A300453
Irregular triangle read by rows: row n consists of the coefficients of the expansion of the polynomial (x + 1)^n + x^2 - 1.
Original entry on oeis.org
0, 0, 1, 0, 1, 1, 0, 2, 2, 0, 3, 4, 1, 0, 4, 7, 4, 1, 0, 5, 11, 10, 5, 1, 0, 6, 16, 20, 15, 6, 1, 0, 7, 22, 35, 35, 21, 7, 1, 0, 8, 29, 56, 70, 56, 28, 8, 1, 0, 9, 37, 84, 126, 126, 84, 36, 9, 1, 0, 10, 46, 120, 210, 252, 210, 120, 45, 10, 1, 0, 11, 56, 165
Offset: 0
The triangle T(n,k) begins
n\k 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
0: 0 0 1
1: 0 1 1
2: 0 2 2
3: 0 3 4 1
4: 0 4 7 4 1
5: 0 5 11 10 5 1
6: 0 6 16 20 15 6 1
7: 0 7 22 35 35 21 7 1
8: 0 8 29 56 70 56 28 8 1
9: 0 9 37 84 126 126 84 36 9 1
10: 0 10 46 120 210 252 210 120 45 10 1
11: 0 11 56 165 330 462 462 330 165 55 11 1
12: 0 12 67 220 495 792 924 792 495 220 66 12 1
13: 0 13 79 286 715 1287 1716 1716 1287 715 286 78 13 1
14: 0 14 92 364 1001 2002 3003 3432 3003 2002 1001 364 91 14 1
...
The states of the (2,2)-torus knot (Hopf Link) are the last four diagrams:
____ ____
/ \/ \
/ /\ \
| | | |
| | | |
\ \/ /
\____/\____/
___ ____ __________
/ \ / \ / __ \
/ / \ \ / / \ \
| | | | | | | |
| | | | | | | |
\ \/ / \ \/ /
\_____/\_____/ \____/\____/
____ ____ ____ ____ ____________ __________
/ \ / \ / \ / \ / __ \ / __ \
/ / \ \ / / \ \ / / \ \ / / \ \
| | | | | | | | | | | | | | | |
| | | | | | | | | | | | | | | |
\ \ / / \ \__/ / \ \ / / \ \__/ /
\____/ \____/ \____________/ \____/ \____/ \__________/
There are 2 diagrams that consist of two components, and 2 diagrams that consist of one component.
- Colin Adams, The Knot Book, W. H. Freeman and Company, 1994.
- Louis H. Kauffman, Knots and Physics, World Scientific Publishers, 1991.
- Michael De Vlieger, Table of n, a(n) for n = 0..11327 (rows 0 <= n <= 150, flattened).
- Agnijo Banerjee, Knot theory [Foil knot family].
- Allison Henrich, Rebecca Hoberg, Slavik Jablan, Lee Johnson, Elizabeth Minten and Ljiljana Radovic, The Theory of Pseudoknots, arXiv preprint arXiv:1210.6934 [math.GT], 2012.
- Abdullah Kopuzlu, Abdulgani Şahin and Tamer Ugur, On polynomials of K(2,n) torus knots, Applied Mathematical Sciences, Vol. 3 (2009), 2899-2910.
- Franck Ramaharo, A generating polynomial for the two-bridge knot with Conway's notation C(n,r), arXiv:1902.08989 [math.CO], 2019.
- Franck Ramaharo, Note on sequences A123192, A137396 and A300453, arXiv:1911.04528 [math.CO], 2019.
- Franck Ramaharo, A bracket polynomial for 2-tangle shadows, arXiv:2002.06672 [math.CO], 2020.
- Wikipedia, Torus knot.
- Xinfei Li, Xin Liu and Yong-Chang Huang, Tackling tangledness of cosmic strings by knot polynomial topological invariants, arxiv preprint arXiv:1602.08804 [hep-th], 2016.
Triangles related to the regular projection of some knots:
A299989 (connected summed trefoils);
A300184 (chain links);
A300454 (twist knot).
When n = 3 (trefoil), the corresponding 4-tuplet (0,3,4,1) appears in several triangles:
A030528 (row 5),
A256130 (row 3),
A128908 (row 3),
A186084 (row 6),
A284938 (row 7),
A101603 (row 3),
A155112 (row 3),
A257566 (row 3).
