, 448, 2144, 4368, 4872, 3164, 1162, 211, 14, 1, 0, 1024, 5632, 13568, 18592, 15680, 8176, 2480, 367, 16, 1, 0, 2304, 14336, 39936, 65088, 67872, 46368, 20304, 5262, 655, 18, 1
Offset: 0

Views

Author

Keywords

Comments

Let L(n;x) = x*(2*x + 2)^n. Then T(n,k) is obtained from the expansion of the polynomial P(n;x) = (x + 2)*P(n-1;x) + L(n-1;x), with P(0;x) = x^2.
Let an n-chain link be the planar diagram that consists of n unknotted circles, linked together in a closed chain. Then T(n,k) is the number of diagrams having k components that are obtained by smoothing each double point (crossing). Kauffman defines the 'smoothing' of a framed 4-graph at a vertex v as "any of the two framed 4-graphs obtained by removing v and repasting the edges" (see links).

Examples

			The triangle T(n,k) begins:
n\k  0     1      2      3      4      5      6      7     8    9  10 11
0:   0     0      1
1:   0     1      2      1
2:   0     4      7      4      1
3:   0    12     26     19      6      1
4:   0    32     88     88     39      8      1
5:   0    80    272    360    230     71     10      1
6:   0   192    784   1312   1140    532    123     12     1
7:   0   448   2144   4368   4872   3164   1162    211    14    1
8:   0  1024   5632  13568  18592  15680   8176   2480   367   16   1
9:   0  2304  14336  39936  65088  67872  46368  20304  5262  655  18  1
		

Crossrefs

Row sums: A000302 (powers of 4).

Programs

  • Mathematica
    With[{nmax = 15}, CoefficientList[CoefficientList[Series[(x^2 + y*x/(1 - y*(2*x + 2)))/(1 - y*(x + 2)), {x, 0, nmax + 2}, {y, 0, nmax}], y], x]] // Flatten (* G. C. Greubel, Oct 18 2018 *)
    Table[SeriesCoefficient[x^2*(x+2)^n + x*Sum[(x+2)^(n-j-1)*(2*x+2)^j, {j, 0, n-1}], {x, 0, k}], {n, 0, 10}, {k, 0, n+2}]//Flatten  (* Michael De Vlieger, Oct 20 2018 *)
  • Maxima
    T(n, k) := ratcoef((2*x + 2)^n + (x^2 - 1)*(x + 2)^n, x, k)$
    create_list(T(n, k), n, 0, 10, k, 0, n + 2);
    
  • PARI
    {T(n,k) = if(k==0, 0, if(k==1, n*2^(n-1), if(k==n+2, 1, T(n-1, k-1) + 2*T(n-1,k) + 2^(n-1)*binomial(n-1,k-1) )))};
    for(n=0,10, for(k=0,n+2, print1(T(n,k), ", "))) \\ G. C. Greubel, Oct 20 2018

Formula

T(n,0) = 0, T(n,1) = n*2^(n-1), T(0,2) = 1 and T(n,k) = T(n-1,k-1) + 2*T(n-1,k) + A038208(n-1,k-1).
T(n,1) = A001787(n).
T(n,n) = A295077(n).
T(n,n+1) = A005843(n).
G.f.: (x^2 + y*x/(1 - y*(2*x + 2)))/(1 - y*(x + 2)).

Extensions

New name by Franck Maminirina Ramaharo, Oct 17 2018

A321127 Irregular triangle read by rows: row n gives the coefficients in the expansion of ((x + 1)^(2*n) + (x^2 - 1)*(2*(x + 1)^n - 1))/x.

Original entry on oeis.org

0, 1, 0, 2, 2, 0, 5, 8, 3, 0, 10, 24, 21, 8, 1, 0, 17, 56, 80, 64, 30, 8, 1, 0, 26, 110, 220, 270, 220, 122, 45, 10, 1, 0, 37, 192, 495, 820, 952, 804, 497, 220, 66, 12, 1, 0, 50, 308, 973, 2030, 3059, 3472, 3017, 2004, 1001, 364, 91, 14, 1
Offset: 0

Views

Author

Keywords

Comments

These are the coefficients of the Kauffman bracket polynomial evaluated at the shadow diagram of the two-bridge knot with Conway's notation C(n,n). Hence, T(n,k) gives the corresponding number of Kauffman states having exactly k circles.

Examples

			Triangle begins:
n\k | 0   1    2    3    4    5    6    7    8   9  11 12
----+----------------------------------------------------
  0 | 0   1
  1 | 0   2    2
  2 | 0   5    8    3
  3 | 0  10   24   21    8    1
  4 | 0  17   56   80   64   30    8    1
  5 | 0  26  110  220  270  220  122   45   10   1
  6 | 0  37  192  495  820  952  804  497  220  66  12  1
  ...
		

References

  • Louis H. Kauffman, Formal Knot Theory, Princeton University Press, 1983.

Crossrefs

Row sums: A000302.
Row 1 is row 2 in A300453.
Row 2 is also row 2 in A300454 and A316659.

