cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A300453 Irregular triangle read by rows: row n consists of the coefficients of the expansion of the polynomial (x + 1)^n + x^2 - 1.

Original entry on oeis.org

0, 0, 1, 0, 1, 1, 0, 2, 2, 0, 3, 4, 1, 0, 4, 7, 4, 1, 0, 5, 11, 10, 5, 1, 0, 6, 16, 20, 15, 6, 1, 0, 7, 22, 35, 35, 21, 7, 1, 0, 8, 29, 56, 70, 56, 28, 8, 1, 0, 9, 37, 84, 126, 126, 84, 36, 9, 1, 0, 10, 46, 120, 210, 252, 210, 120, 45, 10, 1, 0, 11, 56, 165
Offset: 0

Views

Author

Keywords

Comments

This is essentially the usual Pascal triangle A007318, horizontally shifted and with the first three columns altered.
Let P(n;x) = (x + 1)^n + x^2 - 1. Then P(n;x) = P(n-1;x) + x*(x + 1)^(n - 1), with P(0;x) = x^2.
Let a (2,n)-torus knot be projected on the plane. The resulting projection is a planar diagram with n double points. Then, T(n,k) gives the number of state diagrams having k components that are obtained by deleting each double point, then pasting the edges in one of the two ways as shown below.
\ / \_/ \ / \ /
(1) \/ ==> (2) \/ ==> | |
/\ _ /\ | |
/ \ / \ / \ / \
See example for the case n = 2.

Examples

			The triangle T(n,k) begins
n\k  0   1   2    3     4     5     6     7     8     9    10   11  12  13 14
0:   0   0   1
1:   0   1   1
2:   0   2   2
3:   0   3   4    1
4:   0   4   7    4     1
5:   0   5  11   10     5     1
6:   0   6  16   20    15     6     1
7:   0   7  22   35    35    21     7     1
8:   0   8  29   56    70    56    28     8     1
9:   0   9  37   84   126   126    84    36     9     1
10:  0  10  46  120   210   252   210   120    45    10     1
11:  0  11  56  165   330   462   462   330   165    55    11    1
12:  0  12  67  220   495   792   924   792   495   220    66   12   1
13:  0  13  79  286   715  1287  1716  1716  1287   715   286   78  13   1
14:  0  14  92  364  1001  2002  3003  3432  3003  2002  1001  364  91  14  1
...
The states of the (2,2)-torus knot (Hopf Link) are the last four diagrams:
                                    ____  ____
                                   /    \/    \
                                  /     /\     \
                                 |     |  |     |
                                 |     |  |     |
                                  \     \/     /
                                   \____/\____/
                           ___    ____         __________
                         /    \  /    \       /    __    \
                        /     /  \     \     /    /  \    \
                       |      |  |      |   |     |  |     |
                       |      |  |      |   |     |  |     |
                        \      \/      /     \     \/     /
                         \_____/\_____/       \____/\____/
      ____    ____        ____    ____        ____________        __________
     /    \  /    \      /    \  /    \      /     __     \      /    __    \
    /     /  \     \    /     /  \     \    /     /  \     \    /    /  \    \
   |     |    |     |  |     |    |     |  |     |    |     |  |    |    |    |
   |     |    |     |  |     |    |     |  |     |    |     |  |    |    |    |
    \     \  /     /    \     \__/     /    \     \  /     /    \    \__/    /
     \____/  \____/      \____________/      \____/  \____/      \__________/
There are 2 diagrams that consist of two components, and 2 diagrams that consist of one component.
		

References

  • Colin Adams, The Knot Book, W. H. Freeman and Company, 1994.
  • Louis H. Kauffman, Knots and Physics, World Scientific Publishers, 1991.

Crossrefs

Row sums: A000079 (powers of 2).
Triangles related to the regular projection of some knots: A299989 (connected summed trefoils); A300184 (chain links); A300454 (twist knot).
When n = 3 (trefoil), the corresponding 4-tuplet (0,3,4,1) appears in several triangles: A030528 (row 5), A256130 (row 3), A128908 (row 3), A186084 (row 6), A284938 (row 7), A101603 (row 3), A155112 (row 3), A257566 (row 3).

