A300453
Irregular triangle read by rows: row n consists of the coefficients of the expansion of the polynomial (x + 1)^n + x^2 - 1.
Original entry on oeis.org
0, 0, 1, 0, 1, 1, 0, 2, 2, 0, 3, 4, 1, 0, 4, 7, 4, 1, 0, 5, 11, 10, 5, 1, 0, 6, 16, 20, 15, 6, 1, 0, 7, 22, 35, 35, 21, 7, 1, 0, 8, 29, 56, 70, 56, 28, 8, 1, 0, 9, 37, 84, 126, 126, 84, 36, 9, 1, 0, 10, 46, 120, 210, 252, 210, 120, 45, 10, 1, 0, 11, 56, 165
Offset: 0
The triangle T(n,k) begins
n\k 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
0: 0 0 1
1: 0 1 1
2: 0 2 2
3: 0 3 4 1
4: 0 4 7 4 1
5: 0 5 11 10 5 1
6: 0 6 16 20 15 6 1
7: 0 7 22 35 35 21 7 1
8: 0 8 29 56 70 56 28 8 1
9: 0 9 37 84 126 126 84 36 9 1
10: 0 10 46 120 210 252 210 120 45 10 1
11: 0 11 56 165 330 462 462 330 165 55 11 1
12: 0 12 67 220 495 792 924 792 495 220 66 12 1
13: 0 13 79 286 715 1287 1716 1716 1287 715 286 78 13 1
14: 0 14 92 364 1001 2002 3003 3432 3003 2002 1001 364 91 14 1
...
The states of the (2,2)-torus knot (Hopf Link) are the last four diagrams:
____ ____
/ \/ \
/ /\ \
| | | |
| | | |
\ \/ /
\____/\____/
___ ____ __________
/ \ / \ / __ \
/ / \ \ / / \ \
| | | | | | | |
| | | | | | | |
\ \/ / \ \/ /
\_____/\_____/ \____/\____/
____ ____ ____ ____ ____________ __________
/ \ / \ / \ / \ / __ \ / __ \
/ / \ \ / / \ \ / / \ \ / / \ \
| | | | | | | | | | | | | | | |
| | | | | | | | | | | | | | | |
\ \ / / \ \__/ / \ \ / / \ \__/ /
\____/ \____/ \____________/ \____/ \____/ \__________/
There are 2 diagrams that consist of two components, and 2 diagrams that consist of one component.
- Colin Adams, The Knot Book, W. H. Freeman and Company, 1994.
- Louis H. Kauffman, Knots and Physics, World Scientific Publishers, 1991.
- Michael De Vlieger, Table of n, a(n) for n = 0..11327 (rows 0 <= n <= 150, flattened).
- Agnijo Banerjee, Knot theory [Foil knot family].
- Allison Henrich, Rebecca Hoberg, Slavik Jablan, Lee Johnson, Elizabeth Minten and Ljiljana Radovic, The Theory of Pseudoknots, arXiv preprint arXiv:1210.6934 [math.GT], 2012.
- Abdullah Kopuzlu, Abdulgani Şahin and Tamer Ugur, On polynomials of K(2,n) torus knots, Applied Mathematical Sciences, Vol. 3 (2009), 2899-2910.
- Franck Ramaharo, A generating polynomial for the two-bridge knot with Conway's notation C(n,r), arXiv:1902.08989 [math.CO], 2019.
- Franck Ramaharo, Note on sequences A123192, A137396 and A300453, arXiv:1911.04528 [math.CO], 2019.
- Franck Ramaharo, A bracket polynomial for 2-tangle shadows, arXiv:2002.06672 [math.CO], 2020.
- Wikipedia, Torus knot.
- Xinfei Li, Xin Liu and Yong-Chang Huang, Tackling tangledness of cosmic strings by knot polynomial topological invariants, arxiv preprint arXiv:1602.08804 [hep-th], 2016.