-
f[n_] := CoefficientList[ Expand[(x + 1)^n + x^2 - 1], x]; Array[f, 12, 0] // Flatten (* or *)
CoefficientList[ CoefficientList[ Series[(x^2 + y*x/(1 - y*(x + 1)))/(1 - y), {y, 0, 11}, {x, 0, 11}], y], x] // Flatten (* Robert G. Wilson v, Mar 08 2018 *)
-
P(n, x) := (x + 1)^n + x^2 - 1$
T : []$
for i:0 thru 20 do
T : append(T, makelist(ratcoef(P(i, x), x, n), n, 0, max(2, i)))$
T;
-
row(n) = Vecrev((x + 1)^n + x^2 - 1);
tabl(nn) = for (n=0, nn, print(row(n))); \\ Michel Marcus, Mar 12 2018
A300454
Irregular triangle read by rows: row n consists of the coefficients of the expansion of the polynomial 2*(x + 1)^(n + 1) + x^3 + 2*x^2 - x - 2.
Original entry on oeis.org
0, 1, 2, 1, 0, 3, 4, 1, 0, 5, 8, 3, 0, 7, 14, 9, 2, 0, 9, 22, 21, 10, 2, 0, 11, 32, 41, 30, 12, 2, 0, 13, 44, 71, 70, 42, 14, 2, 0, 15, 58, 113, 140, 112, 56, 16, 2, 0, 17, 74, 169, 252, 252, 168, 72, 18, 2, 0, 19, 92, 241, 420, 504, 420, 240, 90, 20, 2, 0
Offset: 0
The triangle T(n,k) begins
n\k 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
0: 0 1 2 1
1: 0 3 4 1
2: 0 5 8 3
3: 0 7 14 9 2
4: 0 9 22 21 10 2
5: 0 11 32 41 30 12 2
6: 0 13 44 71 70 42 14 2
7: 0 15 58 113 140 112 56 16 2
8: 0 17 74 169 252 252 168 72 18 2
9: 0 19 92 241 420 504 420 240 90 20 2
10: 0 21 112 331 660 924 924 660 330 110 22 2
11: 0 23 134 441 990 1584 1848 1584 990 440 132 24 2
12: 0 25 158 573 1430 2574 3432 3432 2574 1430 572 156 26 2
13: 0 27 184 729 2002 4004 6006 6864 6006 4004 2002 728 182 28 2
- Inga Johnson and Allison K. Henrich, An Interactive Introduction to Knot Theory, Dover Publications, Inc., 2017.
- Agnijo Banerjee, Knot theory.
- Răzvan Gelca and Fumikazu Nagasato,Some results about the kauffman bracket skein module of the twist knot exterior, J. Knot Theory Ramifications 15 (2006), 1095-1106.
- L. H. Kauffman, State models and the Jones polynomial, Topology, Vol. 26 (1987), 395-407.
- Kelsey Lafferty, The three-variable bracket polynomial for reduced, alternating links, Rose-Hulman Undergraduate Mathematics Journal, Vol. 14: Iss. 2, Article 7 (2013).
- Franck Ramaharo, Enumerating the states of the twist knot, arXiv preprint arXiv:1712.06543 [math.CO], 2017.
- Franck Ramaharo, A one-variable bracket polynomial for some Turk's head knots, arXiv:1807.05256 [math.CO], 2018.
- Franck Ramaharo, A generating polynomial for the two-bridge knot with Conway's notation C(n,r), arXiv:1902.08989 [math.CO], 2019.
- Alexander Stoimenow, Generating functions, Fibonacci numbers and rational knots, Journal of Algebra, Volume 310, Issue 2 (2007), 491-525.
- Eric Weisstein's World of Mathematics, Bracket Polynomial.
- Wikipedia, Twist knot.
Row sums:
A020707(Pisot sequences).
Triangles related to the regular projection of some knots:
A299989 (connected summed trefoils);
A300184 (chain links);
A300453 ((2,n)-torus knot).
Cf.
A002061,
A005408,
A007318,
A014206,
A028326,
A028326,
A046127,
A046127,
A046127,
A064999,
A155753,
A299989,
A300454,
A300454.