Programs

  • Mathematica
    f[n_] := CoefficientList[ Expand[(x + 1)^n + x^2 - 1], x]; Array[f, 12, 0] // Flatten (* or *)
    CoefficientList[ CoefficientList[ Series[(x^2 + y*x/(1 - y*(x + 1)))/(1 - y), {y, 0, 11}, {x, 0, 11}], y], x] // Flatten (* Robert G. Wilson v, Mar 08 2018 *)
  • Maxima
    P(n, x) := (x + 1)^n + x^2 - 1$
    T : []$
    for i:0 thru 20 do
      T : append(T, makelist(ratcoef(P(i, x), x, n), n, 0, max(2, i)))$
    T;
    
  • PARI
    row(n) = Vecrev((x + 1)^n + x^2 - 1);
    tabl(nn) = for (n=0, nn, print(row(n))); \\ Michel Marcus, Mar 12 2018

Formula

T(n,1) = A001477(n).
T(n,2) = A152947(n).
T(n,k) = A007318(n,k-1), k >= 1.
T(n,0) = 0, T(0,1) = 1, T(0,2) = 1 and T(n,k) = T(n-1,k) + A007318(n-1,k-1).
G.f.: (x^2 + y*x/(1 - y*(x + 1)))/(1 - y).

A300454 Irregular triangle read by rows: row n consists of the coefficients of the expansion of the polynomial 2*(x + 1)^(n + 1) + x^3 + 2*x^2 - x - 2.

Original entry on oeis.org

0, 1, 2, 1, 0, 3, 4, 1, 0, 5, 8, 3, 0, 7, 14, 9, 2, 0, 9, 22, 21, 10, 2, 0, 11, 32, 41, 30, 12, 2, 0, 13, 44, 71, 70, 42, 14, 2, 0, 15, 58, 113, 140, 112, 56, 16, 2, 0, 17, 74, 169, 252, 252, 168, 72, 18, 2, 0, 19, 92, 241, 420, 504, 420, 240, 90, 20, 2, 0
Offset: 0

Views

Author

Keywords

Comments

Row sums of column 1,2 and 3 yields {4, 8, 16, 30, 52, ...}, in A046127.
Almost twice Pascal's triangle A028326 (up to horizontal shift), except column 0 to 3.
The polynomial P(n;x) = 2*(x + 1)^(n + 1) + x^3 + 2*x^2 - x - 2 is a simplified version of the bracket polynomial associated with a twist knot of n half twists that is only concerned with the enumeration of the state diagrams. The simplification arises when the twist knot is thought of as a planar diagram with no crossing information at each double point. In this case, P(n;x) = x*(A,B,x), where (A,B,d) denotes the bracket polynomial for the n-twist knot (see links for the definition of the bracket polynomial). For example, the bracket polynomial for the trefoil (n = 2) is A^3*d^1 + 3*BA^2*d^0 + 3*AB^2*d^1 + B^3*d^2, where A and B are the "splitting variables". Then setting A = B = 1 and d = x, we obtain 3 + 4*x + x^2 (also see A299989, row 1).

Examples

			The triangle T(n,k) begins
n\k  0   1    2    3     4     5     6     7     8     9    10   11   12  13 14
0:   0   1    2    1
1:   0   3    4    1
2:   0   5    8    3
3:   0   7   14    9     2
4:   0   9   22   21    10     2
5:   0  11   32   41    30    12     2
6:   0  13   44   71    70    42    14     2
7:   0  15   58  113   140   112    56    16     2
8:   0  17   74  169   252   252   168    72    18     2
9:   0  19   92  241   420   504   420   240    90    20     2
10:  0  21  112  331   660   924   924   660   330   110    22    2
11:  0  23  134  441   990  1584  1848  1584   990   440   132   24    2
12:  0  25  158  573  1430  2574  3432  3432  2574  1430   572  156   26   2
13:  0  27  184  729  2002  4004  6006  6864  6006  4004  2002  728  182  28  2
		

References

  • Inga Johnson and Allison K. Henrich, An Interactive Introduction to Knot Theory, Dover Publications, Inc., 2017.

Crossrefs

Row sums: A020707(Pisot sequences).
Triangles related to the regular projection of some knots: A299989 (connected summed trefoils); A300184 (chain links); A300453 ((2,n)-torus knot).

