cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A300453 Irregular triangle read by rows: row n consists of the coefficients of the expansion of the polynomial (x + 1)^n + x^2 - 1.

Original entry on oeis.org

0, 0, 1, 0, 1, 1, 0, 2, 2, 0, 3, 4, 1, 0, 4, 7, 4, 1, 0, 5, 11, 10, 5, 1, 0, 6, 16, 20, 15, 6, 1, 0, 7, 22, 35, 35, 21, 7, 1, 0, 8, 29, 56, 70, 56, 28, 8, 1, 0, 9, 37, 84, 126, 126, 84, 36, 9, 1, 0, 10, 46, 120, 210, 252, 210, 120, 45, 10, 1, 0, 11, 56, 165
Offset: 0

Views

Author

Keywords

Comments

This is essentially the usual Pascal triangle A007318, horizontally shifted and with the first three columns altered.
Let P(n;x) = (x + 1)^n + x^2 - 1. Then P(n;x) = P(n-1;x) + x*(x + 1)^(n - 1), with P(0;x) = x^2.
Let a (2,n)-torus knot be projected on the plane. The resulting projection is a planar diagram with n double points. Then, T(n,k) gives the number of state diagrams having k components that are obtained by deleting each double point, then pasting the edges in one of the two ways as shown below.
\ / \_/ \ / \ /
(1) \/ ==> (2) \/ ==> | |
/\ _ /\ | |
/ \ / \ / \ / \
See example for the case n = 2.

Examples

			The triangle T(n,k) begins
n\k  0   1   2    3     4     5     6     7     8     9    10   11  12  13 14
0:   0   0   1
1:   0   1   1
2:   0   2   2
3:   0   3   4    1
4:   0   4   7    4     1
5:   0   5  11   10     5     1
6:   0   6  16   20    15     6     1
7:   0   7  22   35    35    21     7     1
8:   0   8  29   56    70    56    28     8     1
9:   0   9  37   84   126   126    84    36     9     1
10:  0  10  46  120   210   252   210   120    45    10     1
11:  0  11  56  165   330   462   462   330   165    55    11    1
12:  0  12  67  220   495   792   924   792   495   220    66   12   1
13:  0  13  79  286   715  1287  1716  1716  1287   715   286   78  13   1
14:  0  14  92  364  1001  2002  3003  3432  3003  2002  1001  364  91  14  1
...
The states of the (2,2)-torus knot (Hopf Link) are the last four diagrams:
                                    ____  ____
                                   /    \/    \
                                  /     /\     \
                                 |     |  |     |
                                 |     |  |     |
                                  \     \/     /
                                   \____/\____/
                           ___    ____         __________
                         /    \  /    \       /    __    \
                        /     /  \     \     /    /  \    \
                       |      |  |      |   |     |  |     |
                       |      |  |      |   |     |  |     |
                        \      \/      /     \     \/     /
                         \_____/\_____/       \____/\____/
      ____    ____        ____    ____        ____________        __________
     /    \  /    \      /    \  /    \      /     __     \      /    __    \
    /     /  \     \    /     /  \     \    /     /  \     \    /    /  \    \
   |     |    |     |  |     |    |     |  |     |    |     |  |    |    |    |
   |     |    |     |  |     |    |     |  |     |    |     |  |    |    |    |
    \     \  /     /    \     \__/     /    \     \  /     /    \    \__/    /
     \____/  \____/      \____________/      \____/  \____/      \__________/
There are 2 diagrams that consist of two components, and 2 diagrams that consist of one component.
		

References

  • Colin Adams, The Knot Book, W. H. Freeman and Company, 1994.
  • Louis H. Kauffman, Knots and Physics, World Scientific Publishers, 1991.

Crossrefs

Row sums: A000079 (powers of 2).
Triangles related to the regular projection of some knots: A299989 (connected summed trefoils); A300184 (chain links); A300454 (twist knot).
When n = 3 (trefoil), the corresponding 4-tuplet (0,3,4,1) appears in several triangles: A030528 (row 5), A256130 (row 3), A128908 (row 3), A186084 (row 6), A284938 (row 7), A101603 (row 3), A155112 (row 3), A257566 (row 3).

