A300184 Irregular triangle read by rows: row n consists of the coefficients of the expansion of the polynomial (2*x + 2)^n + (x^2 - 1)*(x + 2)^n.
0, 0, 1, 0, 1, 2, 1, 0, 4, 7, 4, 1, 0, 12, 26, 19, 6, 1, 0, 32, 88, 88, 39, 8, 1, 0, 80, 272, 360, 230, 71, 10, 1, 0, 192, 784, 1312, 1140, 532, 123, 12, 1, 0, 448, 2144, 4368, 4872, 3164, 1162, 211, 14, 1, 0, 1024, 5632, 13568, 18592, 15680, 8176, 2480, 367, 16, 1, 0, 2304, 14336, 39936, 65088, 67872, 46368, 20304, 5262, 655, 18, 1
Offset: 0
Examples
The triangle T(n,k) begins: n\k 0 1 2 3 4 5 6 7 8 9 10 11 0: 0 0 1 1: 0 1 2 1 2: 0 4 7 4 1 3: 0 12 26 19 6 1 4: 0 32 88 88 39 8 1 5: 0 80 272 360 230 71 10 1 6: 0 192 784 1312 1140 532 123 12 1 7: 0 448 2144 4368 4872 3164 1162 211 14 1 8: 0 1024 5632 13568 18592 15680 8176 2480 367 16 1 9: 0 2304 14336 39936 65088 67872 46368 20304 5262 655 18 1
Links
- G. C. Greubel, Rows n=0..100 of triangle, flattened
- James Kaiser, Jessica S. Purcell, Clint Rollins, Volumes of chain links, arXiv:1107.2865 [math.GT], 2011.
- Louis H. Kauffman, Introductory Lectures on Knot Theory, Selected Lectures Presented at the Advanced School and Conference on Knot Theory and Its Applications to Physics and Biology, World Scientific, 2012.
- Louis H. Kauffman and Vassily O. Manturov, New Ideas in Low Dimensional Topology, World Scientific, 2015.
- Carolina Medina, Jorge Ramírez-Alfonsín and Gelasio Salazar, On the number of unknot diagrams, arXiv:1710.06470 [math.CO], 2017.
- Franck Ramaharo, Statistics on some classes of knot shadows, arXiv:1802.07701 [math.CO], 2018.
- Franck Ramaharo, A generating polynomial for the pretzel knot, arXiv:1805.10680 [math.CO], 2018.
- Franck Ramaharo, A one-variable bracket polynomial for some Turk's head knots, arXiv:1807.05256 [math.CO], 2018.
- Franck Ramaharo, A bracket polynomial for 2-tangle shadows, arXiv:2002.06672 [math.CO], 2020.
Crossrefs
Programs
-
Mathematica
With[{nmax = 15}, CoefficientList[CoefficientList[Series[(x^2 + y*x/(1 - y*(2*x + 2)))/(1 - y*(x + 2)), {x, 0, nmax + 2}, {y, 0, nmax}], y], x]] // Flatten (* G. C. Greubel, Oct 18 2018 *) Table[SeriesCoefficient[x^2*(x+2)^n + x*Sum[(x+2)^(n-j-1)*(2*x+2)^j, {j, 0, n-1}], {x, 0, k}], {n, 0, 10}, {k, 0, n+2}]//Flatten (* Michael De Vlieger, Oct 20 2018 *)
-
Maxima
T(n, k) := ratcoef((2*x + 2)^n + (x^2 - 1)*(x + 2)^n, x, k)$ create_list(T(n, k), n, 0, 10, k, 0, n + 2);
-
PARI
{T(n,k) = if(k==0, 0, if(k==1, n*2^(n-1), if(k==n+2, 1, T(n-1, k-1) + 2*T(n-1,k) + 2^(n-1)*binomial(n-1,k-1) )))}; for(n=0,10, for(k=0,n+2, print1(T(n,k), ", "))) \\ G. C. Greubel, Oct 20 2018
Formula
Extensions
New name by Franck Maminirina Ramaharo, Oct 17 2018
Comments