cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 13 results. Next

A300184 Irregular triangle read by rows: row n consists of the coefficients of the expansion of the polynomial (2*x + 2)^n + (x^2 - 1)*(x + 2)^n.

Original entry on oeis.org

0, 0, 1, 0, 1, 2, 1, 0, 4, 7, 4, 1, 0, 12, 26, 19, 6, 1, 0, 32, 88, 88, 39, 8, 1, 0, 80, 272, 360, 230, 71, 10, 1, 0, 192, 784, 1312, 1140, 532, 123, 12, 1, 0, 448, 2144, 4368, 4872, 3164, 1162, 211, 14, 1, 0, 1024, 5632, 13568, 18592, 15680, 8176, 2480, 367, 16, 1, 0, 2304, 14336, 39936, 65088, 67872, 46368, 20304, 5262, 655, 18, 1
Offset: 0

Views

Author

Keywords

Comments

Let L(n;x) = x*(2*x + 2)^n. Then T(n,k) is obtained from the expansion of the polynomial P(n;x) = (x + 2)*P(n-1;x) + L(n-1;x), with P(0;x) = x^2.
Let an n-chain link be the planar diagram that consists of n unknotted circles, linked together in a closed chain. Then T(n,k) is the number of diagrams having k components that are obtained by smoothing each double point (crossing). Kauffman defines the 'smoothing' of a framed 4-graph at a vertex v as "any of the two framed 4-graphs obtained by removing v and repasting the edges" (see links).

Examples

			The triangle T(n,k) begins:
n\k  0     1      2      3      4      5      6      7     8    9  10 11
0:   0     0      1
1:   0     1      2      1
2:   0     4      7      4      1
3:   0    12     26     19      6      1
4:   0    32     88     88     39      8      1
5:   0    80    272    360    230     71     10      1
6:   0   192    784   1312   1140    532    123     12     1
7:   0   448   2144   4368   4872   3164   1162    211    14    1
8:   0  1024   5632  13568  18592  15680   8176   2480   367   16   1
9:   0  2304  14336  39936  65088  67872  46368  20304  5262  655  18  1
		

Crossrefs

Row sums: A000302 (powers of 4).

Programs

  • Mathematica
    With[{nmax = 15}, CoefficientList[CoefficientList[Series[(x^2 + y*x/(1 - y*(2*x + 2)))/(1 - y*(x + 2)), {x, 0, nmax + 2}, {y, 0, nmax}], y], x]] // Flatten (* G. C. Greubel, Oct 18 2018 *)
    Table[SeriesCoefficient[x^2*(x+2)^n + x*Sum[(x+2)^(n-j-1)*(2*x+2)^j, {j, 0, n-1}], {x, 0, k}], {n, 0, 10}, {k, 0, n+2}]//Flatten  (* Michael De Vlieger, Oct 20 2018 *)
  • Maxima
    T(n, k) := ratcoef((2*x + 2)^n + (x^2 - 1)*(x + 2)^n, x, k)$
    create_list(T(n, k), n, 0, 10, k, 0, n + 2);
    
  • PARI
    {T(n,k) = if(k==0, 0, if(k==1, n*2^(n-1), if(k==n+2, 1, T(n-1, k-1) + 2*T(n-1,k) + 2^(n-1)*binomial(n-1,k-1) )))};
    for(n=0,10, for(k=0,n+2, print1(T(n,k), ", "))) \\ G. C. Greubel, Oct 20 2018

Formula

T(n,0) = 0, T(n,1) = n*2^(n-1), T(0,2) = 1 and T(n,k) = T(n-1,k-1) + 2*T(n-1,k) + A038208(n-1,k-1).
T(n,1) = A001787(n).
T(n,n) = A295077(n).
T(n,n+1) = A005843(n).
G.f.: (x^2 + y*x/(1 - y*(2*x + 2)))/(1 - y*(x + 2)).

Extensions

New name by Franck Maminirina Ramaharo, Oct 17 2018

A300454 Irregular triangle read by rows: row n consists of the coefficients of the expansion of the polynomial 2*(x + 1)^(n + 1) + x^3 + 2*x^2 - x - 2.