Triangles related to the regular projection of some knots:
A299989 (connected summed trefoils);
A300184 (chain links);
A300454 (twist knot).
When n = 3 (trefoil), the corresponding 4-tuplet (0,3,4,1) appears in several triangles:
A030528 (row 5),
A256130 (row 3),
A128908 (row 3),
A186084 (row 6),
A284938 (row 7),
A101603 (row 3),
A155112 (row 3),
A257566 (row 3).
-
f[n_] := CoefficientList[ Expand[(x + 1)^n + x^2 - 1], x]; Array[f, 12, 0] // Flatten (* or *)
CoefficientList[ CoefficientList[ Series[(x^2 + y*x/(1 - y*(x + 1)))/(1 - y), {y, 0, 11}, {x, 0, 11}], y], x] // Flatten (* Robert G. Wilson v, Mar 08 2018 *)
-
P(n, x) := (x + 1)^n + x^2 - 1$
T : []$
for i:0 thru 20 do
T : append(T, makelist(ratcoef(P(i, x), x, n), n, 0, max(2, i)))$
T;
-
row(n) = Vecrev((x + 1)^n + x^2 - 1);
tabl(nn) = for (n=0, nn, print(row(n))); \\ Michel Marcus, Mar 12 2018
A153861
Triangle read by rows, binomial transform of triangle A153860.
Original entry on oeis.org
1, 1, 1, 2, 3, 1, 3, 6, 4, 1, 4, 10, 10, 5, 1, 5, 15, 20, 15, 6, 1, 6, 21, 35, 35, 21, 7, 1, 7, 28, 56, 70, 56, 28, 8, 1, 8, 36, 84, 126, 126, 84, 36, 9, 1, 9, 45, 120, 210, 252, 210, 120, 45, 10, 1, 10, 55, 165, 330, 462, 462, 330, 165, 55, 11, 1
Offset: 0
First few rows of the triangle are:
1;
1, 1;
2, 3, 1;
3, 6, 4, 1;
4, 10, 10, 5, 1;
5, 15, 20, 15, 6, 1;
6, 21, 35, 35, 21, 7, 1;
7, 28, 56, 70, 56, 28, 8, 1;
8, 36, 84, 126, 126, 84, 36, 9, 1;
9, 45, 120, 210, 252, 210, 120, 45, 10, 1;
...
This is
A137396 without the initial column and without signs.
-
z = 10; c = 1; d = 1;
p[0, x_] := 1
p[n_, x_] := x*p[n - 1, x] + 1; p[n_, 0] := p[n, x] /. x -> 0;
q[n_, x_] := (c*x + d)^n
t[n_, k_] := Coefficient[p[n, x], x^k]; t[n_, 0] := p[n, x] /. x -> 0;
w[n_, x_] := Sum[t[n, k]*q[n + 1 - k, x], {k, 0, n}]; w[-1, x_] := 1
g[n_] := CoefficientList[w[n, x], {x}]
TableForm[Table[Reverse[g[n]], {n, -1, z}]]
Flatten[Table[Reverse[g[n]], {n, -1, z}]] (* A193815 *)
TableForm[Table[g[n], {n, -1, z}]]
Flatten[Table[g[n], {n, -1, z}]] (* A153861 *)
(* Clark Kimberling, Aug 06 2011 *)
A316989
Irregular triangle read by rows: row n consists of the coefficients in the expansion of the polynomial (x^2 + 4*x + 3)*(x + 1)^(2*n) + (x^2 - 1)*(x^2 + 3*x + 3).