-
P(n, x) := 2*(x + 1)^(n + 1) + x^3 + 2*x^2 - x - 2$
T : []$
for i:0 thru 20 do
T : append(T, makelist(ratcoef(P(i, x), x, n), n, 0, max(3, i + 1)))$
T;
-
row(n) = Vecrev(2*(x + 1)^(n + 1) + x^3 + 2*x^2 - x - 2);
tabl(nn) = for (n=0, nn, print(row(n))); \\ Michel Marcus, Mar 12 2018
A316989
Irregular triangle read by rows: row n consists of the coefficients in the expansion of the polynomial (x^2 + 4*x + 3)*(x + 1)^(2*n) + (x^2 - 1)*(x^2 + 3*x + 3).
Original entry on oeis.org
0, 1, 3, 3, 1, 0, 7, 14, 9, 2, 0, 13, 37, 43, 26, 8, 1, 0, 19, 72, 129, 141, 98, 42, 10, 1, 0, 25, 119, 291, 463, 504, 378, 192, 63, 12, 1, 0, 31, 178, 553, 1156, 1716, 1848, 1452, 825, 330, 88, 14, 1, 0, 37, 249, 939, 2432, 4576, 6435, 6864, 5577, 3432, 1573
Offset: 0
The triangle T(n,k) begins:
n\k| 0 1 2 3 4 5 9 7 8 9 10 11 12 13 14
-------------------------------------------------------------------------------
0 | 0 1 3 3 1
1 | 0 7 14 9 2
2 | 0 13 37 43 26 8 1
3 | 0 19 72 129 141 98 42 10 1
4 | 0 25 119 291 463 504 378 192 63 12 1
5 | 0 31 178 553 1156 1716 1848 1452 825 330 88 14 1
6 | 0 37 249 939 2432 4576 6435 6864 5577 3432 1573 520 117 16 1
...
- Ji-Young Ham and Joongul Lee, An explicit formula for the A-polynomial of the knot with Conway’s notation C(2n,3), Journal of Knot Theory and Its Ramifications 25 (2016), 1-9.
- Ryo Hanaki, On scannable properties of the original knot from a knot shadow, Topology and its Applications 194 (2015), 296-305.
- Bin Lu and Jianyuan K. Zhong, The Kauffman Polynomials of 2-bridge Knots, arXiv:math/0606114 [math.GT], 2006.
-
T := proc (n, k) if k = 1 then 6*n + 1 else binomial(2*n + 3, k + 1) + (binomial(2*n + 1, k)*(2*k - 2*n) + binomial(4, k)*(2*k - 3))/(k + 1) end if end proc:
for n from 0 to 12 do seq(T(n, k), k = 0 .. max(4, 2*(n + 1))) od;
-
row[n_] := CoefficientList[(x^2 + 4*x + 3)*(x + 1)^(2*n) + (x^2 - 1)*(x^2 + 3*x + 3), x];
Array[row, 12, 0] // Flatten
-
T(n, k) := binomial(2*n + 3, k + 1) + (binomial(2*n + 1, k)*(2*k - 2*n) + binomial(4, k)*(2*k - 3))/(k + 1) - kron_delta(1, k)$
for n:0 thru 12 do print(makelist(T(n, k), k, 0, max(4, 2*(n + 1))));
A316659
Irregular triangle read by rows: row n consists of the coefficients in the expansion of the polynomial x*(x^2 - 2) + x*(((v - w)/2)^n + ((v + w)/2)^n), where v = 3 + 2*x and w = sqrt(5 + 4*x).
Original entry on oeis.org
0, 0, 0, 1, 0, 1, 2, 1, 0, 5, 8, 3, 0, 16, 30, 16, 2, 0, 45, 104, 81, 24, 2, 0, 121, 340, 356, 170, 35, 2, 0, 320, 1068, 1411, 932, 315, 48, 2, 0, 841, 3262, 5209, 4396, 2079, 532, 63, 2, 0, 2205, 9760, 18281, 18784, 11440, 4144, 840, 80, 2, 0, 5776, 28746
Offset: 0
The triangle T(n,k) begins:
n\k: 0 1 2 3 4 5 6 7 8 9 10 11
0: 0 0 0 1
1: 0 1 2 1
2: 0 5 8 3
3: 0 16 30 16 2
4: 0 45 104 81 24 2
5: 0 121 340 356 170 35 2
6: 0 320 1068 1411 932 315 48 2
7: 0 841 3262 5209 4396 2079 532 63 2
8: 0 2205 9760 18281 18784 11440 4144 840 80 2
9: 0 5776 28746 61786 74838 55809 26226 7602 1260 99 2
10: 0 15125 83620 202841 282980 249815 144488 54690 13080 1815 120 2
...