Original entry on oeis.org

0, 1, 2, 1, 0, 3, 4, 1, 0, 5, 8, 3, 0, 7, 14, 9, 2, 0, 9, 22, 21, 10, 2, 0, 11, 32, 41, 30, 12, 2, 0, 13, 44, 71, 70, 42, 14, 2, 0, 15, 58, 113, 140, 112, 56, 16, 2, 0, 17, 74, 169, 252, 252, 168, 72, 18, 2, 0, 19, 92, 241, 420, 504, 420, 240, 90, 20, 2, 0
Offset: 0

Views

Author

Keywords

Comments

Row sums of column 1,2 and 3 yields {4, 8, 16, 30, 52, ...}, in A046127.
Almost twice Pascal's triangle A028326 (up to horizontal shift), except column 0 to 3.
The polynomial P(n;x) = 2*(x + 1)^(n + 1) + x^3 + 2*x^2 - x - 2 is a simplified version of the bracket polynomial associated with a twist knot of n half twists that is only concerned with the enumeration of the state diagrams. The simplification arises when the twist knot is thought of as a planar diagram with no crossing information at each double point. In this case, P(n;x) = x*(A,B,x), where (A,B,d) denotes the bracket polynomial for the n-twist knot (see links for the definition of the bracket polynomial). For example, the bracket polynomial for the trefoil (n = 2) is A^3*d^1 + 3*BA^2*d^0 + 3*AB^2*d^1 + B^3*d^2, where A and B are the "splitting variables". Then setting A = B = 1 and d = x, we obtain 3 + 4*x + x^2 (also see A299989, row 1).

Examples

			The triangle T(n,k) begins
n\k  0   1    2    3     4     5     6     7     8     9    10   11   12  13 14
0:   0   1    2    1
1:   0   3    4    1
2:   0   5    8    3
3:   0   7   14    9     2
4:   0   9   22   21    10     2
5:   0  11   32   41    30    12     2
6:   0  13   44   71    70    42    14     2
7:   0  15   58  113   140   112    56    16     2
8:   0  17   74  169   252   252   168    72    18     2
9:   0  19   92  241   420   504   420   240    90    20     2
10:  0  21  112  331   660   924   924   660   330   110    22    2
11:  0  23  134  441   990  1584  1848  1584   990   440   132   24    2
12:  0  25  158  573  1430  2574  3432  3432  2574  1430   572  156   26   2
13:  0  27  184  729  2002  4004  6006  6864  6006  4004  2002  728  182  28  2
		

References

  • Inga Johnson and Allison K. Henrich, An Interactive Introduction to Knot Theory, Dover Publications, Inc., 2017.

Crossrefs

Row sums: A020707(Pisot sequences).
Triangles related to the regular projection of some knots: A299989 (connected summed trefoils); A300184 (chain links); A300453 ((2,n)-torus knot).

Programs

  • Maxima
    P(n, x) := 2*(x + 1)^(n + 1) + x^3 + 2*x^2 - x - 2$
    T : []$
    for i:0 thru 20 do
      T : append(T, makelist(ratcoef(P(i, x), x, n), n, 0, max(3, i + 1)))$
    T;
    
  • PARI
    row(n) = Vecrev(2*(x + 1)^(n + 1) + x^3 + 2*x^2 - x - 2);
    tabl(nn) = for (n=0, nn, print(row(n))); \\ Michel Marcus, Mar 12 2018

Formula

T(n,1) = A005408(n).
T(n,2) = A014206(n).
T(n,3) = A064999(n+1).
T(n,1) + T(n,2) = A002061(n+2).
T(n,1) + T(n,3) = A046127(n+1).
T(n,2) + T(n,3) = A155753(n+1).
T(n,1) + T(n,2) + T(n,3) = A046127(n+2).
T(n,k) = A028326(n,k-1), k >= 4 and n >= k - 1.
T(n,k) = A300454(n,k-1) + 2*A300454(n,k) + A007318(n,k-1), with T(n,0) = 0.
G.f: (2*x + 2)/(1 - y*(x + 1)) + (x^3 + 2*x^2 - x - 2)/(1 - y).

A137396 Triangle read by rows: row n gives the coefficients in the expansion of the chromatic polynomial of the n-cycle graphs.