Programs

  • Mathematica
    row[n_] := CoefficientList[Expand[((x + 1)^(2*n) + (x^2 - 1)*(2*(x + 1)^n - 1))/x], x]; Array[row, 12, 0] // Flatten
  • Maxima
    T(n, k) := if k = 1 then n^2 + 1 else  ((4*k - 2*n)/(k + 1))*binomial(n + 1, k) + binomial(2*n, k + 1)$
    create_list(T(n, k), n, 0, 12, k, 0, max(2*n - 1, n + 1));

Formula

T(n,k) = 0 if k = 0, n^2 + 1 if k = 1, and C(2*n, k + 1) - 2*(C(n, k + 1) + C(n, k - 1)) otherwise.
T(n,1) = A002522(n).
T(n,2) = A300401(n,n).
T(n,n) = A001791(n) + A005843(n) - A063524(n).
T(n,k) = A094527(n,k-n+1) if n + 1 < k < 2*n and n > 2.
G.f.: x*(1 - (1 + x + x^2)*y + (1 + x)*(2 - x^2)*y^2)/((1 - y)*(1 - y - x*y)*(1 - (1 + x)^2*y)).
E.g.f.: (exp((1 + x)^2*y) - (exp(x) + 2*exp((1 + x)*y))*(1 - x^2))/x.

A321125 T(n,k) = b(n+k) - (2*b(n)*b(k) + 1)*b(n*k) + b(n) + b(k) + 1, where b(n) = A154272(n+1), square array read by antidiagonals (n >= 0, k >= 0).

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1
Offset: 0

Views

Author

Keywords

Comments

Let (A,B,d) denote the three-variable bracket polynomial for the two-bridge knot with Conway's notation C(n,k). Then T(n,k) is the leading coefficient of the reduced polynomial x*(1,1,x). In Kauffman's language, T(n,k) is the number of states of the two-bridge knot C(n,k) corresponding to the maximum number of Jordan curves.

Examples

			Square array begins:
  1, 1, 1, 1, 1, 1, ...
  1, 2, 1, 1, 1, 1, ...
  1, 1, 3, 2, 2, 2, ...
  1, 1, 2, 1, 1, 1, ...
  1, 1, 2, 1, 1, 1, ...
  1, 1, 2, 1, 1, 1, ...
  ...
		

References

  • Louis H. Kauffman, Formal Knot Theory, Princeton University Press, 1983.

Crossrefs

Programs

  • Mathematica
    b[n_] = If[n == 0 || n == 2, 1, 0];
    T[n_, k_] = b[n + k] - (2*b[n]*b[k] + 1)*b[n*k] + b[n] + b[k] + 1;
    Table[T[k, n - k], {n, 0, 12}, {k, 0, n}] // Flatten
  • Maxima
    b(n) := if n = 0 or n = 2 then 1 else 0$ /* A154272(n+1) */
    T(n, k) := b(n + k) - (2*b(n)*b(k) + 1)*b(n*k) + b(n) + b(k) + 1$
    create_list(T(k, n - k), n, 0, 12, k, 0, n);

Formula

T(n,0) = T(0,n) = 1, and T(n,k) = b(n+k) - b(n)*b(k) - b(n*k) + c(n)*c(k) for n >= 1, k >= 1, where b(n) = A154272(n+1) and c(n) = A294619(n).
T(n,1) = A300453(n+1,A321126(n,1)).
T(n,2) = A300454(n,A321126(n,2)).
T(n,n) = A321127(n,A004280(n+1)).
G.f.: (1 + (x - x^2)*y - (x - 3*x^2 + x^3)*y^2 - x^2*y^3)/((1 - x)*(1 - y)).
E.g.f.: ((x^2 + 2*exp(x))*exp(y) - x^2 + (2*x - x^2)*y - (1 + x - exp(x))*y^2)/2.

A321126 T(n,k) = max(n + k - 1, n + 1, k + 1), square array read by antidiagonals (n >= 0, k >= 0).

Original entry on oeis.org

1, 2, 2, 3, 2, 3, 4, 3, 3, 4, 5, 4, 3, 4, 5, 6, 5, 4, 4, 5, 6, 7, 6, 5, 5, 5, 6, 7, 8, 7, 6, 6, 6, 6, 7, 8, 9, 8, 7, 7, 7, 7, 7, 8, 9, 10, 9, 8, 8, 8, 8, 8, 8, 9, 10, 11, 10, 9, 9, 9, 9, 9, 9, 9, 10, 11, 12, 11, 10, 10, 10, 10, 10, 10, 10, 10, 11, 12, 13, 12, 11, 11, 11, 11, 11, 11, 11, 11, 11, 12, 13
Offset: 0

Views

Author

Keywords

Comments

T(n,k) - 1 is the maximum degree of d in the three-variable bracket polynomial (A,B,d) for the two-bridge knot with Conway's notation C(n,k). Hence, T(n,k) is the maximum number of Jordan curves that are obtained by splitting the crossings of such knot diagram.