- Louis H. Kauffman, An invariant of regular isotopy, Trans. Amer. Math. Soc., Vol. 318 (1990), 417-471.
- Seong Ju Kim, R. Stees, and L. Taalman, Sequences of Spiral Knot Determinants, Journal of Integer Sequences, Vol. 19 (2016), #16.1.4.
- Alexander Stoimenow, Square numbers, spanning trees and invariants of achiral knots, Communications in Analysis and Geometry, Vol. 13 (2005), 591-631.
-
v = 3 + 2*x; w = Sqrt[5 + 4*x];
row[n_] := CoefficientList[x*(x^2 - 2) + x*(((v - w)/2)^n + ((v + w)/2)^n), x];
Array[row, 15, 0] // Flatten
-
v : 3 + 2*x$ w : sqrt(5 + 4*x)$
p(n, x) := expand(x*(x^2 - 2) + x*(((v - w)/2)^n + ((v + w)/2)^n))$
for n:0 thru 15 do print(makelist(ratcoef(p(n, x), x, k), k, 0, max(3, n + 1)));
A321127
Irregular triangle read by rows: row n gives the coefficients in the expansion of ((x + 1)^(2*n) + (x^2 - 1)*(2*(x + 1)^n - 1))/x.
Original entry on oeis.org
0, 1, 0, 2, 2, 0, 5, 8, 3, 0, 10, 24, 21, 8, 1, 0, 17, 56, 80, 64, 30, 8, 1, 0, 26, 110, 220, 270, 220, 122, 45, 10, 1, 0, 37, 192, 495, 820, 952, 804, 497, 220, 66, 12, 1, 0, 50, 308, 973, 2030, 3059, 3472, 3017, 2004, 1001, 364, 91, 14, 1
Offset: 0
Triangle begins:
n\k | 0 1 2 3 4 5 6 7 8 9 11 12
----+----------------------------------------------------
0 | 0 1
1 | 0 2 2
2 | 0 5 8 3
3 | 0 10 24 21 8 1
4 | 0 17 56 80 64 30 8 1
5 | 0 26 110 220 270 220 122 45 10 1
6 | 0 37 192 495 820 952 804 497 220 66 12 1
...
- Louis H. Kauffman, Formal Knot Theory, Princeton University Press, 1983.
- Michael De Vlieger, Table of n, a(n) for n = 0..14282 (rows 0 <= n <= 120, flattened).
- Louis H. Kauffman, State models and the Jones polynomial, Topology Vol. 26 (1987), 395-407.
- Kelsey Lafferty, The three-variable bracket polynomial for reduced, alternating links, Rose-Hulman Undergraduate Mathematics Journal Vol. 14 (2013), 98-113.
- Matthew Overduin, The three-variable bracket polynomial for two-bridge knots, California State University REU, 2013.
- Franck Ramaharo, A generating polynomial for the two-bridge knot with Conway's notation C(n,r), arXiv:1902.08989 [math.CO], 2019.
- Wikipedia, 2-bridge knot
- Wikipedia, Bracket polynomial
-
row[n_] := CoefficientList[Expand[((x + 1)^(2*n) + (x^2 - 1)*(2*(x + 1)^n - 1))/x], x]; Array[row, 12, 0] // Flatten
-
T(n, k) := if k = 1 then n^2 + 1 else ((4*k - 2*n)/(k + 1))*binomial(n + 1, k) + binomial(2*n, k + 1)$
create_list(T(n, k), n, 0, 12, k, 0, max(2*n - 1, n + 1));
A300451
a(n) = (3*n^2 - 3*n + 8)*2^(n - 3).