Original entry on oeis.org

0, 0, -1, 1, 0, 2, -3, 1, 0, -3, 6, -4, 1, 0, 4, -10, 10, -5, 1, 0, -5, 15, -20, 15, -6, 1, 0, 6, -21, 35, -35, 21, -7, 1, 0, -7, 28, -56, 70, -56, 28, -8, 1, 0, 8, -36, 84, -126, 126, -84, 36, -9, 1, 0, -9, 45, -120, 210, -252, 210, -120, 45, -10, 1, 0, 10
Offset: 1

Views

Author

Roger L. Bagula, Apr 10 2008

Keywords

Comments

The chromatic polynomial of an n-cycle graph is p(x;n) = (x - 1)^n + (-1)^n*(x - 1). - Franck Maminirina Ramaharo, Aug 11 2018

Examples

			Triangle begins:
n\k| 0   1    2     3     4     5     6     7     8    9   10 11
----------------------------------------------------------------
1  | 0
2  | 0  -1    1
3  | 0   2   -3     1
4  | 0  -3    6    -4     1
5  | 0   4  -10    10    -5     1
6  | 0  -5   15   -20    15    -6     1
7  | 0   6  -21    35   -35    21    -7     1
8  | 0  -7   28   -56    70   -56    28    -8     1
9  | 0   8  -36    84  -126   126   -84    36    -9    1
10 | 0  -9   45  -120   210  -252   210  -120    45  -10    1
11 | 0  10  -55   165  -330   462  -462   330  -165   55  -11  1
... reformatted and extended. - _Franck Maminirina Ramaharo_, Aug 11 2018
		

References

  • Louis H. Kauffman, Knots and Physics (Third Edition), World Scientific, 2001. See p. 353.

Crossrefs

Programs

  • Maxima
    t(n, k) := ratcoef((x - 1)^n + (-1)^n*(x - 1), x, k)$
    T:[0]$
    for n:2 thru 11 do T:append(T, makelist(t(n, k), k, 0, n))$
    T; /* Franck Maminirina Ramaharo, Aug 11 2018 */

Formula

p(x;n) = (x - 2)*p(x;n-1) + (x - 1)*p(x;n-2).
From Franck Maminirina Ramaharo, Aug 11 2018: (Start)
T(n,0) = 0 for n > 0, and T(n,1) = (n-1)*(-1)^(n-1) for n > 1.
T(n,k) = (-1)^(n - k)*binomial(n,k) for k > 1. (End)

Extensions

Edited, new name, and corrected by Franck Maminirina Ramaharo, Aug 11 2018

A316989 Irregular triangle read by rows: row n consists of the coefficients in the expansion of the polynomial (x^2 + 4*x + 3)*(x + 1)^(2*n) + (x^2 - 1)*(x^2 + 3*x + 3).

Original entry on oeis.org

0, 1, 3, 3, 1, 0, 7, 14, 9, 2, 0, 13, 37, 43, 26, 8, 1, 0, 19, 72, 129, 141, 98, 42, 10, 1, 0, 25, 119, 291, 463, 504, 378, 192, 63, 12, 1, 0, 31, 178, 553, 1156, 1716, 1848, 1452, 825, 330, 88, 14, 1, 0, 37, 249, 939, 2432, 4576, 6435, 6864, 5577, 3432, 1573
Offset: 0

Views

Author

Keywords

Comments

The triangle is related to the Kauffman bracket polynomial evaluated at the shadow diagram of the two-bridge knot with Conway's notation C(2n,3).

Examples

			The triangle T(n,k) begins:
n\k| 0   1    2    3     4     5     9     7     8     9    10   11   12  13 14
-------------------------------------------------------------------------------
0  | 0   1    3    3     1
1  | 0   7   14    9     2
2  | 0  13   37   43    26     8     1
3  | 0  19   72  129   141    98    42    10     1
4  | 0  25  119  291   463   504   378   192    63    12     1
5  | 0  31  178  553  1156  1716  1848  1452   825   330    88   14    1
6  | 0  37  249  939  2432  4576  6435  6864  5577  3432  1573  520  117  16  1
...
		