Examples

			Square array begins:
    1,  2,  3,  4,  5,  6,  7,  8,  9, 10, ...
    2,  2,  3,  4,  5,  6,  7,  8,  9, 10, ...
    3,  3,  3,  4,  5,  6,  7,  8,  9, 10, ...
    4,  4,  4,  5,  6,  7,  8,  9, 10, 11, ...
    5,  5,  5,  6,  7,  8,  9, 10, 11, 12, ...
    6,  6,  6,  7,  8,  9, 10, 11, 12, 13, ...
    7,  7,  7,  8,  9, 10, 11, 12, 13, 14, ...
    8,  8,  8,  9, 10, 11, 12, 13, 14, 15, ...
    9,  9,  9, 10, 11, 12, 13, 14, 15, 16, ...
   10, 10, 10, 11, 12, 13, 14, 15, 16, 17, ...
  ...
		

References

  • Louis H. Kauffman, Formal Knot Theory, Princeton University Press, 1983.

Crossrefs

T(n,1) = degree of the (n+1)-th row polynomial in A300453.
T(n,k) = degree of the n-th row polynomials in A300454 and A321127, k = 2,n, respectively.

Programs

  • Mathematica
    Table[Max[k + 1, n - 1, n - k + 1], {n, 0, 10}, {k, 0, n}] // Flatten
  • Maxima
    create_list(max(k + 1, n - 1, n - k + 1), n, 0, 10, k, 0, n);

Formula

T(n,k) = T(k,n).
T(n,k) = A051125(n+1,k+1) for 0 <= k <= 2, n >= 0, and T(n,k) = A051125(n+1,k+1) + A003983(n-2,k-2) for k >= 3, n >= 3.
T(n,n) = A004280(n+1).
G.f.: (1 - (2*x - x^2)*y + (x - 2*x^2 + x^3)*y^2 + (x^2 - x^3)*y^3)/(((1 - x)*(1 - y))^2).

A386874 Irregular triangle read by rows: row n consists of the coefficients in the expansion of the polynomial (1/(2*w)) * (x^2 + x) * ((((v + w)/2)^(n - 1)) * (x^2 + 2*x + 4 + w) - (((v - w)/2)^(n - 1)) * (x^2 + 2*x + 4 - w)), where v = x^2 + 4*x + 4 and w = sqrt(x^4 + 4*x^3 + 12*x^2 + 20*x + 12).

Original entry on oeis.org

0, 1, 1, 0, 4, 7, 4, 1, 0, 15, 40, 42, 23, 7, 1, 0, 56, 201, 306, 262, 140, 48, 10, 1, 0, 209, 943, 1877, 2189, 1672, 881, 325, 82, 13, 1, 0, 780, 4239, 10412, 15368, 15276, 10841, 5660, 2194, 624, 125, 16, 1, 0, 2911, 18506, 54051, 96501, 118175, 105495
Offset: 1

Views

Author

Keywords

Comments

T(n,k) is the number of ways to assign horizontal or vertical barriers at each interior construction dot of the 4 X 2n barrier-free Celtic shadow diagram CK_4^(2n) such that the resulting design consists of exactly k connected components.
The n-th row is the coefficients in the expansion of the Kauffman bracket polynomial for the shadow of the Celtic link CK_4^(2n).

Examples

			The triangle T(n,k) begins:
  n\k 0    1     2     3     4     5       6     7     8     9   10   11  12 13 14
  1:  0    1     1
  2:  0    4     7     4     1
  3:  0   15    40    42    23      7      1
  4:  0   56   201   306   262    140     48    10     1
  5:  0  209   943  1877  2189   1672    881   325    82    13    1
  6:  0  780  4239 10412 15368  15276  10841  5660  2194   624  125   16   1
  7:  0 2911 18506 54051 96501 118175 105495 71107 36885 14817 4579 1064 177 19  1
  ...
		

Crossrefs

Programs

  • Mathematica
    With[{nmax = 15}, CoefficientList[CoefficientList[Series[x*y*(x + 1)*(1 - x*y)/(1 - ((x + 2)^2)*y + ((x + 1)^3)*y^2), {x, 0, 2*nmax}, {y, 0, nmax}], y], x]] // Flatten
  • Maxima
    nmax: 15$ v: x^2 + 4*x + 4$ w: sqrt(x^4 + 4*x^3 + 12*x^2 + 20*x + 12)$
    p(n, x) := expand((1/(2*w))*(x^2 + x)*((((v + w)/2)^(n - 1))*(x^2 + 2*x + 4 + w) - (((v - w)/2)^(n - 1))*(x^2 + 2*x + 4 - w)))$
    create_list(ratcoef(p(n, x), x, k), n, 1, nmax, k, 0, 2*n);

Formula

T(n,1) = A001353(n).
G.f.: x*y*(x + 1)*(1 - x*y) / (1 - ((x + 2)^2)*y + ((x + 1)^3)*y^2).
Showing 1-5 of 5 results.