Programs

  • Mathematica
    f[n_] := CoefficientList[ Expand[(x + 1)^n + x^2 - 1], x]; Array[f, 12, 0] // Flatten (* or *)
    CoefficientList[ CoefficientList[ Series[(x^2 + y*x/(1 - y*(x + 1)))/(1 - y), {y, 0, 11}, {x, 0, 11}], y], x] // Flatten (* Robert G. Wilson v, Mar 08 2018 *)
  • Maxima
    P(n, x) := (x + 1)^n + x^2 - 1$
    T : []$
    for i:0 thru 20 do
      T : append(T, makelist(ratcoef(P(i, x), x, n), n, 0, max(2, i)))$
    T;
    
  • PARI
    row(n) = Vecrev((x + 1)^n + x^2 - 1);
    tabl(nn) = for (n=0, nn, print(row(n))); \\ Michel Marcus, Mar 12 2018

Formula

T(n,1) = A001477(n).
T(n,2) = A152947(n).
T(n,k) = A007318(n,k-1), k >= 1.
T(n,0) = 0, T(0,1) = 1, T(0,2) = 1 and T(n,k) = T(n-1,k) + A007318(n-1,k-1).
G.f.: (x^2 + y*x/(1 - y*(x + 1)))/(1 - y).

A153861 Triangle read by rows, binomial transform of triangle A153860.

Original entry on oeis.org

1, 1, 1, 2, 3, 1, 3, 6, 4, 1, 4, 10, 10, 5, 1, 5, 15, 20, 15, 6, 1, 6, 21, 35, 35, 21, 7, 1, 7, 28, 56, 70, 56, 28, 8, 1, 8, 36, 84, 126, 126, 84, 36, 9, 1, 9, 45, 120, 210, 252, 210, 120, 45, 10, 1, 10, 55, 165, 330, 462, 462, 330, 165, 55, 11, 1
Offset: 0

Views

Author

Gary W. Adamson, Jan 03 2009

Keywords

Comments

Row sums = A095121: (1, 2, 6, 14, 30, 62, 126,...).
Triangle T(n,k), 0<=k<=n, read by rows, given by [1,1,-1,1,0,0,0,0,0,0,0,...] DELTA [1,0,-1,1,0,0,0,0,0,0,0,...] where DELTA is the operator defined in A084938. - Philippe Deléham, Jan 03 2009
A123110*A007318 as infinite lower triangular matrices. - Philippe Deléham, Jan 06 2009
A153861 is the fusion of polynomial sequences p(n,x)=x^n+x^(n-1)+...+x+1 and q(n,x)=(x+1)^n; see A193722 for the definition of fusion. - Clark Kimberling, Aug 06 2011

Examples

			First few rows of the triangle are:
1;
1, 1;
2, 3, 1;
3, 6, 4, 1;
4, 10, 10, 5, 1;
5, 15, 20, 15, 6, 1;
6, 21, 35, 35, 21, 7, 1;
7, 28, 56, 70, 56, 28, 8, 1;
8, 36, 84, 126, 126, 84, 36, 9, 1;
9, 45, 120, 210, 252, 210, 120, 45, 10, 1;
...
		

Crossrefs

This is A137396 without the initial column and without signs.