Crossrefs

Programs

  • Maple
    T := proc (n, k) if k = 1 then 6*n + 1 else binomial(2*n + 3, k + 1) + (binomial(2*n + 1, k)*(2*k - 2*n) + binomial(4, k)*(2*k - 3))/(k + 1) end if end proc:
    for n from 0 to 12 do seq(T(n, k), k = 0 .. max(4, 2*(n + 1))) od;
  • Mathematica
    row[n_] := CoefficientList[(x^2 + 4*x + 3)*(x + 1)^(2*n) + (x^2 - 1)*(x^2 + 3*x + 3), x];
    Array[row, 12, 0] // Flatten
  • Maxima
    T(n, k) := binomial(2*n + 3, k + 1) + (binomial(2*n + 1, k)*(2*k - 2*n) + binomial(4, k)*(2*k - 3))/(k + 1) - kron_delta(1, k)$
    for n:0 thru 12 do print(makelist(T(n, k), k, 0, max(4, 2*(n + 1))));

Formula

T(n,1) = A016921(n) and T(n,k) = C(2*n+3,k+1) + (C(2*n+1,k)*(2*k - 2*n) + C(4,k)*(2*k - 3))/(k + 1) for k > 1.
T(n,2) = A173247(2*n+1) = A300401(2*n,3).
T(n,3) = 2*A099721(n) + 3.
T(n,4) = A244730(n) - A002412(n) + 1.
T(n,k) = A093560(2*n,k) for n > 2 and k > 4.
G.f.: (x^2 + 4*x + 3)/(1 - y*(x + 1)^2) + (x^4 + 3*x^3 + 2*x^2 - 3*x - 3)/(1 - y).

A316659 Irregular triangle read by rows: row n consists of the coefficients in the expansion of the polynomial x*(x^2 - 2) + x*(((v - w)/2)^n + ((v + w)/2)^n), where v = 3 + 2*x and w = sqrt(5 + 4*x).

Original entry on oeis.org

0, 0, 0, 1, 0, 1, 2, 1, 0, 5, 8, 3, 0, 16, 30, 16, 2, 0, 45, 104, 81, 24, 2, 0, 121, 340, 356, 170, 35, 2, 0, 320, 1068, 1411, 932, 315, 48, 2, 0, 841, 3262, 5209, 4396, 2079, 532, 63, 2, 0, 2205, 9760, 18281, 18784, 11440, 4144, 840, 80, 2, 0, 5776, 28746
Offset: 0

Views

Author

Keywords

Comments

The triangle is related to the Kauffman bracket polynomial for the Turk's Head Knot ((3,n)-torus knot). Column 1 matches the determinant of the Turk's Head Knots THK(3,k) A004146.

Examples

			The triangle T(n,k) begins:
n\k: 0      1      2       3       4       5       6      7      8    9  10 11
0:   0      0      0       1
1:   0      1      2       1
2:   0      5      8       3
3:   0     16     30      16       2
4:   0     45    104      81      24       2
5:   0    121    340     356     170      35       2
6:   0    320   1068    1411     932     315      48      2
7:   0    841   3262    5209    4396    2079     532     63      2
8:   0   2205   9760   18281   18784   11440    4144    840     80    2
9:   0   5776  28746   61786   74838   55809   26226   7602   1260   99   2
10:  0  15125  83620  202841  282980  249815  144488  54690  13080 1815 120  2
...
		

Crossrefs

Row sums: A000302 (Powers of 4).
Row 1: row 1 of A300184, A300192 and row 0 of A300454.
Row 2: row 2 of A300454.

Programs

  • Mathematica
    v = 3 + 2*x; w = Sqrt[5 + 4*x];
    row[n_] := CoefficientList[x*(x^2 - 2) + x*(((v - w)/2)^n + ((v + w)/2)^n), x];
    Array[row, 15, 0] // Flatten
  • Maxima
    v : 3 + 2*x$ w : sqrt(5 + 4*x)$
    p(n, x) := expand(x*(x^2 - 2) + x*(((v - w)/2)^n + ((v + w)/2)^n))$
    for n:0 thru 15 do print(makelist(ratcoef(p(n, x), x, k), k, 0, max(3, n + 1)));

Formula

T(n,1) = A004146(n).
T(n,2) = A122076(n,1) = A099920(2*n-1).
G.f.: (x^3 - 2*x)/(1 - y) + (2*x - 3*x*y - 2*x^2*y)/(1 - 3*y - 2*x*y + y^2 + 2*x*y^2 + x^2*y^2).

A123192 Triangle read by rows: row n gives the coefficients in the expansion of x^abs(3*n - 2)*p(n;x), where p(n;x) denotes the bracket polynomial for the (2,n)-torus knots.