Programs

  • Maxima
    P(n, x) := 2*(x + 1)^(n + 1) + x^3 + 2*x^2 - x - 2$
    T : []$
    for i:0 thru 20 do
      T : append(T, makelist(ratcoef(P(i, x), x, n), n, 0, max(3, i + 1)))$
    T;
    
  • PARI
    row(n) = Vecrev(2*(x + 1)^(n + 1) + x^3 + 2*x^2 - x - 2);
    tabl(nn) = for (n=0, nn, print(row(n))); \\ Michel Marcus, Mar 12 2018

Formula

T(n,1) = A005408(n).
T(n,2) = A014206(n).
T(n,3) = A064999(n+1).
T(n,1) + T(n,2) = A002061(n+2).
T(n,1) + T(n,3) = A046127(n+1).
T(n,2) + T(n,3) = A155753(n+1).
T(n,1) + T(n,2) + T(n,3) = A046127(n+2).
T(n,k) = A028326(n,k-1), k >= 4 and n >= k - 1.
T(n,k) = A300454(n,k-1) + 2*A300454(n,k) + A007318(n,k-1), with T(n,0) = 0.
G.f: (2*x + 2)/(1 - y*(x + 1)) + (x^3 + 2*x^2 - x - 2)/(1 - y).

A316989 Irregular triangle read by rows: row n consists of the coefficients in the expansion of the polynomial (x^2 + 4*x + 3)*(x + 1)^(2*n) + (x^2 - 1)*(x^2 + 3*x + 3).

Original entry on oeis.org

0, 1, 3, 3, 1, 0, 7, 14, 9, 2, 0, 13, 37, 43, 26, 8, 1, 0, 19, 72, 129, 141, 98, 42, 10, 1, 0, 25, 119, 291, 463, 504, 378, 192, 63, 12, 1, 0, 31, 178, 553, 1156, 1716, 1848, 1452, 825, 330, 88, 14, 1, 0, 37, 249, 939, 2432, 4576, 6435, 6864, 5577, 3432, 1573
Offset: 0

Views

Author

Keywords

Comments

The triangle is related to the Kauffman bracket polynomial evaluated at the shadow diagram of the two-bridge knot with Conway's notation C(2n,3).

Examples

			The triangle T(n,k) begins:
n\k| 0   1    2    3     4     5     9     7     8     9    10   11   12  13 14
-------------------------------------------------------------------------------
0  | 0   1    3    3     1
1  | 0   7   14    9     2
2  | 0  13   37   43    26     8     1
3  | 0  19   72  129   141    98    42    10     1
4  | 0  25  119  291   463   504   378   192    63    12     1
5  | 0  31  178  553  1156  1716  1848  1452   825   330    88   14    1
6  | 0  37  249  939  2432  4576  6435  6864  5577  3432  1573  520  117  16  1
...
		

Crossrefs

Programs

  • Maple
    T := proc (n, k) if k = 1 then 6*n + 1 else binomial(2*n + 3, k + 1) + (binomial(2*n + 1, k)*(2*k - 2*n) + binomial(4, k)*(2*k - 3))/(k + 1) end if end proc:
    for n from 0 to 12 do seq(T(n, k), k = 0 .. max(4, 2*(n + 1))) od;
  • Mathematica
    row[n_] := CoefficientList[(x^2 + 4*x + 3)*(x + 1)^(2*n) + (x^2 - 1)*(x^2 + 3*x + 3), x];
    Array[row, 12, 0] // Flatten
  • Maxima
    T(n, k) := binomial(2*n + 3, k + 1) + (binomial(2*n + 1, k)*(2*k - 2*n) + binomial(4, k)*(2*k - 3))/(k + 1) - kron_delta(1, k)$
    for n:0 thru 12 do print(makelist(T(n, k), k, 0, max(4, 2*(n + 1))));

Formula

T(n,1) = A016921(n) and T(n,k) = C(2*n+3,k+1) + (C(2*n+1,k)*(2*k - 2*n) + C(4,k)*(2*k - 3))/(k + 1) for k > 1.
T(n,2) = A173247(2*n+1) = A300401(2*n,3).
T(n,3) = 2*A099721(n) + 3.
T(n,4) = A244730(n) - A002412(n) + 1.
T(n,k) = A093560(2*n,k) for n > 2 and k > 4.
G.f.: (x^2 + 4*x + 3)/(1 - y*(x + 1)^2) + (x^4 + 3*x^3 + 2*x^2 - 3*x - 3)/(1 - y).

A316659 Irregular triangle read by rows: row n consists of the coefficients in the expansion of the polynomial x*(x^2 - 2) + x*(((v - w)/2)^n + ((v + w)/2)^n), where v = 3 + 2*x and w = sqrt(5 + 4*x).