Original entry on oeis.org
1, 2, 7, 26, 88, 272, 784, 2144, 5632, 14336, 35584, 86528, 206848, 487424, 1134592, 2613248, 5963776, 13500416, 30343168, 67764224, 150470656, 332398592, 730857472, 1600126976, 3489660928, 7583301632, 16424894464, 35467034624, 76369887232, 164014063616
Offset: 0
a(4) = 88. The corresponding words are cccc, cccd, ccdc, ccdd, cdcc, cdcd, cddc, cddd, dccc, dccd, dcdc, dcdd, ddcc, ddcd, dddc, dddd, caac, caca, ccaa, caad, cada, caad, cabc, cacb, ccab, cabd, cadb, cabd, cbac, cbca, ccba, cbad, cbda, cbad, daac, daca, dcaa, daad, dada, daad, dabc, dacb, dcab, dabd, dadb, dabd, dbac, dbca, dcba, dbad, dbda, dbad, aacc, acac, acca, aacd, acad, acda, aadc, adac, adca, aadd, adad, adda, abcc, acbc, accb, abcd, acbd, acdb, abdc, adbc, adcb, abdd, adbd, addb, bacc, bcac, bcca, bacd, bcad, bcda, badc, bdac, bdca, badd, bdad, bdda.
- Robert A. Beeler, How to Count: An Introduction to Combinatorics and Its Applications, Springer International Publishing, 2015.
- Ian F. Blake, The Mathematical Theory of Coding, Academic Press, 1975.
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Hermann Gruber, Jonathan Lee and Jeffrey Shallit, Enumerating regular expressions and their languages, arXiv preprint arXiv:1204.4982 [cs.FL], 2012.
- Luis Manuel Rivera, Integer sequences and k-commuting permutations, arXiv preprint arXiv:1406.3081 [math.CO], 2014.
- Franck Ramaharo, A generating polynomial for the pretzel knot, arXiv:1805.10680 [math.CO], 2018.
- Index entries for linear recurrences with constant coefficients, signature (6,-12,8).
Cf.
A000079,
A000292,
A001788,
A005448,
A006003,
A045943,
A052481,
A053730,
A081908,
A295288,
A300184.
-
List([0..30],n->(3*n^2-3*n+8)*2^(n-3)); # Muniru A Asiru, Mar 09 2018
-
[(3*n^2-3*n+8)*2^(n-3): n in [0..30]]; // Vincenzo Librandi, Mar 10 2018
-
A := n -> (3*n^2 - 3*n + 8)*2^(n - 3);
seq(A(n), n = 0 .. 70);
-
Table[(3 n^2 - 3 n + 8) 2^(n - 3), {n, 0, 70}]
CoefficientList[Series[(1 - 4x + 7x^2)/(1 - 2x)^3, {x, 0, 30}], x] (* or *)
LinearRecurrence[{6, -12, 8}, {1, 2, 7}, 30] (* Robert G. Wilson v, Mar 07 2018 *)
-
makelist((3*n^2 - 3*n + 8)*2^(n - 3), n, 0, 70);
-
a(n) = (3*n^2-3*n+8)*2^(n-3); \\ Altug Alkan, Mar 09 2018
A320530
T(n,k) = k^n + k^(n - 2)*n*(n - 1)*(k*(k - 1) + 1)/2 for 0 < k <= n and T(n,0) = A154272(n+1), square array read by antidiagonals upwards.
Original entry on oeis.org
1, 1, 1, 0, 1, 1, 0, 2, 2, 1, 0, 4, 7, 3, 1, 0, 7, 26, 16, 4, 1, 0, 11, 88, 90, 29, 5, 1, 0, 16, 272, 459, 220, 46, 6, 1, 0, 22, 784, 2133, 1504, 440, 67, 7, 1, 0, 29, 2144, 9234, 9344, 3775, 774, 92, 8, 1, 0, 37, 5632, 37908, 54016, 29375, 7992, 1246, 121, 9
Offset: 0
Square array begins:
1, 1, 1, 1, 1, 1, 1, ...
0, 1, 2, 3, 4, 5, 6, ...
1, 2, 7, 16, 29, 46, 67, ...
0, 4, 26, 90, 220, 440, 774, ...
0, 7, 88, 459, 1504, 3775, 7992, ...
0, 11, 272, 2133, 9344, 29375, 74736, ...
0, 16, 784, 9234, 54016, 212500, 649296, ...
0, 22, 2144, 37908, 295936, 1456250, 5342112, ...
...