Original entry on oeis.org

-1, 0, 0, 0, -1, 0, 0, 0, 0, -1, -1, 0, 0, 0, 0, 0, 0, 0, -1, 1, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, -1, -1, 0, 0, 0, 1, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, -1, 1, 0, 0, 0, -1, 0, 0, 0, 1, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, -1, -1, 0, 0, 0, 1, 0, 0, 0, -1, 0, 0, 0
Offset: 0

Views

Author

Roger L. Bagula, Oct 03 2006

Keywords

Comments

From Franck Maminirina Ramaharo, Aug 11 2018: (Start)
Using Kauffman's notation, the formal expression of the bracket polynomial for the (2,n)-torus knot is defined as follows:
K(n;A,B,d) = A*K(n-1;A,B,d) + B*(A + B*d)^(n - 1) with K(0;A,B,d) = d.
- The polynomial in this sequence is defined as p(n;x) = K(n;x,1/x,-x^2-x^(-2)), and verifies p(n;x) = x*p(n-1;x) + (-1)^(n - 1)*x^(-3*n + 2).
- The polynomial x*K(n;1,1,x) yields (x + 1)^n + x^2 - 1 which is the bracket evaluated at the shadow diagram of the (2,n)-torus knot, see A300453.
- The polynomial sqrt(x)*K(n;-1,sqrt(x),sqrt(x)) yields (x - 1)^n + (x - 1)*(-1)^n. This is the chromatic polynomial for the n-cycle graph which is the medial graph of the (2,n)-torus knot, see A137396.
The planar diagram of the (2,0)-torus knot is two non-intersecting circles.
(End)

Examples

			From _Franck Maminirina Ramaharo_, Aug 11 2018: (Start)
The bracket polynomial for some value of n:
  p(0;x) = -x^2 - 1/x^2;
  p(1;x) = -x^3;
  p(2;x) = -x^4 - 1/x^4;
  p(3;x) = -x^5 - 1/x^3 + 1/x^7;
  p(4;x) = -x^6 - 1/x^2 + 1/x^6 - 1/x^10;
  p(5;x) = -x^7 - 1/x   + 1/x^5 - 1/x^9  + 1/x^13;
  p(6;x) = -x^8 - 1     + 1/x^4 - 1/x^8  + 1/x^12 - 1/x^16;
  p(7;x) = -x^9 - x     + 1/x^3 - 1/x^7  + 1/x^11 - 1/x^15 + 1/x^19;
  ...
The triangle giving the coefficients in x^abs(3*n - 2)*p(n;x) begins:
  -1, 0, 0, 0, -1
   0, 0, 0, 0, -1
  -1, 0, 0, 0,  0, 0, 0, 0, -1
   1, 0, 0, 0, -1, 0, 0, 0,  0, 0, 0, 0, -1
  -1, 0, 0, 0,  1, 0, 0, 0, -1, 0, 0, 0,  0, 0, 0, 0, -1
   1, 0, 0, 0, -1, 0, 0, 0,  1, 0, 0, 0, -1, 0, 0, 0,  0, 0, 0, 0, -1
  ...
(End)
		

References

  • Louis H. Kauffman, Knots and Physics (Third Edition), World Scientific, 2001. See p. 38 and p. 353.

Crossrefs

Programs

  • Maxima
    K(n, A, B, d) := if n = 0 then d else A*K(n - 1, A, B, d) + B*(A + B*d)^(n - 1)$
    p(n, x) := x^abs(3*n - 2)*K(n, x, 1/x, -x^(-2) - x^2)$
    t(n, k) := ratcoef(p(n, x), x, k)$
    T:[]$
    for n:0 thru 10 do T:append(T, makelist(t(n,k), k, 0, max(4, 4*n)))$
    T; /* Franck Maminirina Ramaharo, Aug 11 2018 */

Extensions

Partially edited by N. J. A. Sloane, May 22 2007
Edited, new name, and corrected by Franck Maminirina Ramaharo, Aug 11 2018

A294619 a(0) = 0, a(1) = 1, a(2) = 2 and a(n) = 1 for n > 2.