Original entry on oeis.org
0, 1, 3, 3, 1, 0, 7, 14, 9, 2, 0, 13, 37, 43, 26, 8, 1, 0, 19, 72, 129, 141, 98, 42, 10, 1, 0, 25, 119, 291, 463, 504, 378, 192, 63, 12, 1, 0, 31, 178, 553, 1156, 1716, 1848, 1452, 825, 330, 88, 14, 1, 0, 37, 249, 939, 2432, 4576, 6435, 6864, 5577, 3432, 1573
Offset: 0
The triangle T(n,k) begins:
n\k| 0 1 2 3 4 5 9 7 8 9 10 11 12 13 14
-------------------------------------------------------------------------------
0 | 0 1 3 3 1
1 | 0 7 14 9 2
2 | 0 13 37 43 26 8 1
3 | 0 19 72 129 141 98 42 10 1
4 | 0 25 119 291 463 504 378 192 63 12 1
5 | 0 31 178 553 1156 1716 1848 1452 825 330 88 14 1
6 | 0 37 249 939 2432 4576 6435 6864 5577 3432 1573 520 117 16 1
...
- Ji-Young Ham and Joongul Lee, An explicit formula for the A-polynomial of the knot with Conway’s notation C(2n,3), Journal of Knot Theory and Its Ramifications 25 (2016), 1-9.
- Ryo Hanaki, On scannable properties of the original knot from a knot shadow, Topology and its Applications 194 (2015), 296-305.
- Bin Lu and Jianyuan K. Zhong, The Kauffman Polynomials of 2-bridge Knots, arXiv:math/0606114 [math.GT], 2006.
-
T := proc (n, k) if k = 1 then 6*n + 1 else binomial(2*n + 3, k + 1) + (binomial(2*n + 1, k)*(2*k - 2*n) + binomial(4, k)*(2*k - 3))/(k + 1) end if end proc:
for n from 0 to 12 do seq(T(n, k), k = 0 .. max(4, 2*(n + 1))) od;
-
row[n_] := CoefficientList[(x^2 + 4*x + 3)*(x + 1)^(2*n) + (x^2 - 1)*(x^2 + 3*x + 3), x];
Array[row, 12, 0] // Flatten
-
T(n, k) := binomial(2*n + 3, k + 1) + (binomial(2*n + 1, k)*(2*k - 2*n) + binomial(4, k)*(2*k - 3))/(k + 1) - kron_delta(1, k)$
for n:0 thru 12 do print(makelist(T(n, k), k, 0, max(4, 2*(n + 1))));
A316659
Irregular triangle read by rows: row n consists of the coefficients in the expansion of the polynomial x*(x^2 - 2) + x*(((v - w)/2)^n + ((v + w)/2)^n), where v = 3 + 2*x and w = sqrt(5 + 4*x).
Original entry on oeis.org
0, 0, 0, 1, 0, 1, 2, 1, 0, 5, 8, 3, 0, 16, 30, 16, 2, 0, 45, 104, 81, 24, 2, 0, 121, 340, 356, 170, 35, 2, 0, 320, 1068, 1411, 932, 315, 48, 2, 0, 841, 3262, 5209, 4396, 2079, 532, 63, 2, 0, 2205, 9760, 18281, 18784, 11440, 4144, 840, 80, 2, 0, 5776, 28746
Offset: 0
The triangle T(n,k) begins:
n\k: 0 1 2 3 4 5 6 7 8 9 10 11
0: 0 0 0 1
1: 0 1 2 1
2: 0 5 8 3
3: 0 16 30 16 2
4: 0 45 104 81 24 2
5: 0 121 340 356 170 35 2
6: 0 320 1068 1411 932 315 48 2
7: 0 841 3262 5209 4396 2079 532 63 2
8: 0 2205 9760 18281 18784 11440 4144 840 80 2
9: 0 5776 28746 61786 74838 55809 26226 7602 1260 99 2
10: 0 15125 83620 202841 282980 249815 144488 54690 13080 1815 120 2
...
- Louis H. Kauffman, An invariant of regular isotopy, Trans. Amer. Math. Soc., Vol. 318 (1990), 417-471.