T(3,2) = 2^3 + 2^(3 - 2)*3*(3 - 1)*(2*(2 - 1) + 1)/2 = 26. The corresponding ternary words are abc, acb, cab, bac, bca, cba, bbc, bcb, cbb, ccc. Next, let a = {00}, b = {11} and c = {01, 10}. The resulting binary words are
abc: 001101, 001110;
acb: 000111, 001011;
cab: 010011, 100011;
bac: 110001, 110010;
bca: 110100, 111000;
cba: 011100, 101100;
bbc: 111101, 111110;
bcb: 110111, 111011;
cbb: 011111, 101111;
ccc: 010101, 101010, 010110, 011001, 100101, 101001, 100110, 011010.
- Louis H. Kauffman, Formal Knot Theory, Princeton University Press, 1983.
- Louis H. Kauffman, State models and the Jones polynomial, Topology, Vol. 26 (1987), 395-407.
- Franck Ramaharo, A generating polynomial for the pretzel knot, arXiv:1805.10680 [math.CO], 2018.
- Alexander Stoimenow, Everywhere Equivalent 2-Component Links, Symmetry Vol. 7 (2015), 365-375.
- Wikipedia, Pretzel link
-
T[n_, k_] = If[k > 0, k^n + k^(n - 2)*n*(n - 1)*(k*(k - 1) + 1)/2, If[k == 0 && (n == 0 || n == 1), 1, 0]];
Table[Table[T[n - k, k], {k, 0, n}], {n, 0, 10}]//Flatten
-
t(n, k) := k^n + k^(n - 2)*binomial(n, 2)*(2*binomial(k, 2) + 1)$
u(n) := if n = 0 or n = 1 then 1 else 0$
T(n, k) := if k = 0 then u(n) else t(n,k)$
tabl(nn) := for n:0 thru 10 do print(makelist(T(n, k), k, 0, nn))$
A320531
T(n,k) = n*k^(n - 1), k > 0, with T(n,0) = A063524(n), square array read by antidiagonals upwards.
Original entry on oeis.org
0, 1, 0, 0, 1, 0, 0, 2, 1, 0, 0, 3, 4, 1, 0, 0, 4, 12, 6, 1, 0, 0, 5, 32, 27, 8, 1, 0, 0, 6, 80, 108, 48, 10, 1, 0, 0, 7, 192, 405, 256, 75, 12, 1, 0, 0, 8, 448, 1458, 1280, 500, 108, 14, 1, 0, 0, 9, 1024, 5103, 6144, 3125, 864, 147, 16, 1, 0, 0, 10, 2304
Offset: 0
Square array begins:
0, 0, 0, 0, 0, 0, 0, 0, ...
1, 1, 1, 1, 1, 1, 1, 1, ...
0, 2, 4, 6, 8, 10, 12, 14, ... A005843
0, 3, 12, 27, 48, 75, 108, 147, ... A033428
0, 4, 32, 108, 256, 500, 864, 1372, ... A033430
0, 5, 80, 405, 1280, 3125, 6480, 12005, ... A269792
0, 6, 192, 1458, 6144, 18750, 46656, 100842, ...
0, 7, 448, 5103, 28672, 109375, 326592, 823543, ...
...
T(3,2) = 3*2^(3 - 1) = 12. The corresponding binary words are 110101, 110110, 111001, 111010, 011101, 011110, 101101, 101110, 010111, 011011, 100111, 101011.
- Louis H. Kauffman, Formal Knot Theory, Princeton University Press, 1983.
- Louis H. Kauffman, State models and the Jones polynomial, Topology, Vol. 26 (1987), 395-407.
- Franck Ramaharo, A generating polynomial for the pretzel knot, arXiv:1805.10680 [math.CO], 2018.
- Alexander Stoimenow, Everywhere Equivalent 2-Component Links, Symmetry Vol. 7 (2015), 365-375.
- Wikipedia, Pretzel link
-
T[n_, k_] = If [k > 0, n*k^(n - 1), If[k == 0 && n == 1, 1, 0]];
Table[Table[T[n - k, k], {k, 0, n}], {n, 0, 12}]//Flatten
-
T(n, k) := if k > 0 then n*k^(n - 1) else if k = 0 and n = 1 then 1 else 0$
tabl(nn) := for n:0 thru nn do print(makelist(T(n, k), k, 0, nn))$
Showing 1-8 of 8 results.
Comments