Original entry on oeis.org

0, 0, 0, 1, 0, 1, 2, 1, 0, 5, 8, 3, 0, 16, 30, 16, 2, 0, 45, 104, 81, 24, 2, 0, 121, 340, 356, 170, 35, 2, 0, 320, 1068, 1411, 932, 315, 48, 2, 0, 841, 3262, 5209, 4396, 2079, 532, 63, 2, 0, 2205, 9760, 18281, 18784, 11440, 4144, 840, 80, 2, 0, 5776, 28746
Offset: 0

Views

Author

Keywords

Comments

The triangle is related to the Kauffman bracket polynomial for the Turk's Head Knot ((3,n)-torus knot). Column 1 matches the determinant of the Turk's Head Knots THK(3,k) A004146.

Examples

			The triangle T(n,k) begins:
n\k: 0      1      2       3       4       5       6      7      8    9  10 11
0:   0      0      0       1
1:   0      1      2       1
2:   0      5      8       3
3:   0     16     30      16       2
4:   0     45    104      81      24       2
5:   0    121    340     356     170      35       2
6:   0    320   1068    1411     932     315      48      2
7:   0    841   3262    5209    4396    2079     532     63      2
8:   0   2205   9760   18281   18784   11440    4144    840     80    2
9:   0   5776  28746   61786   74838   55809   26226   7602   1260   99   2
10:  0  15125  83620  202841  282980  249815  144488  54690  13080 1815 120  2
...
		

Crossrefs

Row sums: A000302 (Powers of 4).
Row 1: row 1 of A300184, A300192 and row 0 of A300454.
Row 2: row 2 of A300454.

Programs

  • Mathematica
    v = 3 + 2*x; w = Sqrt[5 + 4*x];
    row[n_] := CoefficientList[x*(x^2 - 2) + x*(((v - w)/2)^n + ((v + w)/2)^n), x];
    Array[row, 15, 0] // Flatten
  • Maxima
    v : 3 + 2*x$ w : sqrt(5 + 4*x)$
    p(n, x) := expand(x*(x^2 - 2) + x*(((v - w)/2)^n + ((v + w)/2)^n))$
    for n:0 thru 15 do print(makelist(ratcoef(p(n, x), x, k), k, 0, max(3, n + 1)));

Formula

T(n,1) = A004146(n).
T(n,2) = A122076(n,1) = A099920(2*n-1).
G.f.: (x^3 - 2*x)/(1 - y) + (2*x - 3*x*y - 2*x^2*y)/(1 - 3*y - 2*x*y + y^2 + 2*x*y^2 + x^2*y^2).

A321127 Irregular triangle read by rows: row n gives the coefficients in the expansion of ((x + 1)^(2*n) + (x^2 - 1)*(2*(x + 1)^n - 1))/x.

Original entry on oeis.org

0, 1, 0, 2, 2, 0, 5, 8, 3, 0, 10, 24, 21, 8, 1, 0, 17, 56, 80, 64, 30, 8, 1, 0, 26, 110, 220, 270, 220, 122, 45, 10, 1, 0, 37, 192, 495, 820, 952, 804, 497, 220, 66, 12, 1, 0, 50, 308, 973, 2030, 3059, 3472, 3017, 2004, 1001, 364, 91, 14, 1
Offset: 0

Views

Author

Keywords

Comments

These are the coefficients of the Kauffman bracket polynomial evaluated at the shadow diagram of the two-bridge knot with Conway's notation C(n,n). Hence, T(n,k) gives the corresponding number of Kauffman states having exactly k circles.

Examples

			Triangle begins:
n\k | 0   1    2    3    4    5    6    7    8   9  11 12
----+----------------------------------------------------
  0 | 0   1
  1 | 0   2    2
  2 | 0   5    8    3
  3 | 0  10   24   21    8    1
  4 | 0  17   56   80   64   30    8    1
  5 | 0  26  110  220  270  220  122   45   10   1
  6 | 0  37  192  495  820  952  804  497  220  66  12  1
  ...
		

References

  • Louis H. Kauffman, Formal Knot Theory, Princeton University Press, 1983.

Crossrefs

Row sums: A000302.
Row 1 is row 2 in A300453.
Row 2 is also row 2 in A300454 and A316659.