Original entry on oeis.org

0, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 0

Views

Author

Keywords

Comments

Continued fraction expansion of (sqrt(5) + 1)/(2*sqrt(5)).
Inverse binomial transform is {0, 1, 4, 10, 21, 41, 78, 148, ...}, A132925 with one leading zero.
Also the main diagonal in the expansion of (1 + x)^n - 1 + x^2 (A300453).
The partial sum of this sequence is A184985.
a(n) is the number of state diagrams having n components that are obtained from an n-foil [(2,n)-torus knot] shadow. Let a shadow diagram be the regular projection of a mathematical knot into the plane, where the under/over information at every crossing is omitted. A state for the shadow diagram is a diagram obtained by merging either of the opposite areas surrounding each crossing.
a(n) satisfies the identities a(n)^a(n+k) = a(n), 2^a(k) = 2*a(k) and a(k)! = a(k), k > 0.
Also the number of non-isomorphic simple connected undirected graphs with n+1 edges and a longest path of length 2. - Nathaniel Gregg, Nov 02 2021

Examples

			For n = 2, the shadow of the Hopf link yields 2 two-component state diagrams (see example in A300453). Thus a(2) = 2.
		

References

  • V. I. Arnold, Topological Invariants of Plane Curves and Caustics, American Math. Soc., 1994.
  • L. H. Kauffman, Knots and Physics, World Scientific Publishers, 1991.
  • V. Manturov, Knot Theory, CRC Press, 2004.

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[(x + x^2 - x^3)/(1 - x), {x, 0, 100}], x] (* Wesley Ivan Hurt, Nov 05 2017 *)
    f[n_] := If[n > 2, 1, n]; Array[f, 105, 0] (* Robert G. Wilson v, Dec 27 2017 *)
    PadRight[{0,1,2},120,{1}] (* Harvey P. Dale, Feb 20 2023 *)
  • Maxima
    makelist((1 + (-1)^((n + 1)!))/2 + kron_delta(n, 2), n, 0, 100);
  • PARI
    a(n) = if(n>2, 1, n);
    

Formula

a(n) = ((-1)^2^(n^2 + 3*n + 2) + (-1)^2^(n^2 - n) - (-1)^2^(n^2 - 3*n + 2) + 1)/2.
a(n) = (1 + (-1)^((n + 1)!))/2 + Kronecker(n, 2).
a(n) = min(n, 3) - 2*(max(n - 2, 0) - max(n - 3, 0)).
a(n) = floor(F(n+1)/F(n)) for n > 0, with a(0) = 0, where F(n) = A000045(n) is the n-th Fibonacci number.
a(n) = a(n-1) for n > 3, with a(0) = 0, a(1) = 1, a(2) = 2 and a(3) = 1.
A005803(a(n)) = A005096(a(n)) = A000007(n).
A107583(a(n)) = A103775(n+5).
a(n+1) = 2^A185012(n+1), with a(0) = 0.
a(n) = A163985(n) mod A004278(n+1).
a(n) = A157928(n) + A171386(n+1).
a(n) = A063524(n) + A157928(n) + A185012(n).
a(n) = A010701(n) - A141044(n) - A179184(n).
G.f.: (x + x^2 - x^3)/(1 - x).
E.g.f.: (2*exp(x) - 2 + x^2)/2.

A321127 Irregular triangle read by rows: row n gives the coefficients in the expansion of ((x + 1)^(2*n) + (x^2 - 1)*(2*(x + 1)^n - 1))/x.

Original entry on oeis.org

0, 1, 0, 2, 2, 0, 5, 8, 3, 0, 10, 24, 21, 8, 1, 0, 17, 56, 80, 64, 30, 8, 1, 0, 26, 110, 220, 270, 220, 122, 45, 10, 1, 0, 37, 192, 495, 820, 952, 804, 497, 220, 66, 12, 1, 0, 50, 308, 973, 2030, 3059, 3472, 3017, 2004, 1001, 364, 91, 14, 1
Offset: 0

Views

Author

Keywords

Comments

These are the coefficients of the Kauffman bracket polynomial evaluated at the shadow diagram of the two-bridge knot with Conway's notation C(n,n). Hence, T(n,k) gives the corresponding number of Kauffman states having exactly k circles.

Examples

			Triangle begins:
n\k | 0   1    2    3    4    5    6    7    8   9  11 12
----+----------------------------------------------------
  0 | 0   1
  1 | 0   2    2
  2 | 0   5    8    3
  3 | 0  10   24   21    8    1
  4 | 0  17   56   80   64   30    8    1
  5 | 0  26  110  220  270  220  122   45   10   1
  6 | 0  37  192  495  820  952  804  497  220  66  12  1
  ...
		