Programs

  • Mathematica
    z = 10; c = 1; d = 1;
    p[0, x_] := 1
    p[n_, x_] := x*p[n - 1, x] + 1; p[n_, 0] := p[n, x] /. x -> 0;
    q[n_, x_] := (c*x + d)^n
    t[n_, k_] := Coefficient[p[n, x], x^k]; t[n_, 0] := p[n, x] /. x -> 0;
    w[n_, x_] := Sum[t[n, k]*q[n + 1 - k, x], {k, 0, n}]; w[-1, x_] := 1
    g[n_] := CoefficientList[w[n, x], {x}]
    TableForm[Table[Reverse[g[n]], {n, -1, z}]]
    Flatten[Table[Reverse[g[n]], {n, -1, z}]]  (* A193815 *)
    TableForm[Table[g[n], {n, -1, z}]]
    Flatten[Table[g[n], {n, -1, z}]]   (* A153861 *)
    (* Clark Kimberling, Aug 06 2011 *)

Formula

Triangle read by rows, A007318 * A153860. Remove left two columns of Pascal's triangle and append (1, 1, 2, 3, 4, 5,...).
As a recursive operation by way of example, row 3 = (3, 6, 4, 1) =
[1, 1, 1, 0] * (flipped Pascal's triangle matrix) = [1, 3, 3, 1]
[1, 2, 1, 0]
[1, 1, 0, 0]
[1, 0, 0, 0].
(Cf. analogous operation in A130405, but in A153861 the linear multiplier = [1,1,1,...,0].)
T(n,k) = 2*T(n-1,k)+T(n-1,k-1)-T(n-2,k)-T(n-2,k-1), T(0,0) = T(1,0) = T(1,1) = T(2,2) = 1, T(2,0)=2, T(2,1)=3, T(n,k)=0 if k<0 or if k>n. - Philippe Deléham, Dec 15 2013
G.f.: (1-x+x^2+x^2*y)/((x-1)*(-1+x+x*y)). - R. J. Mathar, Aug 11 2015

A316989 Irregular triangle read by rows: row n consists of the coefficients in the expansion of the polynomial (x^2 + 4*x + 3)*(x + 1)^(2*n) + (x^2 - 1)*(x^2 + 3*x + 3).

Original entry on oeis.org

0, 1, 3, 3, 1, 0, 7, 14, 9, 2, 0, 13, 37, 43, 26, 8, 1, 0, 19, 72, 129, 141, 98, 42, 10, 1, 0, 25, 119, 291, 463, 504, 378, 192, 63, 12, 1, 0, 31, 178, 553, 1156, 1716, 1848, 1452, 825, 330, 88, 14, 1, 0, 37, 249, 939, 2432, 4576, 6435, 6864, 5577, 3432, 1573
Offset: 0

Views

Author

Keywords

Comments

The triangle is related to the Kauffman bracket polynomial evaluated at the shadow diagram of the two-bridge knot with Conway's notation C(2n,3).

Examples

			The triangle T(n,k) begins:
n\k| 0   1    2    3     4     5     9     7     8     9    10   11   12  13 14
-------------------------------------------------------------------------------
0  | 0   1    3    3     1
1  | 0   7   14    9     2
2  | 0  13   37   43    26     8     1
3  | 0  19   72  129   141    98    42    10     1
4  | 0  25  119  291   463   504   378   192    63    12     1
5  | 0  31  178  553  1156  1716  1848  1452   825   330    88   14    1
6  | 0  37  249  939  2432  4576  6435  6864  5577  3432  1573  520  117  16  1
...
		

Crossrefs

Programs

  • Maple
    T := proc (n, k) if k = 1 then 6*n + 1 else binomial(2*n + 3, k + 1) + (binomial(2*n + 1, k)*(2*k - 2*n) + binomial(4, k)*(2*k - 3))/(k + 1) end if end proc:
    for n from 0 to 12 do seq(T(n, k), k = 0 .. max(4, 2*(n + 1))) od;
  • Mathematica
    row[n_] := CoefficientList[(x^2 + 4*x + 3)*(x + 1)^(2*n) + (x^2 - 1)*(x^2 + 3*x + 3), x];
    Array[row, 12, 0] // Flatten
  • Maxima
    T(n, k) := binomial(2*n + 3, k + 1) + (binomial(2*n + 1, k)*(2*k - 2*n) + binomial(4, k)*(2*k - 3))/(k + 1) - kron_delta(1, k)$
    for n:0 thru 12 do print(makelist(T(n, k), k, 0, max(4, 2*(n + 1))));