Programs

  • Mathematica
    row[n_] := CoefficientList[Expand[((x + 1)^(2*n) + (x^2 - 1)*(2*(x + 1)^n - 1))/x], x]; Array[row, 12, 0] // Flatten
  • Maxima
    T(n, k) := if k = 1 then n^2 + 1 else  ((4*k - 2*n)/(k + 1))*binomial(n + 1, k) + binomial(2*n, k + 1)$
    create_list(T(n, k), n, 0, 12, k, 0, max(2*n - 1, n + 1));

Formula

T(n,k) = 0 if k = 0, n^2 + 1 if k = 1, and C(2*n, k + 1) - 2*(C(n, k + 1) + C(n, k - 1)) otherwise.
T(n,1) = A002522(n).
T(n,2) = A300401(n,n).
T(n,n) = A001791(n) + A005843(n) - A063524(n).
T(n,k) = A094527(n,k-n+1) if n + 1 < k < 2*n and n > 2.
G.f.: x*(1 - (1 + x + x^2)*y + (1 + x)*(2 - x^2)*y^2)/((1 - y)*(1 - y - x*y)*(1 - (1 + x)^2*y)).
E.g.f.: (exp((1 + x)^2*y) - (exp(x) + 2*exp((1 + x)*y))*(1 - x^2))/x.

A300451 a(n) = (3*n^2 - 3*n + 8)*2^(n - 3).

Original entry on oeis.org

1, 2, 7, 26, 88, 272, 784, 2144, 5632, 14336, 35584, 86528, 206848, 487424, 1134592, 2613248, 5963776, 13500416, 30343168, 67764224, 150470656, 332398592, 730857472, 1600126976, 3489660928, 7583301632, 16424894464, 35467034624, 76369887232, 164014063616
Offset: 0

Views

Author

Keywords

Comments

First difference yields A295288.
1 and 7 are the only odd terms.
a(n) gives the number of words of length n defined over the alphabet {a,b,c,d} such that letters from {a,b} are only used in pairs of at most one, and consist of (a,a), (a,b) and (b,a).

Examples

			a(4) = 88. The corresponding words are cccc, cccd, ccdc, ccdd, cdcc, cdcd, cddc, cddd, dccc, dccd, dcdc, dcdd, ddcc, ddcd, dddc, dddd, caac, caca, ccaa, caad, cada, caad, cabc, cacb, ccab, cabd, cadb, cabd, cbac, cbca, ccba, cbad, cbda, cbad, daac, daca, dcaa, daad, dada, daad, dabc, dacb, dcab, dabd, dadb, dabd, dbac, dbca, dcba, dbad, dbda, dbad, aacc, acac, acca, aacd, acad, acda, aadc, adac, adca, aadd, adad, adda, abcc, acbc, accb, abcd, acbd, acdb, abdc, adbc, adcb, abdd, adbd, addb, bacc, bcac, bcca, bacd, bcad, bcda, badc, bdac, bdca, badd, bdad, bdda.
		

References

  • Robert A. Beeler, How to Count: An Introduction to Combinatorics and Its Applications, Springer International Publishing, 2015.
  • Ian F. Blake, The Mathematical Theory of Coding, Academic Press, 1975.

Crossrefs

Programs

  • GAP
    List([0..30],n->(3*n^2-3*n+8)*2^(n-3)); # Muniru A Asiru, Mar 09 2018
    
  • Magma
    [(3*n^2-3*n+8)*2^(n-3): n in [0..30]]; // Vincenzo Librandi, Mar 10 2018
  • Maple
    A := n -> (3*n^2 - 3*n + 8)*2^(n - 3);
    seq(A(n), n = 0 .. 70);
  • Mathematica
    Table[(3 n^2 - 3 n + 8) 2^(n - 3), {n, 0, 70}]
    CoefficientList[Series[(1 - 4x + 7x^2)/(1 - 2x)^3, {x, 0, 30}], x] (* or *)
    LinearRecurrence[{6, -12, 8}, {1, 2, 7}, 30] (* Robert G. Wilson v, Mar 07 2018 *)
  • Maxima
    makelist((3*n^2 - 3*n + 8)*2^(n - 3), n, 0, 70);
    
  • PARI
    a(n) = (3*n^2-3*n+8)*2^(n-3); \\ Altug Alkan, Mar 09 2018
    

Formula

G.f.: (1 - 4*x + 7*x^2)/(1 - 6*x + 12*x^2 - 8*x^3).
E.g.f: (1/2)*(3*x^2 + 2)*exp(2*x).
a(n) = ((3/4)*binomial(n, 2) + 1)*2^n.
a(n) = 2*a(n-1) + 3*(n - 1)*2^(n - 2), with a(0) = 1.
a(n) = 3*A001788(n) + A000079(n).
a(n) = 6*a(n-1) - 12*a(n-2) + 8*a(n-3), for n >= 3, with a(0) = 1, a(1) = 2 and a(2) = 7.
a(n) = A300184(n,2).