- Seong Ju Kim, R. Stees, and L. Taalman, Sequences of Spiral Knot Determinants, Journal of Integer Sequences, Vol. 19 (2016), #16.1.4.
- Alexander Stoimenow, Square numbers, spanning trees and invariants of achiral knots, Communications in Analysis and Geometry, Vol. 13 (2005), 591-631.
-
v = 3 + 2*x; w = Sqrt[5 + 4*x];
row[n_] := CoefficientList[x*(x^2 - 2) + x*(((v - w)/2)^n + ((v + w)/2)^n), x];
Array[row, 15, 0] // Flatten
-
v : 3 + 2*x$ w : sqrt(5 + 4*x)$
p(n, x) := expand(x*(x^2 - 2) + x*(((v - w)/2)^n + ((v + w)/2)^n))$
for n:0 thru 15 do print(makelist(ratcoef(p(n, x), x, k), k, 0, max(3, n + 1)));
A123192
Triangle read by rows: row n gives the coefficients in the expansion of x^abs(3*n - 2)*p(n;x), where p(n;x) denotes the bracket polynomial for the (2,n)-torus knots.
Original entry on oeis.org
-1, 0, 0, 0, -1, 0, 0, 0, 0, -1, -1, 0, 0, 0, 0, 0, 0, 0, -1, 1, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, -1, -1, 0, 0, 0, 1, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, -1, 1, 0, 0, 0, -1, 0, 0, 0, 1, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, -1, -1, 0, 0, 0, 1, 0, 0, 0, -1, 0, 0, 0
Offset: 0
From _Franck Maminirina Ramaharo_, Aug 11 2018: (Start)
The bracket polynomial for some value of n:
p(0;x) = -x^2 - 1/x^2;
p(1;x) = -x^3;
p(2;x) = -x^4 - 1/x^4;
p(3;x) = -x^5 - 1/x^3 + 1/x^7;
p(4;x) = -x^6 - 1/x^2 + 1/x^6 - 1/x^10;
p(5;x) = -x^7 - 1/x + 1/x^5 - 1/x^9 + 1/x^13;
p(6;x) = -x^8 - 1 + 1/x^4 - 1/x^8 + 1/x^12 - 1/x^16;
p(7;x) = -x^9 - x + 1/x^3 - 1/x^7 + 1/x^11 - 1/x^15 + 1/x^19;
...
The triangle giving the coefficients in x^abs(3*n - 2)*p(n;x) begins:
-1, 0, 0, 0, -1
0, 0, 0, 0, -1
-1, 0, 0, 0, 0, 0, 0, 0, -1
1, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, -1
-1, 0, 0, 0, 1, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, -1
1, 0, 0, 0, -1, 0, 0, 0, 1, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, -1
...
(End)
- Louis H. Kauffman, Knots and Physics (Third Edition), World Scientific, 2001. See p. 38 and p. 353.
- Paul Corbitt, Torus Links and the Bracket Polynomial.
- Louis H. Kauffman, State models and the Jones polynomial, Topology Vol. 26 (1987), 395-407.
- Franck Ramaharo, Note on sequences A123192, A137396 and A300453, arXiv:1911.04528 [math.CO], 2019.
- Eric Weisstein's World of Mathematics, Bracket Polynomial.
- Eric Weisstein's World of Mathematics, Torus Knot.
- Wikipedia, Torus knot.
- Wikipedia, Medial graph.
-
K(n, A, B, d) := if n = 0 then d else A*K(n - 1, A, B, d) + B*(A + B*d)^(n - 1)$
p(n, x) := x^abs(3*n - 2)*K(n, x, 1/x, -x^(-2) - x^2)$
t(n, k) := ratcoef(p(n, x), x, k)$
T:[]$
for n:0 thru 10 do T:append(T, makelist(t(n,k), k, 0, max(4, 4*n)))$
T; /* Franck Maminirina Ramaharo, Aug 11 2018 */
Showing 1-5 of 5 results.
Comments