Formula

T(n,1) = A016921(n) and T(n,k) = C(2*n+3,k+1) + (C(2*n+1,k)*(2*k - 2*n) + C(4,k)*(2*k - 3))/(k + 1) for k > 1.
T(n,2) = A173247(2*n+1) = A300401(2*n,3).
T(n,3) = 2*A099721(n) + 3.
T(n,4) = A244730(n) - A002412(n) + 1.
T(n,k) = A093560(2*n,k) for n > 2 and k > 4.
G.f.: (x^2 + 4*x + 3)/(1 - y*(x + 1)^2) + (x^4 + 3*x^3 + 2*x^2 - 3*x - 3)/(1 - y).

A316659 Irregular triangle read by rows: row n consists of the coefficients in the expansion of the polynomial x*(x^2 - 2) + x*(((v - w)/2)^n + ((v + w)/2)^n), where v = 3 + 2*x and w = sqrt(5 + 4*x).

Original entry on oeis.org

0, 0, 0, 1, 0, 1, 2, 1, 0, 5, 8, 3, 0, 16, 30, 16, 2, 0, 45, 104, 81, 24, 2, 0, 121, 340, 356, 170, 35, 2, 0, 320, 1068, 1411, 932, 315, 48, 2, 0, 841, 3262, 5209, 4396, 2079, 532, 63, 2, 0, 2205, 9760, 18281, 18784, 11440, 4144, 840, 80, 2, 0, 5776, 28746
Offset: 0

Views

Author

Keywords

Comments

The triangle is related to the Kauffman bracket polynomial for the Turk's Head Knot ((3,n)-torus knot). Column 1 matches the determinant of the Turk's Head Knots THK(3,k) A004146.

Examples

			The triangle T(n,k) begins:
n\k: 0      1      2       3       4       5       6      7      8    9  10 11
0:   0      0      0       1
1:   0      1      2       1
2:   0      5      8       3
3:   0     16     30      16       2
4:   0     45    104      81      24       2
5:   0    121    340     356     170      35       2
6:   0    320   1068    1411     932     315      48      2
7:   0    841   3262    5209    4396    2079     532     63      2
8:   0   2205   9760   18281   18784   11440    4144    840     80    2
9:   0   5776  28746   61786   74838   55809   26226   7602   1260   99   2
10:  0  15125  83620  202841  282980  249815  144488  54690  13080 1815 120  2
...
		

Crossrefs

Row sums: A000302 (Powers of 4).
Row 1: row 1 of A300184, A300192 and row 0 of A300454.
Row 2: row 2 of A300454.

Programs

  • Mathematica
    v = 3 + 2*x; w = Sqrt[5 + 4*x];
    row[n_] := CoefficientList[x*(x^2 - 2) + x*(((v - w)/2)^n + ((v + w)/2)^n), x];
    Array[row, 15, 0] // Flatten
  • Maxima
    v : 3 + 2*x$ w : sqrt(5 + 4*x)$
    p(n, x) := expand(x*(x^2 - 2) + x*(((v - w)/2)^n + ((v + w)/2)^n))$
    for n:0 thru 15 do print(makelist(ratcoef(p(n, x), x, k), k, 0, max(3, n + 1)));

Formula

T(n,1) = A004146(n).
T(n,2) = A122076(n,1) = A099920(2*n-1).
G.f.: (x^3 - 2*x)/(1 - y) + (2*x - 3*x*y - 2*x^2*y)/(1 - 3*y - 2*x*y + y^2 + 2*x*y^2 + x^2*y^2).

A123192 Triangle read by rows: row n gives the coefficients in the expansion of x^abs(3*n - 2)*p(n;x), where p(n;x) denotes the bracket polynomial for the (2,n)-torus knots.