A320530 T(n,k) = k^n + k^(n - 2)*n*(n - 1)*(k*(k - 1) + 1)/2 for 0 < k <= n and T(n,0) = A154272(n+1), square array read by antidiagonals upwards.

Original entry on oeis.org

1, 1, 1, 0, 1, 1, 0, 2, 2, 1, 0, 4, 7, 3, 1, 0, 7, 26, 16, 4, 1, 0, 11, 88, 90, 29, 5, 1, 0, 16, 272, 459, 220, 46, 6, 1, 0, 22, 784, 2133, 1504, 440, 67, 7, 1, 0, 29, 2144, 9234, 9344, 3775, 774, 92, 8, 1, 0, 37, 5632, 37908, 54016, 29375, 7992, 1246, 121, 9
Offset: 0

Views

Author

Keywords

Comments

Construct a length n ternary word over the alphabet {a, b, c} as follows: letters from the set {a, b} are only used in pairs of at most one, and consist of either (a,b), (b,a) or (b,b). Next, replace each occurrence of a, b and c with a length k binary word such that 'a' has exactly two letters 1, 'b' contains no 0's and 'c' has exactly one letter 0 (empty words otherwise, respectively). Then T(n,k) gives the number of length n*k binary words resulting from this substitution. First column follows from the next definition.
In Kauffman's language, T(n,k) is the number of ways of splitting the crossings of the Pretzel knot shadow P(k, k, ..., k) having n tangles, of k half-twists respectively, such that the final diagram consists of two Jordan curves. This result can be achieved by assigning each tangle of the Pretzel knot a length k binary words in a way that letters 1 and 0 indicate the adequate choice for splitting the crossings.
Columns are linear recurrence sequences with signature (3*k, -3*k^2, k^3).

Examples

			Square array begins:
    1,  1,     1,     1,      1,       1,       1, ...
    0,  1,     2,     3,      4,       5,       6, ...
    1,  2,     7,    16,     29,      46,      67, ...
    0,  4,    26,    90,    220,     440,     774, ...
    0,  7,    88,   459,   1504,    3775,    7992, ...
    0, 11,   272,  2133,   9344,   29375,   74736, ...
    0, 16,   784,  9234,  54016,  212500,  649296, ...
    0, 22,  2144, 37908, 295936, 1456250, 5342112, ...
    ...
T(3,2) = 2^3 + 2^(3 - 2)*3*(3 - 1)*(2*(2 - 1) + 1)/2 = 26. The corresponding ternary words are abc, acb, cab, bac, bca, cba, bbc, bcb, cbb, ccc.  Next, let a = {00}, b = {11} and c = {01, 10}. The resulting binary words are
    abc: 001101, 001110;
    acb: 000111, 001011;
    cab: 010011, 100011;
    bac: 110001, 110010;
    bca: 110100, 111000;
    cba: 011100, 101100;
    bbc: 111101, 111110;
    bcb: 110111, 111011;
    cbb: 011111, 101111;
    ccc: 010101, 101010, 010110, 011001, 100101, 101001, 100110, 011010.
		

References

  • Louis H. Kauffman, Formal Knot Theory, Princeton University Press, 1983.

Crossrefs

Column 1 is column 2 of A300453.
Column 2 is column 2 of A300184.

Programs

  • Mathematica
    T[n_, k_] = If[k > 0, k^n + k^(n - 2)*n*(n - 1)*(k*(k - 1) + 1)/2, If[k == 0 && (n == 0 || n == 1), 1, 0]];
    Table[Table[T[n - k, k], {k, 0, n}], {n, 0, 10}]//Flatten
  • Maxima
    t(n, k) := k^n + k^(n - 2)*binomial(n, 2)*(2*binomial(k, 2) + 1)$
    u(n) := if n = 0 or n = 1 then 1 else 0$
    T(n, k) := if k = 0 then u(n) else t(n,k)$
    tabl(nn) := for n:0 thru 10 do print(makelist(T(n, k), k, 0, nn))$

Formula

T(n,k) = k^n + k^(n - 2)*binomial(n, 2)*(2*binomial(k, 2) + 1), k > 0.
T(n,k) = (3*k)*T(n-1,k) - (3*k^2)*T(n-2,k) + (k^3)*T(n-3,k), n > 3.
T(n,1) = A152947(n+1).
T(n,2) = A300451(n).
T(2,n) = A130883(n).
G.f. for columns: (1 - 2*k*x + (1 - k + 2*k^2)*x^2 )/(1 - k*x)^3.
E.g.f. for columns: ((1 - k + k^2)*x^2 + 2)*exp(k*x)/2.