References

  • Louis H. Kauffman, Formal Knot Theory, Princeton University Press, 1983.

Crossrefs

Row sums: A000302.
Row 1 is row 2 in A300453.
Row 2 is also row 2 in A300454 and A316659.

Programs

  • Mathematica
    row[n_] := CoefficientList[Expand[((x + 1)^(2*n) + (x^2 - 1)*(2*(x + 1)^n - 1))/x], x]; Array[row, 12, 0] // Flatten
  • Maxima
    T(n, k) := if k = 1 then n^2 + 1 else  ((4*k - 2*n)/(k + 1))*binomial(n + 1, k) + binomial(2*n, k + 1)$
    create_list(T(n, k), n, 0, 12, k, 0, max(2*n - 1, n + 1));

Formula

T(n,k) = 0 if k = 0, n^2 + 1 if k = 1, and C(2*n, k + 1) - 2*(C(n, k + 1) + C(n, k - 1)) otherwise.
T(n,1) = A002522(n).
T(n,2) = A300401(n,n).
T(n,n) = A001791(n) + A005843(n) - A063524(n).
T(n,k) = A094527(n,k-n+1) if n + 1 < k < 2*n and n > 2.
G.f.: x*(1 - (1 + x + x^2)*y + (1 + x)*(2 - x^2)*y^2)/((1 - y)*(1 - y - x*y)*(1 - (1 + x)^2*y)).
E.g.f.: (exp((1 + x)^2*y) - (exp(x) + 2*exp((1 + x)*y))*(1 - x^2))/x.

A320530 T(n,k) = k^n + k^(n - 2)*n*(n - 1)*(k*(k - 1) + 1)/2 for 0 < k <= n and T(n,0) = A154272(n+1), square array read by antidiagonals upwards.

Original entry on oeis.org

1, 1, 1, 0, 1, 1, 0, 2, 2, 1, 0, 4, 7, 3, 1, 0, 7, 26, 16, 4, 1, 0, 11, 88, 90, 29, 5, 1, 0, 16, 272, 459, 220, 46, 6, 1, 0, 22, 784, 2133, 1504, 440, 67, 7, 1, 0, 29, 2144, 9234, 9344, 3775, 774, 92, 8, 1, 0, 37, 5632, 37908, 54016, 29375, 7992, 1246, 121, 9
Offset: 0

Views

Author

Keywords

Comments

Construct a length n ternary word over the alphabet {a, b, c} as follows: letters from the set {a, b} are only used in pairs of at most one, and consist of either (a,b), (b,a) or (b,b). Next, replace each occurrence of a, b and c with a length k binary word such that 'a' has exactly two letters 1, 'b' contains no 0's and 'c' has exactly one letter 0 (empty words otherwise, respectively). Then T(n,k) gives the number of length n*k binary words resulting from this substitution. First column follows from the next definition.
In Kauffman's language, T(n,k) is the number of ways of splitting the crossings of the Pretzel knot shadow P(k, k, ..., k) having n tangles, of k half-twists respectively, such that the final diagram consists of two Jordan curves. This result can be achieved by assigning each tangle of the Pretzel knot a length k binary words in a way that letters 1 and 0 indicate the adequate choice for splitting the crossings.
Columns are linear recurrence sequences with signature (3*k, -3*k^2, k^3).

Examples

			Square array begins:
    1,  1,     1,     1,      1,       1,       1, ...
    0,  1,     2,     3,      4,       5,       6, ...
    1,  2,     7,    16,     29,      46,      67, ...
    0,  4,    26,    90,    220,     440,     774, ...
    0,  7,    88,   459,   1504,    3775,    7992, ...
    0, 11,   272,  2133,   9344,   29375,   74736, ...
    0, 16,   784,  9234,  54016,  212500,  649296, ...
    0, 22,  2144, 37908, 295936, 1456250, 5342112, ...
    ...
T(3,2) = 2^3 + 2^(3 - 2)*3*(3 - 1)*(2*(2 - 1) + 1)/2 = 26. The corresponding ternary words are abc, acb, cab, bac, bca, cba, bbc, bcb, cbb, ccc.  Next, let a = {00}, b = {11} and c = {01, 10}. The resulting binary words are
    abc: 001101, 001110;
    acb: 000111, 001011;
    cab: 010011, 100011;
    bac: 110001, 110010;
    bca: 110100, 111000;
    cba: 011100, 101100;
    bbc: 111101, 111110;
    bcb: 110111, 111011;
    cbb: 011111, 101111;
    ccc: 010101, 101010, 010110, 011001, 100101, 101001, 100110, 011010.
		