Original entry on oeis.org

-1, 0, 0, 0, -1, 0, 0, 0, 0, -1, -1, 0, 0, 0, 0, 0, 0, 0, -1, 1, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, -1, -1, 0, 0, 0, 1, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, -1, 1, 0, 0, 0, -1, 0, 0, 0, 1, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, -1, -1, 0, 0, 0, 1, 0, 0, 0, -1, 0, 0, 0
Offset: 0

Views

Author

Roger L. Bagula, Oct 03 2006

Keywords

Comments

From Franck Maminirina Ramaharo, Aug 11 2018: (Start)
Using Kauffman's notation, the formal expression of the bracket polynomial for the (2,n)-torus knot is defined as follows:
K(n;A,B,d) = A*K(n-1;A,B,d) + B*(A + B*d)^(n - 1) with K(0;A,B,d) = d.
- The polynomial in this sequence is defined as p(n;x) = K(n;x,1/x,-x^2-x^(-2)), and verifies p(n;x) = x*p(n-1;x) + (-1)^(n - 1)*x^(-3*n + 2).
- The polynomial x*K(n;1,1,x) yields (x + 1)^n + x^2 - 1 which is the bracket evaluated at the shadow diagram of the (2,n)-torus knot, see A300453.
- The polynomial sqrt(x)*K(n;-1,sqrt(x),sqrt(x)) yields (x - 1)^n + (x - 1)*(-1)^n. This is the chromatic polynomial for the n-cycle graph which is the medial graph of the (2,n)-torus knot, see A137396.
The planar diagram of the (2,0)-torus knot is two non-intersecting circles.
(End)

Examples

			From _Franck Maminirina Ramaharo_, Aug 11 2018: (Start)
The bracket polynomial for some value of n:
  p(0;x) = -x^2 - 1/x^2;
  p(1;x) = -x^3;
  p(2;x) = -x^4 - 1/x^4;
  p(3;x) = -x^5 - 1/x^3 + 1/x^7;
  p(4;x) = -x^6 - 1/x^2 + 1/x^6 - 1/x^10;
  p(5;x) = -x^7 - 1/x   + 1/x^5 - 1/x^9  + 1/x^13;
  p(6;x) = -x^8 - 1     + 1/x^4 - 1/x^8  + 1/x^12 - 1/x^16;
  p(7;x) = -x^9 - x     + 1/x^3 - 1/x^7  + 1/x^11 - 1/x^15 + 1/x^19;
  ...
The triangle giving the coefficients in x^abs(3*n - 2)*p(n;x) begins:
  -1, 0, 0, 0, -1
   0, 0, 0, 0, -1
  -1, 0, 0, 0,  0, 0, 0, 0, -1
   1, 0, 0, 0, -1, 0, 0, 0,  0, 0, 0, 0, -1
  -1, 0, 0, 0,  1, 0, 0, 0, -1, 0, 0, 0,  0, 0, 0, 0, -1
   1, 0, 0, 0, -1, 0, 0, 0,  1, 0, 0, 0, -1, 0, 0, 0,  0, 0, 0, 0, -1
  ...
(End)
		

References

  • Louis H. Kauffman, Knots and Physics (Third Edition), World Scientific, 2001. See p. 38 and p. 353.

Crossrefs

Programs

  • Maxima
    K(n, A, B, d) := if n = 0 then d else A*K(n - 1, A, B, d) + B*(A + B*d)^(n - 1)$
    p(n, x) := x^abs(3*n - 2)*K(n, x, 1/x, -x^(-2) - x^2)$
    t(n, k) := ratcoef(p(n, x), x, k)$
    T:[]$
    for n:0 thru 10 do T:append(T, makelist(t(n,k), k, 0, max(4, 4*n)))$
    T; /* Franck Maminirina Ramaharo, Aug 11 2018 */

Extensions

Partially edited by N. J. A. Sloane, May 22 2007
Edited, new name, and corrected by Franck Maminirina Ramaharo, Aug 11 2018
Showing 1-5 of 5 results.