A320531 T(n,k) = n*k^(n - 1), k > 0, with T(n,0) = A063524(n), square array read by antidiagonals upwards.

Original entry on oeis.org

0, 1, 0, 0, 1, 0, 0, 2, 1, 0, 0, 3, 4, 1, 0, 0, 4, 12, 6, 1, 0, 0, 5, 32, 27, 8, 1, 0, 0, 6, 80, 108, 48, 10, 1, 0, 0, 7, 192, 405, 256, 75, 12, 1, 0, 0, 8, 448, 1458, 1280, 500, 108, 14, 1, 0, 0, 9, 1024, 5103, 6144, 3125, 864, 147, 16, 1, 0, 0, 10, 2304
Offset: 0

Views

Author

Keywords

Comments

T(n,k) is the number of length n*k binary words of n consecutive blocks of length k, respectively, one of the blocks having exactly k letters 1, and the other having exactly one letter 0. First column follows from the next definition.
In Kauffman's language, T(n,k) is the total number of Jordan trails that are obtained by placing state markers at the crossings of the Pretzel universe P(k, k, ..., k) having n tangles, of k half-twists respectively. In other words, T(n,k) is the number of ways of splitting the crossings of the Pretzel knot shadow P(k, k, ..., k) such that the final diagram is a single Jordan curve. The aforementionned binary words encode these operations by assigning each tangle a length k binary words with the adequate choice for splitting the crossings.
Columns are linear recurrence sequences with signature (2*k, -k^2).

Examples

			Square array begins:
    0, 0,   0,    0,     0,      0,      0,      0, ...
    1, 1,   1,    1,     1,      1,      1,      1, ...
    0, 2,   4,    6,     8,     10,     12,     14, ... A005843
    0, 3,  12,   27,    48,     75,    108,    147, ... A033428
    0, 4,  32,  108,   256,    500,    864,   1372, ... A033430
    0, 5,  80,  405,  1280,   3125,   6480,  12005, ... A269792
    0, 6, 192, 1458,  6144,  18750,  46656, 100842, ...
    0, 7, 448, 5103, 28672, 109375, 326592, 823543, ...
    ...
T(3,2) = 3*2^(3 - 1) = 12. The corresponding binary words are 110101, 110110, 111001, 111010, 011101, 011110, 101101, 101110, 010111, 011011, 100111, 101011.
		

References

  • Louis H. Kauffman, Formal Knot Theory, Princeton University Press, 1983.

Crossrefs

Antidiagonal sums: A101495.
Column 1 is column 2 of A300453.
Column 2 is column 1 of A300184.

Programs

  • Mathematica
    T[n_, k_] = If [k > 0, n*k^(n - 1), If[k == 0 && n == 1, 1, 0]];
    Table[Table[T[n - k, k], {k, 0, n}], {n, 0, 12}]//Flatten
  • Maxima
    T(n, k) := if k > 0 then n*k^(n - 1) else if k = 0 and n = 1 then 1 else 0$
    tabl(nn) := for n:0 thru nn do print(makelist(T(n, k), k, 0, nn))$

Formula

T(n,k) = (2*k)*T(n-1,k) - (k^2)*T(n-2,k).
G.f. for columns: x/(1 - k*x)^2.
E.g.f. for columns: x*exp(k*x).
T(n,1) = A001477(n).
T(n,2) = A001787(n).
T(n,3) = A027471(n+1).
T(n,4) = A002697(n).
T(n,5) = A053464(n).
T(n,6) = A053469(n), n > 0.
T(n,7) = A027473(n), n > 0.
T(n,8) = A053539(n).
T(n,9) = A053540(n), n > 0.
T(n,10) = A053541(n), n > 0.
T(n,11) = A081127(n).
T(n,12) = A081128(n).
Showing 1-8 of 8 results.