References

  • Louis H. Kauffman, Formal Knot Theory, Princeton University Press, 1983.

Crossrefs

Column 1 is column 2 of A300453.
Column 2 is column 2 of A300184.

Programs

  • Mathematica
    T[n_, k_] = If[k > 0, k^n + k^(n - 2)*n*(n - 1)*(k*(k - 1) + 1)/2, If[k == 0 && (n == 0 || n == 1), 1, 0]];
    Table[Table[T[n - k, k], {k, 0, n}], {n, 0, 10}]//Flatten
  • Maxima
    t(n, k) := k^n + k^(n - 2)*binomial(n, 2)*(2*binomial(k, 2) + 1)$
    u(n) := if n = 0 or n = 1 then 1 else 0$
    T(n, k) := if k = 0 then u(n) else t(n,k)$
    tabl(nn) := for n:0 thru 10 do print(makelist(T(n, k), k, 0, nn))$

Formula

T(n,k) = k^n + k^(n - 2)*binomial(n, 2)*(2*binomial(k, 2) + 1), k > 0.
T(n,k) = (3*k)*T(n-1,k) - (3*k^2)*T(n-2,k) + (k^3)*T(n-3,k), n > 3.
T(n,1) = A152947(n+1).
T(n,2) = A300451(n).
T(2,n) = A130883(n).
G.f. for columns: (1 - 2*k*x + (1 - k + 2*k^2)*x^2 )/(1 - k*x)^3.
E.g.f. for columns: ((1 - k + k^2)*x^2 + 2)*exp(k*x)/2.

A321125 T(n,k) = b(n+k) - (2*b(n)*b(k) + 1)*b(n*k) + b(n) + b(k) + 1, where b(n) = A154272(n+1), square array read by antidiagonals (n >= 0, k >= 0).

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1
Offset: 0

Views

Author

Keywords

Comments

Let (A,B,d) denote the three-variable bracket polynomial for the two-bridge knot with Conway's notation C(n,k). Then T(n,k) is the leading coefficient of the reduced polynomial x*(1,1,x). In Kauffman's language, T(n,k) is the number of states of the two-bridge knot C(n,k) corresponding to the maximum number of Jordan curves.

Examples

			Square array begins:
  1, 1, 1, 1, 1, 1, ...
  1, 2, 1, 1, 1, 1, ...
  1, 1, 3, 2, 2, 2, ...
  1, 1, 2, 1, 1, 1, ...
  1, 1, 2, 1, 1, 1, ...
  1, 1, 2, 1, 1, 1, ...
  ...
		

References

  • Louis H. Kauffman, Formal Knot Theory, Princeton University Press, 1983.

Crossrefs

Programs

  • Mathematica
    b[n_] = If[n == 0 || n == 2, 1, 0];
    T[n_, k_] = b[n + k] - (2*b[n]*b[k] + 1)*b[n*k] + b[n] + b[k] + 1;
    Table[T[k, n - k], {n, 0, 12}, {k, 0, n}] // Flatten
  • Maxima
    b(n) := if n = 0 or n = 2 then 1 else 0$ /* A154272(n+1) */
    T(n, k) := b(n + k) - (2*b(n)*b(k) + 1)*b(n*k) + b(n) + b(k) + 1$
    create_list(T(k, n - k), n, 0, 12, k, 0, n);

Formula

T(n,0) = T(0,n) = 1, and T(n,k) = b(n+k) - b(n)*b(k) - b(n*k) + c(n)*c(k) for n >= 1, k >= 1, where b(n) = A154272(n+1) and c(n) = A294619(n).
T(n,1) = A300453(n+1,A321126(n,1)).
T(n,2) = A300454(n,A321126(n,2)).
T(n,n) = A321127(n,A004280(n+1)).
G.f.: (1 + (x - x^2)*y - (x - 3*x^2 + x^3)*y^2 - x^2*y^3)/((1 - x)*(1 - y)).
E.g.f.: ((x^2 + 2*exp(x))*exp(y) - x^2 + (2*x - x^2)*y - (1 + x - exp(x))*y^2)/2.
Showing 1-10 of 13 results. Next